1
|
Azizi N, Issaiy M, Jalali AH, Kolahi S, Naghibi H, Zarei D, Firouznia K. Perfusion-weighted MRI patterns in neuropsychiatric systemic lupus erythematosus: a systematic review and meta-analysis. Neuroradiology 2024:10.1007/s00234-024-03457-1. [PMID: 39230717 DOI: 10.1007/s00234-024-03457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Neuropsychiatric Systemic Lupus Erythematosus (NPSLE) is a complex manifestation of Systemic Lupus Erythematosus (SLE) characterized by a wide range of neurological and psychiatric symptoms. This study aims to elucidate the patterns of Perfusion-Weighted MRI (PWI) in NPSLE patients compared to SLE patients without neuropsychiatric manifestations (non-NPSLE) and healthy controls (HCs). MATERIAL AND METHODS A systematic search was conducted in PubMed/Medline, Embase, Web of Science, and Scopus for studies utilizing PWI in NPSLE patients published through April 14, 2024. Cerebral blood flow (CBF) data from NPSLE, non-NPSLE patients, and HCs were extracted for meta-analysis, using standardized mean difference (SMD) as an estimate measure. For studies lacking sufficient data for inclusion, CBF, cerebral blood volume (CBV), and mean transit time (MTT) were reviewed qualitatively. RESULTS Our review included eight observational studies employing PWI techniques, including dynamic susceptibility contrast (DSC) and arterial spin labeling (ASL). The meta-analysis of NPSLE compared to non-NPSLE incorporated four studies, encompassing 104 NPSLE patients and 90 non-NPSLE patients. The results revealed an SMD of -1.42 (95% CI: -2.85-0.00, I2: 94%) for CBF in NPSLE compared to non-NPSLE. CONCLUSION PWI reveals informative patterns of cerebral perfusion, showing a significant reduction in mean CBF in NPSLE patients compared to non-NPSLE patients. Our qualitative synthesis highlights these changes, particularly in the frontal and temporal lobes. However, the existing data exhibits considerable heterogeneity and limitations.
Collapse
Affiliation(s)
- Narges Azizi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Science, Imam Khomeini Hospital Complex (IKHC), 2nd Floor, Keshavarz Boulevard, Tehran, Iran
| | - Mahbod Issaiy
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Science, Imam Khomeini Hospital Complex (IKHC), 2nd Floor, Keshavarz Boulevard, Tehran, Iran
| | - Amir Hossein Jalali
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Science, Imam Khomeini Hospital Complex (IKHC), 2nd Floor, Keshavarz Boulevard, Tehran, Iran
| | - Shahriar Kolahi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Science, Imam Khomeini Hospital Complex (IKHC), 2nd Floor, Keshavarz Boulevard, Tehran, Iran
| | - Hamed Naghibi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Science, Imam Khomeini Hospital Complex (IKHC), 2nd Floor, Keshavarz Boulevard, Tehran, Iran
| | - Diana Zarei
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Science, Imam Khomeini Hospital Complex (IKHC), 2nd Floor, Keshavarz Boulevard, Tehran, Iran
| | - Kavous Firouznia
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Science, Imam Khomeini Hospital Complex (IKHC), 2nd Floor, Keshavarz Boulevard, Tehran, Iran.
| |
Collapse
|
2
|
Huang L, Liu X, Cheng Y, Qin R, Yang D, Mo Y, Ke Z, Hu Z, Mao C, Chen Y, Li J, Xu Y. Lower cerebrovascular reactivity in prefrontal cortex and weaker negative functional connectivity between prefrontal cortex and insula contribute to white matter hyperintensity-related anxiety or depression. J Affect Disord 2024; 354:526-535. [PMID: 38513774 DOI: 10.1016/j.jad.2024.03.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND White matter hyperintensities (WMHs) are associated with higher anxiety or depression (A/D) incidence. We investigated associations of WMHs with A/D, cerebrovascular reactivity (CVR), and functional connectivity (FC) to identify potential pathomechanisms. METHODS Participants with WMH (n = 239) and normal controls (NCs, n = 327) were assessed for A/D using the Hamilton Anxiety Rating Scale (HAMA) and Hamilton Depression Rating Scale (HAMD). The CVR and FC maps were constructed from resting-state functional MRI. Two-way analysis of covariance with fixed factors A/D and WMH was performed to identify regional CVR abnormalities. Seed-based FC analyses were then conducted on regions with WMH × A/D interaction effects on CVR. Logistic regression models were constructed to examine the utility of these measurements for identifying WMH-related A/D. RESULTS Participants with WMH related A/D exhibited significantly greater CVR in left insula and lower CVR in right superior frontal gyrus (SFG.R), and HAMA scores were negatively correlated with CVR in SFG.R (r = -0.156, P = 0.016). Insula-SFG.R negative FC was significantly weaker in WMH patients with suspected or definite A/D. A model including CVR plus FC changes identified WMH-associated A/D with highest sensitivity and specificity. In contrast, NCs with A/D exhibited greater CVR in prefrontal cortex and stronger FC within the default mode network (DMN) and between the DMN and executive control network. LIMITATIONS This cross-sectional study requires validation by longitudinal and laboratory studies. CONCLUSIONS Impaired CVR in SFG.R and weaker negative FC between prefrontal cortex and insula may contribute to WMH-related A/D, providing potential diagnostic imaging markers and therapeutic targets.
Collapse
Affiliation(s)
- Lili Huang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China
| | - Xin Liu
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Nanjing University of Science and Technology, 210094 Xuanwu District, Nanjing, China
| | - Yue Cheng
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China
| | - Ruomeng Qin
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China
| | - Dan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China
| | - Yuting Mo
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China
| | - Zhihong Ke
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China
| | - Zheqi Hu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China
| | - Chenglu Mao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China
| | - Ying Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China
| | - Jingwei Li
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China.
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China.
| |
Collapse
|
3
|
Yang X, Yang G, Wang R, Wang Y, Zhang S, Wang J, Yu C, Ren Z. Brain glucose metabolism on [18F]-FDG PET/CT: a dynamic biomarker predicting depression and anxiety in cancer patients. Front Oncol 2023; 13:1098943. [PMID: 37305568 PMCID: PMC10248443 DOI: 10.3389/fonc.2023.1098943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/17/2023] [Indexed: 06/13/2023] Open
Abstract
Objectives To explore the correlation between the incidence rates of depression and anxiety and cerebral glucose metabolism in cancer patients. Methods The experiment subjects consisted of patients with lung cancer, head and neck tumor, stomach cancer, intestinal cancer, breast cancer and healthy individuals. A total of 240 tumor patients and 39 healthy individuals were included. All subjects were evaluated by the Hamilton depression scale (HAMD) and Manifest anxiety scale (MAS), and were examined by whole body Positron Emission Tomography/Computed Tomography (PET/CT) with 18F-fluorodeoxyglucose (FDG). Demographic, baseline clinical characteristics, brain glucose metabolic changes, emotional disorder scores and their relations were statistically analyzed. Results The incidence rates of depression and anxiety in patients with lung cancer were higher than those in patients with other tumors, and Standard uptake values (SUVs) and metabolic volume in bilateral frontal lobe, bilateral temporal lobe, bilateral caudate nucleus, bilateral hippocampus, left cingulate gyrus were lower than those in patients with other tumors. We also found that poor pathological differentiation, and advanced TNM stage independently associated with depression and anxiety risk. SUVs in the bilateral frontal lobe, bilateral temporal lobe, bilateral caudate nucleus, bilateral hippocampus, left cingulate gyrus were negatively correlated with HAMD and MAS scores. Conclusion This study revealed the correlation between brain glucose metabolism and emotional disorders in cancer patients. The changes in brain glucose metabolism were expected to play a major role in emotional disorders in cancer patients as psychobiological markers. These findings indicated that functional imaging can be applied for psychological assessment of cancer patients as an innovative method.
Collapse
Affiliation(s)
- Xue Yang
- Department of Neurology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China
| | - Guangxia Yang
- Department of Rheumatology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China
| | - Ruojun Wang
- Department of Neurology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China
| | - Yanjuan Wang
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China
| | - Shengyi Zhang
- Department of Neurology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian Wang
- Department of Orthopaedics, The Ninth People’s Hospital of Wuxi, Affiliated to Suzhou University, Wuxi, Jiangsu, China
| | - Chunjing Yu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China
| | - Zeqin Ren
- Department of Rehabilitation, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| |
Collapse
|
4
|
Salomonsson T, Rumetshofer T, Jönsen A, Bengtsson AA, Zervides KA, Nilsson P, Knutsson M, Wirestam R, Lätt J, Knutsson L, Sundgren PC. Abnormal cerebral hemodynamics and blood-brain barrier permeability detected with perfusion MRI in systemic lupus erythematosus patients. Neuroimage Clin 2023; 38:103390. [PMID: 37003131 PMCID: PMC10102558 DOI: 10.1016/j.nicl.2023.103390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023]
Abstract
OBJECTIVE Dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) has previously shown alterations in cerebral perfusion in patients with systemic lupus erythematosus (SLE). However, the results have been inconsistent, in particular regarding neuropsychiatric (NP) SLE. Thus, we investigated perfusion-based measures in different brain regions in SLE patients with and without NP involvement, and additionally, in white matter hyperintensities (WMHs), the most common MRI pathology in SLE patients. MATERIALS AND METHODS We included 3 T MRI images (conventional and DSC) from 64 female SLE patients and 19 healthy controls (HC). Three different NPSLE attribution models were used: the Systemic Lupus International Collaborating Clinics (SLICC) A model (13 patients), the SLICC B model (19 patients), and the American College of Rheumatology (ACR) case definitions for NPSLE (38 patients). Normalized cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) were calculated in 26 manually drawn regions of interest and compared between SLE patients and HC, and between NPSLE and non-NPSLE patients. Additionally, normalized CBF, CBV and MTT, as well as absolute values of the blood-brain barrier leakage parameter (K2) were investigated in WMHs compared to normal appearing white matter (NAWM) in the SLE patients. RESULTS After correction for multiple comparisons, the most prevalent finding was a bilateral significant decrease in MTT in SLE patients compared to HC in the hypothalamus, putamen, right posterior thalamus and right anterior insula. Significant decreases in SLE compared to HC were also found for CBF in the pons, and for CBV in the bilateral putamen and posterior thalamus. Significant increases were found for CBF in the posterior corpus callosum and for CBV in the anterior corpus callosum. Similar patterns were found for both NPSLE and non-NPSLE patients for all attributional models compared to HC. However, no significant perfusion differences were revealed between NPSLE and non-NPSLE patients regardless of attribution model. The WMHs in SLE patients showed a significant increase in all perfusion-based metrics (CBF, CBV, MTT and K2) compared to NAWM. CONCLUSION Our study revealed perfusion differences in several brain regions in SLE patients compared to HC, independently of NP involvement. Furthermore, increased K2 in WMHs compared to NAWM may indicate blood-brain barrier dysfunction in SLE patients. We conclude that our results show a robust cerebral perfusion, independent from the different NP attribution models, and provide insight into potential BBB dysfunction and altered vascular properties of WMHs in female SLE patients. Despite SLE being most prevalent in females, a generalization of our conclusions should be avoided, and future studies including all sexes are needed.
Collapse
Affiliation(s)
- T Salomonsson
- Department of Clinical Sciences/Radiology, Lund University, Lund, Sweden
| | - T Rumetshofer
- Department of Clinical Sciences/Radiology, Lund University, Lund, Sweden; Department of Clinical Sciences/Division of Logopedics, Phoniatrics and Audiology, Lund University, Lund, Sweden
| | - A Jönsen
- Department of Clinical Sciences Lund/Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - A A Bengtsson
- Department of Clinical Sciences Lund/Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - K A Zervides
- Department of Clinical Sciences Lund/Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - P Nilsson
- Department of Clinical Sciences Lund/Neurology, Lund University, Skåne University Hospital, Lund, Sweden
| | - M Knutsson
- Department of Clinical Sciences/Radiology, Lund University, Lund, Sweden
| | - R Wirestam
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - J Lätt
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - L Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - P C Sundgren
- Department of Clinical Sciences/Radiology, Lund University, Lund, Sweden; Department of Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden; Lund University Bioimaging Center, Lund University, Lund, Sweden.
| |
Collapse
|
5
|
Tan X, Liu X, Han K, Zhao L, Niu M, Yao Q, Huang Q, Zhong M, Mei Y, Huang R, Xu Y. Disrupted resting-state brain functional network properties in non-neuropsychiatric systemic lupus erythematosus patients. Lupus 2023; 32:538-548. [PMID: 36916282 DOI: 10.1177/09612033231160725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
INTRODUCTION Previous fMRI studies revealed that the abnormal functional connectivity (FC) was related to cognitive impairment in patients with SLE. However, it remains unclear how the disease severity affects the functional topological organization of the whole-brain network in SLE patients without neuropsychiatric symptoms (non-NPSLE). OBJECTIVE We aim to examine the impairment of the whole-brain functional network in SLE patients without neuropsychiatric symptoms (non-NPSLE), which may improve the understanding of neural mechanism in SLE. METHODS We acquired resting-state fMRI data from 32 non-NPSLE patients and 32 healthy controls (HC), constructed their whole-brain functional network, and then estimated the topological properties including global and nodal parameters by using graph theory. Meanwhile, we also investigated the differences in intra- and inter-network FC between the non-NPSLE patients and the HC. RESULTS The non-NPSLE patients showed significantly lower clustering coefficient, global and local efficiency, but higher characteristic path length than the HC. The non-NPSLE patients had significantly lower nodal strength in two regions, ventromedial prefrontal cortex (vmPFC) and anterior PFC (aPFC) than the HC. We found the non-NPSLE patients had significantly lower intra-network FC within frontal-parietal network (FPN) and within default mode network (DMN), and significantly lower inter-network FC between DMN and FPN than the HC. The intra-network FC within DMN was negatively correlated with systemic lupus erythematosus disease activity index (SLEDAI). CONCLUSION Abnormal whole-brain functional network properties and abnormal intra- and inter-network FC may be related to cognitive impairment and disease degree in the non-NPSLE patients. Our findings provide a network perspective to understand the neural mechanisms of SLE.
Collapse
Affiliation(s)
- Xiangliang Tan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojin Liu
- Center for Educational Science and Technology, Beijing Normal University, Zhuhai, China.,Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| | - Kai Han
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Zhao
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| | - Meiqi Niu
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| | - Qiaoli Yao
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qin Huang
- Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Miao Zhong
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| | | | - Ruiwang Huang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Cerebral Venous-Associated Brain Damage May Lead to Anxiety and Depression. J Clin Med 2022; 11:jcm11236927. [PMID: 36498502 PMCID: PMC9738348 DOI: 10.3390/jcm11236927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Background and purpose: Anxiety and depression are common in patients with Cerebral venous outflow disturbance (CVOD). Here, we aimed to explore possible mechanisms underlying this phenomenon. Methods: We enrolled patients diagnosed with imaging-confirmed CVOD, including internal jugular venous stenosis (IJVS) and cerebral venous sinus stenosis (CVSS) between 2017 and 2020. All of them had MRI/PWI scans. The Hamilton Anxiety Scale (HAMA) and 24-item Hamilton Depression Scale (HAMD) were used to evaluate the degree of anxiety and depression at the baseline and three months post-stenting. In addition, the relationships between the HAMA and HAMD scores, white matter lesions, and cerebral perfusion were analyzed using multiple logistic regressions. Results: A total of 61 CVOD patients (mean age 47.95 ± 15.26 years, 59.0% females) were enrolled in this study. Over 70% of them reported symptoms of anxiety and/or depression. Severe CVOD-related anxiety correlated with older age (p = 0.046) and comorbid hyperlipidemia (p = 0.005). Additionally, head noise, sleep disturbances, and white matter lesions (WMLs) were common risk factors for anxiety and depression (p < 0.05). WMLs were considered an independent risk factor for anxiety based on multiple regression analysis (p = 0.029). Self-contrast displayed that CVOD-related anxiety (p = 0.027) and depression (p = 0.017) scores could be corrected by stenting, as the hypoperfusion scores in the limbic lobes of patients with anxiety and depression were significantly higher than those in patients without. Conclusions: CVOD-induced hypoperfusion-mediated changes in the white matter microstructure may represent an underlying mechanism of anxiety and depression in patients with chronic CVOD.
Collapse
|
7
|
Cognitive dysfunction in SLE: An understudied clinical manifestation. J Autoimmun 2022; 132:102911. [PMID: 36127204 DOI: 10.1016/j.jaut.2022.102911] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022]
Abstract
Neuropsychiatric lupus (NPSLE) is a debilitating manifestation of SLE which occurs in a majority of SLE patients and has a variety of clinical manifestations. In the central nervous system, NPSLE may result from ischemia or penetration of inflammatory mediators and neurotoxic antibodies through the blood brain barrier (BBB). Here we focus on cognitive dysfunction (CD) as an NPSLE manifestation; it is common, underdiagnosed, and without specific therapy. For a very long time, clinicians ignored cognitive dysfunction and researchers who might be interested in the question struggled to find an approach to understanding mechanisms for this manifestation. Recent years, however, propelled by a more patient-centric approach to disease, have seen remarkable progress in our understanding of CD pathogenesis. This has been enabled through the use of novel imaging modalities and numerous mouse models. Overall, these studies point to a pivotal role of an impaired BBB and microglial activation in leading to neuronal injury. These insights suggest potential therapeutic modalities and make possible clinical trials for cognitive impairment.
Collapse
|
8
|
Chen H, Cui H, Geng Y, Jin T, Shi S, Li Y, Chen X, Shen B. Development of a nomogram prediction model for depression in patients with systemic lupus erythematosus. Front Psychol 2022; 13:951431. [PMID: 36186364 PMCID: PMC9518674 DOI: 10.3389/fpsyg.2022.951431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease with depression as one of its most common symptoms. The aim of this study is to establish a nomogram prediction model to assess the occurrence of depression in patients with SLE. Based on the Hospital Anxiety and Depression Scale cutoff of 8, 341 patients with SLE, recruited between June 2017 and December 2019, were divided into depressive and non-depressive groups. Data on socio-demographic characteristics, medical history, sociopsychological factors, and other risk factors were collected. Between-group differences in clinical characteristics were assessed with depression as the dependent variable and the variables selected by logistic multiple regression as predictors. The model was established using R language. Marital status, education, social support, coping, and anxiety predicted depression (p < 0.05). The nomogram prediction model showed that the risk rate was from 0.01 to 0.80, and the receiver operating characteristic curve analysis showed that the area under the curve was 0.891 (p < 0.001). The calibration curve can intuitively show that the probability of depression predicted by the nomogram model is consistent with the actual comparison. The designed nomogram provides a highly predictive assessment of depression in patients with SLE, facilitating more comprehensive depression evaluation in usual clinical care.
Collapse
Affiliation(s)
- Haoyang Chen
- Department of Nursing, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Nursing, Nantong Second People’s Hospital, Nantong, China
| | - Hengmei Cui
- Department of Nursing, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaqin Geng
- Department of Rheumatology, The Second People’s Hospital of Changzhou, Changzhou, China
| | - Tiantian Jin
- Department of Nursing, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Songsong Shi
- Department of Nursing, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunyun Li
- Department of Nursing, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Chen
- Department of Nursing, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Biyu Shen
- Department of Nursing, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Nursing, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Biyu Shen,
| |
Collapse
|
9
|
Nikoloudaki M, Repa A, Pitsigavdaki S, Molla Ismail Sali A, Sidiropoulos P, Lionis C, Bertsias G. Persistence of Depression and Anxiety despite Short-Term Disease Activity Improvement in Patients with Systemic Lupus Erythematosus: A Single-Centre, Prospective Study. J Clin Med 2022; 11:jcm11154316. [PMID: 35893407 PMCID: PMC9329785 DOI: 10.3390/jcm11154316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Mental disorders such as anxiety and depression are prevalent in systemic lupus erythematosus (SLE) patients, yet their association with the underlying disease activity remains uncertain and has been mostly evaluated at a cross-sectional level. To examine longitudinal trends in anxiety, depression, and lupus activity, a prospective observational study was performed on 40 adult SLE outpatients with active disease (SLE Disease Activity Index [SLEDAI]-2K ≥ 3 [excluding serology]) who received standard-of-care. Anxiety and depression were determined at baseline and 6 months by the Hospital Anxiety and Depression Scale. Treatment adherence was assessed with the Morisky Medication Adherence Scale-4. Increased anxiety (median [interquartile range] HADS-A: 11.0 [7.8]) and depression (HADS-D: 8.0 [4.8]) were found at inclusion, which remained stable and non-improving during follow-up (difference: 0.0 [4.8] and −0.5 [4.0], respectively) despite reduced SLEDAI-2K by 2.0 (4.0) (p < 0.001). Among possible baseline predictors, paid employment—but not disease activity—correlated with reduced HADS-A and HADS-D with corresponding standardized beta-coefficients of −0.35 (p = 0.017) and −0.27 (p = 0.093). Higher anxiety and depression correlated with lower treatment adherence (p = 0.041 and p = 0.088, respectively). These results indicate a high-mental disease burden in active SLE that persists despite disease control and emphasize the need to consider socioeconomic factors as part of comprehensive patient assessment.
Collapse
Affiliation(s)
- Myrto Nikoloudaki
- Department of Rheumatology and Clinical Immunology, University Hospital of Heraklion and Medical School, University of Crete, 71110 Heraklion, Greece; (M.N.); (A.R.); (S.P.); (A.M.I.S.); (P.S.)
| | - Argyro Repa
- Department of Rheumatology and Clinical Immunology, University Hospital of Heraklion and Medical School, University of Crete, 71110 Heraklion, Greece; (M.N.); (A.R.); (S.P.); (A.M.I.S.); (P.S.)
| | - Sofia Pitsigavdaki
- Department of Rheumatology and Clinical Immunology, University Hospital of Heraklion and Medical School, University of Crete, 71110 Heraklion, Greece; (M.N.); (A.R.); (S.P.); (A.M.I.S.); (P.S.)
| | - Ainour Molla Ismail Sali
- Department of Rheumatology and Clinical Immunology, University Hospital of Heraklion and Medical School, University of Crete, 71110 Heraklion, Greece; (M.N.); (A.R.); (S.P.); (A.M.I.S.); (P.S.)
| | - Prodromos Sidiropoulos
- Department of Rheumatology and Clinical Immunology, University Hospital of Heraklion and Medical School, University of Crete, 71110 Heraklion, Greece; (M.N.); (A.R.); (S.P.); (A.M.I.S.); (P.S.)
- Institute of Molecular Biology and Biotechnology—FORTH, 71110 Heraklion, Greece
| | - Christos Lionis
- Clinic of Social and Family Medicine, University of Crete Medical School, 71110 Heraklion, Greece;
| | - George Bertsias
- Department of Rheumatology and Clinical Immunology, University Hospital of Heraklion and Medical School, University of Crete, 71110 Heraklion, Greece; (M.N.); (A.R.); (S.P.); (A.M.I.S.); (P.S.)
- Institute of Molecular Biology and Biotechnology—FORTH, 71110 Heraklion, Greece
- Correspondence: ; Tel.: +30-2810-394635
| |
Collapse
|
10
|
Abe N, Tarumi M, Fujieda Y, Takahashi N, Karino K, Uchida M, Kono M, Tanaka Y, Hasebe R, Kato M, Amengual O, Arinuma Y, Oku K, Sato W, Tha KK, Yamasaki M, Watanabe M, Atsumi T, Murakami M. Pathogenic neuropsychiatric effect of stress-induced microglial interleukin 12/23 axis in systemic lupus erythematosus. Ann Rheum Dis 2022; 81:1564-1575. [PMID: 35817472 DOI: 10.1136/ard-2022-222566] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/14/2022] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The central nervous system disorder in systemic lupus erythematosus (SLE), called neuropsychiatric lupus (NPSLE), is one of the most severe phenotypes with various clinical symptoms, including mood disorder, psychosis and delirium as diffuse neuropsychological manifestations (dNPSLE). Although stress is one of the aggravating factors for neuropsychiatric symptoms, its role in the pathogenesis of dNPSLE remains to be elucidated. We aimed to investigate stress effects on the neuropsychiatric pathophysiology in SLE using lupus-prone mice and patients' data. METHODS Sleep disturbance stress (SDS) for 2 weeks was placed on 6-8-week-old female MRL/lpr and control mice. Behavioural phenotyping, histopathological analyses and gene and protein expression analyses were performed to assess SDS-induced neuroimmunological alterations. We also evaluated cytokines of the cerebrospinal fluid and brain regional volumes in patients with dNPSLE and patients with non-dNPSLE. RESULTS SDS-subjected MRL/lpr mice exhibited less anxiety-like behaviour, whereas stressed control mice showed increased anxiety. Furthermore, stress strongly activated the medial prefrontal cortex (mPFC) in SDS-subjected MRL/lpr. A transcriptome analysis of the PFC revealed the upregulation of microglial activation-related genes, including Il12b. We confirmed that stress-induced microglial activation and the upregulation of interleukin (IL) 12/23p40 proteins and increased dendritic spines in the mPFC of stressed MRL/lpr mice. IL-12/23p40 neutralisation and tyrosine kinase 2 inhibition mitigated the stress-induced neuropsychiatric phenotypes of MRL/lpr mice. We also found a higher level of cerebrospinal fluid IL-12/23p40 and more atrophy in the mPFC of patients with dNPSLE than those with non-dNPSLE. CONCLUSIONS The microglial IL-12/23 axis in the mPFC might be associated with the pathogenesis and a promising therapeutic target for dNPSLE.
Collapse
Affiliation(s)
- Nobuya Abe
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masato Tarumi
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuichiro Fujieda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nobuhiko Takahashi
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kohei Karino
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mona Uchida
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Michihito Kono
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Inage, Japan
| | - Rie Hasebe
- Center for Infectious Cancers, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Japan
| | - Masaru Kato
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Olga Amengual
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshiyuki Arinuma
- Department of Rheumatology and Infectious Diseases, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Kenji Oku
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Department of Rheumatology and Infectious Diseases, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Wakiro Sato
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Khin Khin Tha
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan.,Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Miwako Yamasaki
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan .,Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Inage, Japan.,Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Japan
| |
Collapse
|
11
|
Wang XH, Liu XF, Ao M, Wang T, He J, Gu YW, Fan JW, Yang L, Yu R, Guo S. Cerebral Perfusion Patterns of Anxiety State in Patients With Pulmonary Nodules: A Study of Cerebral Blood Flow Based on Arterial Spin Labeling. Front Neurosci 2022; 16:912665. [PMID: 35615271 PMCID: PMC9125149 DOI: 10.3389/fnins.2022.912665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022] Open
Abstract
Background and Purpose The proportion of patients with somatic diseases associated with anxiety is increasing each year, and pulmonary nodules have become a non-negligible cause of anxiety, the mechanism of which is unclear. The study focus on the cerebral blood flow (CBF) of anxiety in patients with pulmonary nodules to explore the cerebral perfusion pattern of anxiety associated with pulmonary nodules, blood perfusion status and mode of pulmonary nodule induced anxiety state. Materials and Methods Patients with unconfirmed pulmonary nodules were evaluated by Hamilton Anxiety Scale (HAMA). The total score > 14 was defined as anxiety group, and the total score ≤ 14 points was defined as non-anxiety group. A total of 38 patients were enrolled, of which 19 patients were the anxiety group and 19 were the non-anxiety group. All subjects underwent arterial spin labeling imaging using a 3.0 T MRI. A two-sample t-test was performed to compare the CBF between the two groups. The CBF was extracted in brain regions with difference, and Spearman correlation was used to analyze the correlation between CBF and HAMA scores; ROC was used to analyze the performance of CBF to distinguish between the anxiety group and the non-anxiety group. Results The CBF in the right insula/Heschl’s cortex of the anxiety group decreased (cluster = 109, peak t = 4.124, and P < 0.001), and the CBF in the right postcentral gyrus increased (cluster = 53, peak t = −3.912, and P < 0.001) in the anxiety group. But there was no correlation between CBF and HAMA score. The ROC analysis of the CBF of the right insula/Heschl’s cortex showed that the AUC was 0.856 (95%CI, 0.729, 0.983; P < 0.001), the optimal cutoff value of the CBF was 50.899, with the sensitivity of 0.895, and specificity of 0.789. The ROC analysis of CBF in the right postcentral gyrus showed that the AUC was 0.845 (95%CI, 0.718, 0.972; P < 0.001), the optimal cutoff value of CBF was 43.595, with the sensitivity of 0.737, and specificity of 0.842. Conclusion The CBF of the right insula/Heschl’s cortex decreased and the CBF of the right postcentral gyrus increased in patients with pulmonary nodules under anxiety state, and the CBF of the aforementioned brain regions can accurately distinguish the anxiety group from the non-anxiety group.
Collapse
Affiliation(s)
- Xiao-Hui Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Fan Liu
- School of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Min Ao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinglan He
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue-Wen Gu
- Department of Clinical Psychology, Fourth Military Medical University, Xi’an, China
| | - Jing-Wen Fan
- Department of Clinical Psychology, Fourth Military Medical University, Xi’an, China
| | - Li Yang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Li Yang,
| | - Renqiang Yu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Renqiang Yu,
| | - Shuliang Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Shuliang Guo, , orcid.org/0000-0003-3572-7421
| |
Collapse
|
12
|
Relationship Between Vitamin D Status and Brain Perfusion in Neuropsychiatric Lupus. Nucl Med Mol Imaging 2022; 56:158-168. [DOI: 10.1007/s13139-022-00741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/20/2022] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
|
13
|
Huang X, Zhang Q, Zhang H, Lu Q. A Contemporary Update on the Diagnosis of Systemic Lupus Erythematosus. Clin Rev Allergy Immunol 2022; 63:311-329. [DOI: 10.1007/s12016-021-08917-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
|
14
|
Antypa D, Simos NJ, Kavroulakis E, Bertsias G, Fanouriakis A, Sidiropoulos P, Boumpas D, Papadaki E. Anxiety and depression severity in neuropsychiatric SLE are associated with perfusion and functional connectivity changes of the frontolimbic neural circuit: a resting-state f(unctional) MRI study. Lupus Sci Med 2021; 8:8/1/e000473. [PMID: 33927003 PMCID: PMC8094334 DOI: 10.1136/lupus-2020-000473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To examine the hypothesis that perfusion and functional connectivity disturbances in brain areas implicated in emotional processing are linked to emotion-related symptoms in neuropsychiatric SLE (NPSLE). METHODS Resting-state fMRI (rs-fMRI) was performed and anxiety and/or depression symptoms were assessed in 32 patients with NPSLE and 18 healthy controls (HC). Whole-brain time-shift analysis (TSA) maps, voxel-wise global connectivity (assessed through intrinsic connectivity contrast (ICC)) and within-network connectivity were estimated and submitted to one-sample t-tests. Subgroup differences (high vs low anxiety and high vs low depression symptoms) were assessed using independent-samples t-tests. In the total group, associations between anxiety (controlling for depression) or depression symptoms (controlling for anxiety) and regional TSA or ICC metrics were also assessed. RESULTS Elevated anxiety symptoms in patients with NPSLE were distinctly associated with relatively faster haemodynamic response (haemodynamic lead) in the right amygdala, relatively lower intrinsic connectivity of orbital dlPFC, and relatively lower bidirectional connectivity between dlPFC and vmPFC combined with relatively higher bidirectional connectivity between ACC and amygdala. Elevated depression symptoms in patients with NPSLE were distinctly associated with haemodynamic lead in vmPFC regions in both hemispheres (lateral and medial orbitofrontal cortex) combined with relatively lower intrinsic connectivity in the right medial orbitofrontal cortex. These measures failed to account for self-rated, milder depression symptoms in the HC group. CONCLUSION By using rs-fMRI, altered perfusion dynamics and functional connectivity was found in limbic and prefrontal brain regions in patients with NPSLE with severe anxiety and depression symptoms. Although these changes could not be directly attributed to NPSLE pathology, results offer new insights on the pathophysiological substrate of psychoemotional symptomatology in patients with lupus, which may assist its clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Despina Antypa
- Department of Psychiatry, University of Crete School of Medicine, Heraklion, Greece
| | - Nicholas J Simos
- School of Electronics and Computer Engineering, Technical University of Crete, Chania, Crete, Greece.,Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | | | - George Bertsias
- Rheumatology, Clinical Immunology and Allergy, University Hospital of Heraklion, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Antonis Fanouriakis
- Rheumatology, Clinical Immunology and Allergy, University Hospital of Heraklion, Heraklion, Greece.,"Attikon" University Hospital, Athens, Greece
| | - Prodromos Sidiropoulos
- Rheumatology, Clinical Immunology and Allergy, University Hospital of Heraklion, Heraklion, Greece
| | - Dimitrios Boumpas
- Rheumatology, Clinical Immunology and Allergy, University Hospital of Heraklion, Heraklion, Greece.,"Attikon" University Hospital, Athens, Greece.,Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Joint Academic Rheumatology Program, and 4th Department of Medicine, Medical School, National and Kapodestrian University of Athens, Athens, Greece
| | - Efrosini Papadaki
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece .,Department of Radiology, University of Crete, School of Medicine, Heraklion, Greece
| |
Collapse
|
15
|
Abstract
Neuropsychiatric lupus (NPSLE) comprises a disparate collection of syndromes affecting the central and peripheral nervous systems. Progress in the attribution of neuropsychiatric syndromes to SLE-related mechanisms and development of targeted treatment strategies has been impeded by a lack of objective imaging biomarkers that reflect specific neuropsychiatric syndromes and/or pathologic mechanisms. The present review addresses recent publications of neuroimaging techniques in NPSLE.
Collapse
|