1
|
Brlek P, Bulić L, Bračić M, Projić P, Škaro V, Shah N, Shah P, Primorac D. Implementing Whole Genome Sequencing (WGS) in Clinical Practice: Advantages, Challenges, and Future Perspectives. Cells 2024; 13:504. [PMID: 38534348 PMCID: PMC10969765 DOI: 10.3390/cells13060504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
The integration of whole genome sequencing (WGS) into all aspects of modern medicine represents the next step in the evolution of healthcare. Using this technology, scientists and physicians can observe the entire human genome comprehensively, generating a plethora of new sequencing data. Modern computational analysis entails advanced algorithms for variant detection, as well as complex models for classification. Data science and machine learning play a crucial role in the processing and interpretation of results, using enormous databases and statistics to discover new and support current genotype-phenotype correlations. In clinical practice, this technology has greatly enabled the development of personalized medicine, approaching each patient individually and in accordance with their genetic and biochemical profile. The most propulsive areas include rare disease genomics, oncogenomics, pharmacogenomics, neonatal screening, and infectious disease genomics. Another crucial application of WGS lies in the field of multi-omics, working towards the complete integration of human biomolecular data. Further technological development of sequencing technologies has led to the birth of third and fourth-generation sequencing, which include long-read sequencing, single-cell genomics, and nanopore sequencing. These technologies, alongside their continued implementation into medical research and practice, show great promise for the future of the field of medicine.
Collapse
Affiliation(s)
- Petar Brlek
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (P.B.)
- International Center for Applied Biological Research, 10000 Zagreb, Croatia
- School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Luka Bulić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (P.B.)
| | - Matea Bračić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (P.B.)
| | - Petar Projić
- International Center for Applied Biological Research, 10000 Zagreb, Croatia
| | | | - Nidhi Shah
- Dartmouth Hitchcock Medical Center, Lebannon, NH 03766, USA
| | - Parth Shah
- Dartmouth Hitchcock Medical Center, Lebannon, NH 03766, USA
| | - Dragan Primorac
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (P.B.)
- International Center for Applied Biological Research, 10000 Zagreb, Croatia
- School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Split, 21000 Split, Croatia
- Eberly College of Science, The Pennsylvania State University, State College, PA 16802, USA
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
- REGIOMED Kliniken, 96450 Coburg, Germany
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- National Forensic Sciences University, Gujarat 382007, India
| |
Collapse
|
2
|
Wang Q, Zhang J, Liu Z, Duan Y, Li C. Integrative approaches based on genomic techniques in the functional studies on enhancers. Brief Bioinform 2023; 25:bbad442. [PMID: 38048082 PMCID: PMC10694556 DOI: 10.1093/bib/bbad442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/22/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
With the development of sequencing technology and the dramatic drop in sequencing cost, the functions of noncoding genes are being characterized in a wide variety of fields (e.g. biomedicine). Enhancers are noncoding DNA elements with vital transcription regulation functions. Tens of thousands of enhancers have been identified in the human genome; however, the location, function, target genes and regulatory mechanisms of most enhancers have not been elucidated thus far. As high-throughput sequencing techniques have leapt forwards, omics approaches have been extensively employed in enhancer research. Multidimensional genomic data integration enables the full exploration of the data and provides novel perspectives for screening, identification and characterization of the function and regulatory mechanisms of unknown enhancers. However, multidimensional genomic data are still difficult to integrate genome wide due to complex varieties, massive amounts, high rarity, etc. To facilitate the appropriate methods for studying enhancers with high efficacy, we delineate the principles, data processing modes and progress of various omics approaches to study enhancers and summarize the applications of traditional machine learning and deep learning in multi-omics integration in the enhancer field. In addition, the challenges encountered during the integration of multiple omics data are addressed. Overall, this review provides a comprehensive foundation for enhancer analysis.
Collapse
Affiliation(s)
- Qilin Wang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Junyou Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zhaoshuo Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yingying Duan
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Chunyan Li
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
3
|
Mengelkoch S, Miryam Schüssler-Fiorenza Rose S, Lautman Z, Alley JC, Roos LG, Ehlert B, Moriarity DP, Lancaster S, Snyder MP, Slavich GM. Multi-omics approaches in psychoneuroimmunology and health research: Conceptual considerations and methodological recommendations. Brain Behav Immun 2023; 114:475-487. [PMID: 37543247 PMCID: PMC11195542 DOI: 10.1016/j.bbi.2023.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/04/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023] Open
Abstract
The field of psychoneuroimmunology (PNI) has grown substantially in both relevance and prominence over the past 40 years. Notwithstanding its impressive trajectory, a majority of PNI studies are still based on a relatively small number of analytes. To advance this work, we suggest that PNI, and health research in general, can benefit greatly from adopting a multi-omics approach, which involves integrating data across multiple biological levels (e.g., the genome, proteome, transcriptome, metabolome, lipidome, and microbiome/metagenome) to more comprehensively profile biological functions and relate these profiles to clinical and behavioral outcomes. To assist investigators in this endeavor, we provide an overview of multi-omics research, highlight recent landmark multi-omics studies investigating human health and disease risk, and discuss how multi-omics can be applied to better elucidate links between psychological, nervous system, and immune system activity. In doing so, we describe how to design high-quality multi-omics studies, decide which biological samples (e.g., blood, stool, urine, saliva, solid tissue) are most relevant, incorporate behavioral and wearable sensing data into multi-omics research, and understand key data quality, integration, analysis, and interpretation issues. PNI researchers are addressing some of the most interesting and important questions at the intersection of psychology, neuroscience, and immunology. Applying a multi-omics approach to this work will greatly expand the horizon of what is possible in PNI and has the potential to revolutionize our understanding of mind-body medicine.
Collapse
Affiliation(s)
- Summer Mengelkoch
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA.
| | | | - Ziv Lautman
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Jenna C Alley
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Lydia G Roos
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Benjamin Ehlert
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Daniel P Moriarity
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | | | | | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Downing T, Angelopoulos N. A primer on correlation-based dimension reduction methods for multi-omics analysis. J R Soc Interface 2023; 20:20230344. [PMID: 37817584 PMCID: PMC10565429 DOI: 10.1098/rsif.2023.0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/19/2023] [Indexed: 10/12/2023] Open
Abstract
The continuing advances of omic technologies mean that it is now more tangible to measure the numerous features collectively reflecting the molecular properties of a sample. When multiple omic methods are used, statistical and computational approaches can exploit these large, connected profiles. Multi-omics is the integration of different omic data sources from the same biological sample. In this review, we focus on correlation-based dimension reduction approaches for single omic datasets, followed by methods for pairs of omics datasets, before detailing further techniques for three or more omic datasets. We also briefly detail network methods when three or more omic datasets are available and which complement correlation-oriented tools. To aid readers new to this area, these are all linked to relevant R packages that can implement these procedures. Finally, we discuss scenarios of experimental design and present road maps that simplify the selection of appropriate analysis methods. This review will help researchers navigate emerging methods for multi-omics and integrating diverse omic datasets appropriately. This raises the opportunity of implementing population multi-omics with large sample sizes as omics technologies and our understanding improve.
Collapse
Affiliation(s)
- Tim Downing
- Pirbright Institute, Pirbright, Surrey, UK
- Department of Biotechnology, Dublin City University, Dublin, Ireland
| | | |
Collapse
|
5
|
Subramanian D, Natarajan J. Leveraging big data bioinformatics approaches to extract knowledge from Staphylococcus aureus public omics data. Crit Rev Microbiol 2022; 49:391-413. [PMID: 35468027 DOI: 10.1080/1040841x.2022.2065905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Staphylococcus aureus is a notorious pathogen posing challenges in the medical industry due to drug resistance and biofilm formation. The horizon of knowledge on S. aureus pathogenesis has expanded with the advancement of data-driven bioinformatics techniques. Mining information from sequenced genomes and their expression data is an economic approach that alleviates wastage of resources and redundancy in experiments. The current review covers how big data bioinformatics has been used in the analysis of S. aureus from publicly available -omics data to uncover mechanisms of infection and inhibition. Particularly, advances in the past two decades in biomarker discovery, host responses, phenotype identification, consolidation of information, and drug development are discussed highlighting the challenges and shortcomings. Overall, the review summarizes the diverse aspects of scrupulous re-analysis of S. aureus proteomic and transcriptomic expression datasets retrieved from public repositories in terms of the efforts taken, benefits offered, and follow-up actions. The detailed review thus serves as a reference and aid for (i) Computational biologists by briefing the approaches utilized for bacterial omics re-analysis concerning S. aureus and (ii) Experimental biologists by elucidating the potential of bioinformatics in biological research to generate reliable postulates in a prompt and economical manner.
Collapse
Affiliation(s)
- Devika Subramanian
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, India
| | - Jeyakumar Natarajan
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, India
| |
Collapse
|
6
|
Ugidos M, Nueda MJ, Prats-Montalbán JM, Ferrer A, Conesa A, Tarazona S. MultiBaC: An R package to remove batch effects in multi-omic experiments. Bioinformatics 2022; 38:2657-2658. [PMID: 35238331 PMCID: PMC9048667 DOI: 10.1093/bioinformatics/btac132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
Motivation Batch effects in omics datasets are usually a source of technical noise that masks the biological signal and hampers data analysis. Batch effect removal has been widely addressed for individual omics technologies. However, multi-omic datasets may combine data obtained in different batches where omics type and batch are often confounded. Moreover, systematic biases may be introduced without notice during data acquisition, which creates a hidden batch effect. Current methods fail to address batch effect correction in these cases. Results In this article, we introduce the MultiBaC R package, a tool for batch effect removal in multi-omics and hidden batch effect scenarios. The package includes a diversity of graphical outputs for model validation and assessment of the batch effect correction. Availability and implementation MultiBaC package is available on Bioconductor (https://www.bioconductor.org/packages/release/bioc/html/MultiBaC.html) and GitHub (https://github.com/ConesaLab/MultiBaC.git). The data underlying this article are available in Gene Expression Omnibus repository (accession numbers GSE11521, GSE1002, GSE56622 and GSE43747). Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Manuel Ugidos
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain.,Multivariate Statistical Engineering Group, Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain
| | - María José Nueda
- Department of Mathematics, Universidad de Alicante, Alicante, Spain
| | - José M Prats-Montalbán
- Multivariate Statistical Engineering Group, Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain
| | - Alberto Ferrer
- Multivariate Statistical Engineering Group, Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain
| | - Ana Conesa
- Institute for Integrative Systems Biology, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Sonia Tarazona
- Multivariate Statistical Engineering Group, Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
7
|
Tarazona S, Arzalluz-Luque A, Conesa A. Undisclosed, unmet and neglected challenges in multi-omics studies. NATURE COMPUTATIONAL SCIENCE 2021; 1:395-402. [PMID: 38217236 DOI: 10.1038/s43588-021-00086-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 01/15/2024]
Abstract
Multi-omics approaches have become a reality in both large genomics projects and small laboratories. However, the multi-omics research community still faces a number of issues that have either not been sufficiently discussed or for which current solutions are still limited. In this Perspective, we elaborate on these limitations and suggest points of attention for future research. We finally discuss new opportunities and challenges brought to the field by the rapid development of single-cell high-throughput molecular technologies.
Collapse
Affiliation(s)
- Sonia Tarazona
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain
| | - Angeles Arzalluz-Luque
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain
| | - Ana Conesa
- Microbiology and Cell Science Department, Institute for Food and Agricultural Research, University of Florida, Gainesville, FL, USA.
- Genetics Institute, University of Florida, Gainesville, FL, USA.
- Institute for Integrative Systems Biology, Spanish National Research Council, Valencia, Spain.
| |
Collapse
|
8
|
Tolani P, Gupta S, Yadav K, Aggarwal S, Yadav AK. Big data, integrative omics and network biology. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 127:127-160. [PMID: 34340766 DOI: 10.1016/bs.apcsb.2021.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A cell integrates various signals through a network of biomolecules that crosstalk to synergistically regulate the replication, transcription, translation and other metabolic activities of a cell. These networks regulate signal perception and processing that drives biological functions. The biological complexity cannot be fully captured by a single -omics discipline. The holistic study of an organism-in health, perturbation, exposure to environment and disease, is studied under systems biology. The bottom-up molecular approaches (genes, mRNA, protein, metabolite, etc.) have laid the foundation of current biological knowledge covering the horizon from viruses, bacteria, fungi, plants and animals. Yet, these techniques provide a rather myopic view of biology at the molecular level. To understand how the interconnected molecular components are formed and rewired in disease or exposure to environmental stimuli is the holy grail of modern biology. The omics era was heralded by the genomics revolution but advanced sequencing techniques are now also ubiquitous in transcriptomics, proteomics, metabolomics and lipidomics. Multi-omics data analysis and integration techniques are driving the quest for deeper insights into how the different layers of biomolecules talk to each other in diverse contexts.
Collapse
Affiliation(s)
- Priya Tolani
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Srishti Gupta
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Kirti Yadav
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India; Department of Pharmaceutical Biotechnology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Suruchi Aggarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India; Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, Assam, India
| | - Amit Kumar Yadav
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|