1
|
Moustaki M, Kontogeorgi A, Tsangkalova G, Tzoupis H, Makrigiannakis A, Vryonidou A, Kalantaridou SN. Biological therapies for premature ovarian insufficiency: what is the evidence? FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1194575. [PMID: 37744287 PMCID: PMC10512839 DOI: 10.3389/frph.2023.1194575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Premature Ovarian Insufficiency (POI) is a multi-factorial disorder that affects women of reproductive age. The condition is characterized by the loss of ovarian function before the age of 40 years and several factors have been identified to be implicated in its pathogenesis. Remarkably though, at least 50% of women have remaining follicles in their ovaries after the development of ovarian insufficiency. Population data show that approximately up to 3.7% of women worldwide suffer from POI and subsequent infertility. Currently, the treatment of POI-related infertility involves oocyte donation. However, many women with POI desire to conceive with their own ova. Therefore, experimental biological therapies, such as Platelet-Rich Plasma (PRP), Exosomes (exos) therapy, In vitro Activation (IVA), Stem Cell therapy, MicroRNAs and Mitochondrial Targeting Therapies are experimental treatment strategies that focus on activating oogenesis and folliculogenesis, by upregulating natural biochemical pathways (neo-folliculogenesis) and improving ovarian microenvironment. This mini-review aims at identifying the main advantages of these approaches and exploring whether they can underpin existing assisted reproductive technologies.
Collapse
Affiliation(s)
- Melpomeni Moustaki
- Department of Endocrinology and Diabetes Center, Hellenic Red Cross Hospital, Athens, Greece
| | | | | | | | - Antonis Makrigiannakis
- Department of Obstetrics and Gynecology, University of Crete Medical School, Heraklion, Greece
| | - Andromachi Vryonidou
- Department of Endocrinology and Diabetes Center, Hellenic Red Cross Hospital, Athens, Greece
| | - Sophia N. Kalantaridou
- Serum IVF Fertility Center, Athens, Greece
- 3rd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| |
Collapse
|
2
|
Tian Z, Yu T, Liu J, Wang T, Higuchi A. Introduction to stem cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:3-32. [PMID: 37678976 DOI: 10.1016/bs.pmbts.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Stem cells have self-renewal capability and can proliferate and differentiate into a variety of functionally active cells that can serve in various tissues and organs. This review discusses the history, definition, and classification of stem cells. Human pluripotent stem cells (hPSCs) mainly include embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs). Embryonic stem cells are derived from the inner cell mass of the embryo. Induced pluripotent stem cells are derived from reprogramming somatic cells. Pluripotent stem cells have the ability to differentiate into cells derived from all three germ layers (endoderm, mesoderm, and ectoderm). Adult stem cells can be multipotent or unipotent and can produce tissue-specific terminally differentiated cells. Stem cells can be used in cell therapy to replace and regenerate damaged tissues or organs.
Collapse
Affiliation(s)
- Zeyu Tian
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Tao Yu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Jun Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China.
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Siristatidis C, Mantzavinos T, Vlahos N. Maternal spindle transfer for mitochondrial disease: lessons to be learnt before extending the method to other conditions? HUM FERTIL 2022; 25:838-847. [PMID: 33993847 DOI: 10.1080/14647273.2021.1925168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mitochondrial diseases are a group of conditions attributed to mutations of specific genes that regulate mitochondrial function. Maternal spindle transfer (MST) has been proposed as a method to prevent the transmission of these diseases and utilisation of the technique resulted in the birth of a baby free of disease in 2017 in Mexico. Potential flaws in research governance and the associated criticism emerged from the expansion of MST to provide a potentially new assisted reproductive technique to overcome infertility problems characterised by repeated in vitro embryo development arrest caused by mitochondrial dysfunction and cytoplasmic deficiencies of the oocyte. This applied technique represents a good example of the need to strike "a balance between taking appropriate precautions and hampering innovation". The purpose of this article is to explore, through a comprehensive literature search, whether and how this process can evolve from an experimental method to treat a medical condition to a standard of care solution for certain types of infertility. We argue that a number of key issues should be considered before applying the technique more broadly. These include regulatory oversight, safety and efficacy, cost, implications for research, essential laboratory skills and oversight, as well as the care needs of patients and egg donors.
Collapse
Affiliation(s)
- Charalampos Siristatidis
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, "Aretaieio" University Hospital, Athens, Greece
| | - Themis Mantzavinos
- Scientific director of "Institute of Life" IVF Center, Iaso Maternity Hospital, Athens, Greece
| | - Nikos Vlahos
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, "Aretaieio" University Hospital, Athens, Greece
| |
Collapse
|
4
|
Huang Y, Zhu M, Liu Z, Hu R, Li F, Song Y, Geng Y, Ma W, Song K, Zhang M. Bone marrow mesenchymal stem cells in premature ovarian failure: Mechanisms and prospects. Front Immunol 2022; 13:997808. [PMID: 36389844 PMCID: PMC9646528 DOI: 10.3389/fimmu.2022.997808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/17/2022] [Indexed: 12/31/2022] Open
Abstract
Premature ovarian failure (POF) is a common female reproductive disorder and characterized by menopause, increased gonadotropin levels and estrogen deficiency before the age of 40 years old. The etiologies and pathogenesis of POF are not fully clear. At present, hormone replacement therapy (HRT) is the main treatment options for POF. It helps to ameliorate perimenopausal symptoms and related health risks, but can't restore ovarian function and fertility fundamentally. With the development of regenerative medicine, bone marrow mesenchymal stem cells (BMSCs) have shown great potential for the recovery of ovarian function and fertility based on the advantages of abundant sources, high capacity for self-renewal and differentiation, low immunogenicity and less ethical considerations. This systematic review aims to summarize the possible therapeutic mechanisms of BMSCs for POF. A detailed search strategy of preclinical studies and clinical trials on BMSCs and POF was performed on PubMed, MEDLINE, Web of Science and Embase database. A total of 21 studies were included in this review. Although the standardization of BMSCs need more explorations, there is no doubt that BMSCs transplantation may represent a prospective therapy for POF. It is hope to provide a theoretical basis for further research and treatment for POF.
Collapse
Affiliation(s)
- Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengdi Zhu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenwen Ma
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kunkun Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Mingmin Zhang, ; Kunkun Song,
| | - Mingmin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Mingmin Zhang, ; Kunkun Song,
| |
Collapse
|
5
|
Sills ES. Why might ovarian rejuvenation fail? Decision analysis of variables impacting reproductive response after autologous platelet-rich plasma. Minerva Obstet Gynecol 2022; 74:377-385. [PMID: 35107239 DOI: 10.23736/s2724-606x.22.04996-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Experience with platelet-rich plasma (PRP) has accumulated from use in dental restoration, post-infarct myocardial repair, tendon surgery, pain management, and aesthetic enhancements. Reproductive medicine joined this arena in 2016, beginning with reports of menopause reversal and fertility recovery after autologous PRP for senescent ovaries. Although recent publications have highlighted benefits of 'ovarian rejuvenation', the absence of randomized placebo-controlled clinical trial data has limited its acceptance. Because selection bias tends to underreport negative outcomes, reliable estimates cannot be calculated for how often intraovarian PRP is unsuccessful. Ample information is available, however, to permit an operational root-cause analysis when failures are considered. This assessment uses a PRP treatment care path with a decision theory model to critique pre-intake screening, baseline audit, sample processing, ovarian tissue placement method, equipment selection, and follow-up monitoring. These branched choice points enable interventions likely to determine outcome. Specimen handling for intraovarian PRP merits particular scrutiny, since enormous variation in platelet protocols already exists across unrelated clinical areas. As a new addition to fertility practice, intraovarian PRP requires validation of safety and efficacy to gain wider support. Borrowing PRP knowledge from other domains can facilitate this goal, ideally with appreciation of aspects unique to intraovarian use.
Collapse
Affiliation(s)
- E Scott Sills
- Plasma Research Section, FertiGen CAG/Regenerative Biology Group, San Clemente, CA, USA - .,Department of Obstetrics & Gynecology, Palomar Medical Center, Escondido, CA, USA -
| |
Collapse
|
6
|
Ovarian response to intraovarian platelet-rich plasma (PRP) administration: hypotheses and potential mechanisms of action. J Assist Reprod Genet 2022; 39:37-61. [PMID: 35175511 PMCID: PMC8866624 DOI: 10.1007/s10815-021-02385-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/17/2021] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Platelet-rich plasma (PRP) therapy has been used as an adjunct to fertility treatments in women with very low ovarian reserve and premature ovarian insufficiency. Recent literature in both humans and animals suggest that intraovarian PRP administration in the setting of poor ovarian reserve may help ovarian function and increase the chances of pregnancy. METHODS A comprehensive literature search through PubMed, MEDLINE databases, and recent abstracts published at relevant society meetings was performed and resulted in 25 articles and 2 abstracts published that studied effect of PRP on the ovaries for the purpose of reproduction. RESULTS This review article presents all the data published to date pertaining to intraovarian PRP injection and pregnancy, both naturally and after in vitro fertilization. It also presents the most recent data on the use of ovarian PRP in in vitro and animal model studies highlighting the possible mechanisms by which PRP could impact ovarian function. CONCLUSIONS Even though recent commentaries questioned the use of PRP as an "add-on" therapy in fertility treatment because it has not been thoroughly studied, the recent basic science studies presented here could increase awareness for considering more serious research into the efficacy of PRP as an adjunct for women with poor ovarian reserve, premature ovarian insufficiency, and even early menopause who are trying to conceive using their own oocytes. Given its low-risk profile, the hypothetical benefit of PRP treatment needs to be studied with larger randomized controlled trials.
Collapse
|
7
|
Appraisal of Experimental Methods to Manage Menopause and Infertility: Intraovarian Platelet-Rich Plasma vs. Condensed Platelet-Derived Cytokines. MEDICINA (KAUNAS, LITHUANIA) 2021; 58:medicina58010003. [PMID: 35056311 PMCID: PMC8779970 DOI: 10.3390/medicina58010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022]
Abstract
The first published description of intraovarian platelet-rich plasma (PRP) appeared in mid-2016, when a new experimental technique was successfully used in adult human ovaries to correct the reduced fertility potential accompanying advanced maternal age. Considering the potential therapeutic scope of intraovarian PRP would likely cover both menopause and infertility, the mainstream response has ranged from skeptical disbelief to welcome astonishment. Indeed, reports of intraovarian PRP leading to restored menses in menopause (as an alternative to conventional hormone replacement therapy) and healthy term livebirths for infertility patients (from IVF or as unassisted conceptions) continue to draw notice. Yet, any proper criticism of ovarian PRP applications will be difficult to rebut given the heterogenous patient screening, varied sample preparations, wide differences in platelet incubation and activation protocols, surgical/anesthesia techniques, and delivery methods. Notwithstanding these aspects, no adverse events have thus far been reported and ovarian PRP appears well tolerated by patients. Here, early studies guiding the transition of ‘ovarian rejuvenation’ from experimental to clinical are outlined, with mechanisms to explain results observed in both veterinary and human ovarian PRP research. Current and future challenges for intraovarian cytokine treatment are also discussed.
Collapse
|
8
|
Atkinson L, Martin F, Sturmey RG. Intraovarian injection of platelet-rich plasma in assisted reproduction: too much too soon? Hum Reprod 2021; 36:1737-1750. [PMID: 33963408 PMCID: PMC8366566 DOI: 10.1093/humrep/deab106] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
The prospect of ovarian rejuvenation offers the tantalising prospect of treating age-related declines in fertility or in pathological conditions such as premature ovarian failure. The concept of ovarian rejuvenation was invigorated by the indication of the existence of oogonial stem cells (OSCs), which have been shown experimentally to have the ability to differentiate into functional follicles and generate oocytes; however, their clinical potential remains unknown. Furthermore, there is now growing interest in performing ovarian rejuvenation in situ. One proposed approach involves injecting the ovary with platelet rich plasma (PRP). PRP is a component of blood that remains after the in vitro removal of red and white blood cells. It contains blood platelets, tiny anucleate cells of the blood, which are responsible for forming athrombus to prevent bleeding. In addition, PRP contains an array of cytokines and growth factors, as well as a number of small molecules.The utility ofPRP has been investigatedin a range of regenerative medicine approaches and has been shown to induce differentiation of a range of cell types, presumably through the action of cytokines. A handful ofcasereports have described the use of PRP injections into the ovaryin the human, and while these clinical data report promising results, knowledge on the mechanisms and safety of PRP injections into the ovary remain limited.In this article, we summarise some of the physiological detail of platelets and PRP, before reviewing the existing emerging literature in this area. We then propose potential mechanisms by which PRP may be eliciting any effects before reflecting on some considerations for future studies in the area. Importantly, on the basis of our existing knowledge, we suggest that immediate use of PRP in clinical applications is perhaps premature and further fundamental and clinical research on the nature of ovarian insufficiency, as well as the mechanism by which PRP may act on the ovary, is needed to fully understand this promising development.
Collapse
Affiliation(s)
- Lloyd Atkinson
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK
| | - Francesca Martin
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK
| | - Roger G Sturmey
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK.,Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, St Mary's Hospital, Manchester, UK
| |
Collapse
|
9
|
Merhi Z, Seckin S, Mouanness M. Intraovarian PRP Injection Improved Hot Flashes in a Woman With Very Low Ovarian Reserve. Reprod Sci 2021; 29:614-619. [PMID: 34231167 DOI: 10.1007/s43032-021-00655-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/07/2021] [Indexed: 10/20/2022]
Abstract
PRP, rich in growth factors and cytokines, has been gaining considerable attention as an adjunct therapy to fertility treatment for women with very low ovarian reserve and premature ovarian insufficiency. To date, most prior studies have focused on the effect of PRP on ovarian response pertaining to oocyte production and pregnancy outcome following assisted reproductive technology. This report presents a patient with very low ovarian reserve, with medical problems that preclude her from taking hormone replacement therapy, who presented for fertility treatment with PRP and then accidentally reported significant improvement of menopausal symptoms including her hot flashes for 14 weeks following PRP intra-ovarian injection. The purpose of this case report is to increase awareness of clinicians about the use of PRP as a potential alternative therapy for hot flashes in women who have contraindications for hormone replacement therapy.
Collapse
Affiliation(s)
- Zaher Merhi
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, SUNY Downstate Health Sciences University, Brooklyn, NY, USA. .,Rejuvenating Fertility Center, New York City, NY, USA. .,Department of Biochemistry, Albert Einstein College of Medicine, Brooklyn, NY, USA.
| | - Serin Seckin
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | | |
Collapse
|
10
|
Polonio AM, García-Velasco JA, Herraiz S. Stem Cell Paracrine Signaling for Treatment of Premature Ovarian Insufficiency. Front Endocrinol (Lausanne) 2020; 11:626322. [PMID: 33716956 PMCID: PMC7943922 DOI: 10.3389/fendo.2020.626322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/31/2020] [Indexed: 12/21/2022] Open
Abstract
Premature ovarian insufficiency is a common disorder affecting young women and represents the worst-case ovarian scenario due to the substantial impact on the reproductive lifespan of these patients. Due to the complexity of this condition, which is not fully understood, non-effective treatments have yet been established for these patients. Different experimental approaches are being explored and strategies based on stem cells deserve special attention. The regenerative and immunomodulatory properties of stem cells have been successfully tested in different tissues, including ovary. Numerous works point out to the efficacy of stem cells in POI treatment, and a wide range of clinical trials have been developed in order to prove safety and effectiveness of stem cells therapy-in diminished ovarian reserve and POI women. The main purpose of this review is to describe the state of the art of the treatment of POI involving stem cells, especially those that use mobilization of stem cells or paracrine signaling.
Collapse
Affiliation(s)
- Alba M. Polonio
- IVI Foundation, Insituto de Investigación Sanitaria La Fe, Valencia, Spain
- *Correspondence: Alba M. Polonio,
| | - Juan A. García-Velasco
- IVI Foundation, Insituto de Investigación Sanitaria La Fe, Valencia, Spain
- IVI RMA, Madrid, Spain
- Department of Obstetrics and Gynecology, Rey Juan Carlos University, Madrid, Spain
| | - Sonia Herraiz
- IVI Foundation, Insituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|