1
|
Fang F, Zhao M, Jin X, Dong Z, Wang J, Meng J, Xie S, Shi W. RETRACTED ARTICLE: Upregulation of MCL-1 by LUCAT1 through interacting with SRSF1 promotes the migration and invasion in non-small cell lung carcinoma. Mol Cell Biochem 2024; 479:3305. [PMID: 37747676 DOI: 10.1007/s11010-023-04851-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Affiliation(s)
- Fang Fang
- The Second Ward of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 327, Xianhu Avenue, Qingxiu District, Nanning, 530001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Mei Zhao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiaowei Jin
- Department of Traditional Chinese Medicine, Yunnan Cancer Hospital, Kunming, 650018, Yunnan Province, People's Republic of China
| | - Zhixin Dong
- The Second Ward of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 327, Xianhu Avenue, Qingxiu District, Nanning, 530001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jiaxiao Wang
- The Second Ward of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 327, Xianhu Avenue, Qingxiu District, Nanning, 530001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jinming Meng
- Guangxi University of Chinese Medicine, Nanning, 530001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Sheng Xie
- Preventive Treatment of Disease Center, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9, Dongge Road, Qingxiu District, Nanning, 530023, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Wei Shi
- The Second Ward of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 327, Xianhu Avenue, Qingxiu District, Nanning, 530001, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
2
|
Zhao J, Xu Z, Xie J, Liang T, Wang R, Chen W, Mi C, Tian P, Guo J, Zhang H. The novel lnc-HZ12 suppresses autophagy degradation of BBC3 by preventing its interactions with HSPA8 to induce trophoblast cell apoptosis. Autophagy 2024; 20:2255-2274. [PMID: 38836496 PMCID: PMC11423690 DOI: 10.1080/15548627.2024.2362122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Abnormal expression of long non-coding RNAs (lncRNAs) is associated with the dysfunctions of human trophoblast cells and the occurrence of miscarriage (abnormal early embryo loss). BBC3/PUMA (BCL2 binding component 3) plays significant roles in regulation of cell apoptosis. However, whether specific lncRNAs might regulate BBC3 in trophoblast cells and further induce apoptosis and miscarriage remains completely unclear. Through screening, we identified a novel lnc-HZ12, which was significantly highly expressed in villous tissues of recurrent miscarriage (RM) patients relative to their healthy control (HC) group. Lnc-HZ12 suppressed chaperone-mediated autophagy (CMA) degradation of BBC3, promoted trophoblast cell apoptosis, and was associated with miscarriage. In mechanism, lnc-HZ12 downregulated the expression levels of chaperone molecules HSPA8 and LAMP2A in trophoblast cells. Meanwhile, lnc-HZ12 (mainly lnc-HZ12-SO2 region in F2 fragment) and HSPA8 competitively bound with the 169RVLYNL174 patch on BBC3, which prevented BBC3 from interactions with HSPA8 and impaired the formation of BBC3-HSPA8-LAMP2A complex for CMA degradation of BBC3. Thus, lnc-HZ12 upregulated the BBC3-CASP9-CASP3 pathway and induced trophoblast cell apoptosis. In villous tissues, lnc-HZ12 was highly expressed, CMA degradation of BBC3 was suppressed, and the apoptosis levels were higher in RM vs HC villous tissues, all of which were associated with miscarriage. Interestingly, knockdown of murine Bbc3 could efficiently suppress placental apoptosis and alleviate miscarriage in a mouse miscarriage model. Taken together, our results indicated that lnc-HZ12 and BBC3 played important roles in trophoblast cell apoptosis and miscarriage and might act as attractive targets for miscarriage treatment.Abbreviation: 7-AAD: 7-aminoactinomycin D; BaP: benzopyrene; BBC3/PUMA: BCL2 binding component 3; ChIP: chromatin immunoprecipitation; CHX: cycloheximide; CMA: chaperone-mediated autophagy; CQ: chloroquine; DMSO: dimethyl sulfoxide; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HC: healthy control; HSPA8: heat shock protein family A (Hsp70) member 8; IP: immunoprecipitation; LAMP2A: lysosomal associated membrane protein 2; LncRNA: long non-coding RNA; mRNA: messenger RNA; MT: mutant-type; NC: negative control; NSO: nonspecific oligonucleotide; PARP1: poly(ADP-ribose) polymerase 1; RIP: RNA immunoprecipitation; RM: recurrent miscarriage; TBP: TATA-box binding protein; WT: wild-type.
Collapse
Affiliation(s)
- Jingsong Zhao
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Zhongyan Xu
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Jiayu Xie
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Tingting Liang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Rong Wang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Weina Chen
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Chenyang Mi
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Peng Tian
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jiarong Guo
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Fan X, Li M, Niu M, Chen F, Mo Z, Yue P, Wang M, Liu Q, Liang B, Gan S, Weng C, Gao J. LncRNA MIR181A2HG negatively regulates human keratinocytes proliferation by binding SRSF1. Cytotechnology 2024; 76:313-327. [PMID: 38736729 PMCID: PMC11082102 DOI: 10.1007/s10616-024-00621-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/11/2024] [Indexed: 05/14/2024] Open
Abstract
Psoriasis is a common chronic inflammatory skin disease. Abnormal proliferation of keratinocytes plays an important role in the pathogenesis of psoriasis. Long non-coding RNAs (lncRNAs) are involved in the regulation of a variety of cell biological processes. The purpose of this study was to investigate the potential role of lncRNA MIR181A2HG in the proliferation of human keratinocytes. qRT-PCR and Western blotting were performed to measure the expression levels of MIR181A2HG, SRSF1, KRT6, and KRT16 in tissue specimens and HaCaT keratinocytes. The effects of MIR181A2HG on HaCaT keratinocytes proliferation were evaluated using Cell Counting Kit-8 (CCK-8) assays, 5-Ethynyl-2'-deoxyuridine (EdU) incorporation, and cell-cycle assays. RNA pulldown-mass spectrometry (MS) was applied to identify the proteins interacting with MIR181A2HG. RNA pull-down-Western blotting and RNA immunoprecipitation coupled with real-time quantitative reverse transcription-PCR (RIP-qRT-PCR) assays were used to determine the interactions between MIR181A2HG and its RNA-binding proteins (RBPs). MIR181A2HG was down-regulated in psoriasis tissues. MIR181A2HG overexpression induced G0/G1 and G2/M phase cell cycle arrest and decreased the protein levels of KRT6, KRT16, Cyclin D1, CDK4, and Cyclin A2 in HaCaT keratinocytes. MIR181A2HG knockdown showed the opposite effect. By using RNA pulldown-MS, 356 proteins were identified to interact with MIR181A2HG potentially. Bioinformatics analysis showed that NOP56 and SRSF1 may be RNA binding proteins (RBPs) that may be interact with MIR181A2HG. Furthermore, by using RNA pull-down-Western blotting and RIP-qRT-PCR, SRSF1 was determined to interact with MIR181A2HG. Moreover, silencing of SRSF1 inhibited keratinocytes proliferation, which could be reversed with the knockdown of MIR181A2HG. Our findings indicated that MIR181A2HG can negatively regulate HaCaT keratinocytes proliferation by binding SRSF1, suggesting that MIR181A2HG and SRSF1 may serve as potential targets for the treatment of psoriasis. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00621-6.
Collapse
Affiliation(s)
- Xiaomei Fan
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199 Guangxi People’s Republic of China
- Key Laboratory of Biochemistry and Molecular Biology, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, 541199 Guangxi People’s Republic of China
| | - Mingzhao Li
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199 Guangxi People’s Republic of China
- Key Laboratory of Biochemistry and Molecular Biology, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, 541199 Guangxi People’s Republic of China
| | - Mutian Niu
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199 Guangxi People’s Republic of China
- Key Laboratory of Biochemistry and Molecular Biology, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, 541199 Guangxi People’s Republic of China
| | - Fangru Chen
- Department of Dermatology, Affiliated Hospital of Guilin Medical University, Guilin, 541001 Guangxi People’s Republic of China
| | - Zhijing Mo
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199 Guangxi People’s Republic of China
- Key Laboratory of Biochemistry and Molecular Biology, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, 541199 Guangxi People’s Republic of China
| | - Pengpeng Yue
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199 Guangxi People’s Republic of China
- Key Laboratory of Biochemistry and Molecular Biology, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, 541199 Guangxi People’s Republic of China
| | - Mengjiao Wang
- Department of Dermatology, Affiliated Hospital of Guilin Medical University, Guilin, 541001 Guangxi People’s Republic of China
| | - Qingbo Liu
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199 Guangxi People’s Republic of China
| | - Bin Liang
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199 Guangxi People’s Republic of China
| | - Shaoqin Gan
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199 Guangxi People’s Republic of China
| | - Chengke Weng
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199 Guangxi People’s Republic of China
| | - Jintao Gao
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199 Guangxi People’s Republic of China
- Key Laboratory of Biochemistry and Molecular Biology, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, 541199 Guangxi People’s Republic of China
| |
Collapse
|
4
|
Amirlatifi S, Kooshari Z, Salmani K, Fallah Ziyarani M, Azizi S, Ghotbi E, Zolali B. Evaluation of long noncoding RNA (LncRNA) in pathogenesis of HELLP syndrome: diagnostic and future approach. J OBSTET GYNAECOL 2023; 43:2174836. [PMID: 36795605 DOI: 10.1080/01443615.2023.2174836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
HELLP syndrome is a disorder during pregnancy which is defined by elevation of liver enzymes, haemolysis, and low platelet count. This syndrome is a multifactorial one and both genetic and environmental components can have a crucial role in this syndrome's pathogenesis. Long noncoding RNAs (lncRNAs), are defined as long non-protein coding molecules (more than 200 nucleotides), which are functional units in most cellular processes such as cell cycle, differentiation, metabolism and some diseases progression. As these markers discovered, there has been some evidence that they have an important role in the function of some organs, such as placenta; therefore, alteration and dysregulation of these RNAs can develop or alleviate HELLP disorder. Although the role of lncRNAs has been shown in HELLP syndrome, the process is still unclear. In this review, our purpose is to evaluate the association between molecular mechanisms of lncRNAs and HELLP syndrome pathogenicity to elicit some novel approaches for HELLP diagnosis and treatment.
Collapse
Affiliation(s)
- Shahrzad Amirlatifi
- Clinical Research Development unit (SHACRDU), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Kooshari
- Clinical Research Development unit (SHACRDU), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kiana Salmani
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Fallah Ziyarani
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Azizi
- Clinical Research Development unit (SHACRDU), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elena Ghotbi
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Bita Zolali
- Clinical Research Development unit (SHACRDU), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Jiang X, Gao YL, Li JY, Tong YY, Meng ZY, Yang SG, Zhu CT. An anoikis-related lncRNA signature is a useful tool for predicting the prognosis of patients with lung adenocarcinoma. Heliyon 2023; 9:e22200. [PMID: 38053861 PMCID: PMC10694177 DOI: 10.1016/j.heliyon.2023.e22200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/15/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Background Anoikis-related long non-coding RNAs (ARLs) play a critical role in tumor metastasis and progression, suggesting that they may serve as risk markers for cancer. This study aimed to investigate the prognostic value of ARLs in patients with lung adenocarcinoma (LUAD). Methods Clinical data, RNA sequencing (RNA-seq) data, and mutation data from the LUAD project were obtained from The Cancer Genome Atlas (TCGA) database. The Molecular Signatures Database (MSigDB) and the GeneCard database were used to collect an anoikis-related gene (ARG) set. Pearson correlation analysis was performed to identify ARLs. LASSO and Cox regression were then used to establish a prognostic risk signature for ARLs. The median risk score served as the basis for categorizing patients into high and low-risk groups. Kaplan-Meier analysis was utilized to compare the prognosis between these two groups. The study also examined the associations between risk scores and prognosis, clinicopathological characteristics, immune status, tumor mutation burden (TMB), and chemotherapeutic agents. LncRNA expression was assessed using quantitative real-time PCR (qRT-PCR). Results A total of 480 RNA expression profiles, 501 ARGs, and 2698 ARLs were obtained from the database. A prognostic ARL signature for LUAD was established, consisting of 9 lncRNAs. Patients in the low-risk group exhibited significantly better prognosis compared to those in the high-risk group (P < 0.001). The 9 lncRNAs from the ARL signature were identified as independent prognostic factors (P < 0.001). The signature demonstrated high accuracy in predicting LUAD prognosis, with area under the curve values exceeding 0.7. The risk scores for ARLs showed strong negative correlations with stroma score (P = 5.9E-07, R = -0.23), immune score (P = 9.7E-09, R = -0.26), and microenvironment score (P = 8E-11, R = -0.29). Additionally, the low-risk group exhibited significantly higher TMB compared to the high-risk group (P = 4.6E-05). High-risk status was significantly associated with lower half-maximal inhibitory concentrations for most chemotherapeutic drugs. Conclusion This newly constructed signature based on nine ARLs is a useful instrument for the risk stratification of LUAD patients. The signature has potential clinical significance for predicting the prognosis of LUAD patients and guiding personalized immunotherapy.
Collapse
Affiliation(s)
- Xin Jiang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
- Department of Transfusion Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yu-lu Gao
- Department of Laboratory Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, 215300, China
| | - Jia-yan Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
- Department of Transfusion Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ying-ying Tong
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhao-yang Meng
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shi-gui Yang
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Chang-tai Zhu
- Department of Transfusion Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
6
|
Li Q, Li S, Ding J, Pang B, Li R, Cao H, Ling L. MALAT1 modulates trophoblast phenotype via miR-101-3p/VEGFA axis. Arch Biochem Biophys 2023:109692. [PMID: 37437834 DOI: 10.1016/j.abb.2023.109692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/23/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Preeclampsia is a potentially life-threatening condition that can arise due to poor placentation and consequent abnormal uterine spiral artery remodeling. Abnormal placentation, in turn, is associated with aberrant trophoblast cell proliferation and apoptosis. Here, we investigated the lncRNA MALAT1 in trophoblast proliferation during early-onset preeclampsia (ePE). MALAT1 levels were examined in placental tissue samples from ePE patients and control patients. The effects and underlying mechanism of MALAT1 on proliferation, migration, invasion and apoptosis were investigated in the first-trimester extravillous trophoblast HTR-8/SVneo cells and the human choriocarcinoma JAR cells. MALAT1 levels were decreased in the placental tissue samples of ePE patients compared with those of control patients, and the levels of MALAT1 were positively correlated with the neonate birth-weight. Knockdown of MALAT1 attenuated the cell viability, proliferation, migration, invasion and the cell cycle progression of trophoblasts, but promoted the apoptosis of trophoblasts. The MALAT1 knockdown promoted miR-101-3p upregulation and VEGFA downregulation. Inhibitor of miR-101-3p increased vascular endothelial growth factor A (VEGFA) expression, and miR-101-3p mimic inhibited VEGFA expression. Luciferase assays showed that miR-101-3p could bind to both MALAT1 and VEGFA. The MALAT1 knockdown-induced induction in the cell vitality and proliferation were attenuated by miR-101-3p inhibitor. We conclude that endogenous MALAT1 promotes proliferation, migration and invasion of trophoblasts by inhibiting the miR-101-3p expression and the subsequent VEGFA downregulation. The reduced MALAT1 level in placental tissue may be involved in the pathogenesis of the ePE.
Collapse
Affiliation(s)
- Qin Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Shuo Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Jin Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Bo Pang
- Department of Ultrasound, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Ranran Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Hui Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Li Ling
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China.
| |
Collapse
|
7
|
Han Y, Wang Y, Zhang C, Li Y, Guo J, Tian C. Metastasis-associated lung adenocarcinoma transcript 1 induces methyl-CpG-binding domain protein 4 in mice with recurrent spontaneous abortion caused by anti-phospholipid antibody positivity. Placenta 2023; 137:38-48. [PMID: 37068447 DOI: 10.1016/j.placenta.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/27/2023] [Accepted: 04/07/2023] [Indexed: 04/19/2023]
Abstract
INTRODUCTION Antiphospholipid syndrome is an autoimmune disease characterized by pregnancy-related morbidity, related to persistent positivity of antiphospholipid antibodies (APL). One of the characteristics of pregnancy-related morbidity in patients with antiphospholipid syndrome is recurrent spontaneous abortion (RSA). This study aimed to examine the mechanism through which metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) regulates methyl-CpG-binding domain protein 4 (MBD4) expression in APL-positive RSA. METHODS Clinical samples were subjected to microarray analysis to filter differentially expressed genes. RSA mice with APL positivity were generated, followed by adenoviral vector injection to artificially upregulate MALAT1. The effects of MALAT1 on the biological behavior of trophoblast cells were assessed. The downstream mechanism of MALAT1 was analyzed using subcellular fractionation and bioinformatics prediction, and the relationship between MALAT1 and CREB binding protein (CREBBP) or MBD4 was investigated in trophoblast cells. RESULTS MALAT1 was downregulated in APL-positive RSA patients. MALAT1 was predominantly localized in the nucleus and recruited CREBBP to mediate the MBD4 transcription. In the APL-positive RSA mice overexpressing MALAT1, the expression of soluble Fms-related tyrosine kinase 1 and anticardiolipin antibody and the embryonic resorption rate were decreased, indicating that MALAT1 reduced the occurrence of RSA in mice. Moreover, MALAT1 enhanced proliferation, migration, and invasion of trophoblast cells through recruiting CREBBP to promote MBD4 expression. Silencing of CREBBP or MBD4 increased embryonic resorption rate in RSA mice overexpressing MALAT1. DISCUSSION MALAT1 suppresses APL-positive RSA by promoting MBD4 transcription through recruitment of CREBBP to the MBD4 promoter region.
Collapse
Affiliation(s)
- Yongmei Han
- College of Integrated Traditional Chinese and Western Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, Henan, PR China.
| | - Ying Wang
- Reproductive Center, Nanyang First People's Hospital, Nanyang, 473000, Henan, PR China
| | - Chenyu Zhang
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, PR China
| | - Yanru Li
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, PR China
| | - Jing Guo
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, PR China
| | - Chao Tian
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, PR China
| |
Collapse
|
8
|
Yang HY, Jiang L. The involvement of long noncoding RNA APOA1-AS in the pathogenesis of preeclampsia. Hum Exp Toxicol 2022; 41:9603271211066586. [PMID: 35130745 DOI: 10.1177/09603271211066586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Long noncoding RNAs (lncRNAs) are involved in preeclampsia (PE), and apolipoprotein A-1 antisense RNA (APOA1-AS) and has been found to be associated with a number of diseases. Our study aims to understand the involvement of APOA1-AS in PE. METHODS Clinically, APOA1-AS expression in early-onset severe PE (EOSPE) patients and healthy controls was detected by real-time quantitative polymerase chain reaction. In vitro experiments were divided into control [coculturing trophoblasts with human uterine microvascular endothelial cells (UtMVECs)], TNF-α [coculturing trophoblasts with UtMVECs treated with tumor necrosis factor-α (TNF-α)], and TNF-α + control siRNA/APOA1-AS siRNA groups (UtMVECs transfected with control siRNA/APOA1-AS siRNA were cocultured with trophoblasts in the presence of TNF-α). The animals were divided into normal group, PE group (PE model was established by administrating nitro-L-arginine methyl ester (L-NAME) in rats), PE + control siRNA group (PE rats were treated with control siRNA), and PE + APOA1-AS siRNA group (PE rats were treated with APOA1-AS siRNA). RESULTS Increased APOA1-AS was found in the placental tissues of EOSPE patients. APOA1-AS siRNA abolished the decreased integration of trophoblasts into UtMVEC networks induced by TNF-α. Furthermore, APOA1-AS siRNA improved pregnancy outcomes in PE rats with increased expression of vascular endothelial growth factor, placental growth factor, and fms-like tyrosine kinase receptor (Flt-1) but decreased expression of E-cadherin, intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). CONCLUSION Downregulation of APOA1-AS protected against TNF-α-induced inhibition of trophoblast integration into endothelial networks, thus exerting protective effects against PE rats.
Collapse
Affiliation(s)
- Hai-Yan Yang
- Department of Obstetrics, 519688Yantaishan Hospital, Yantai, China
| | - Ling Jiang
- Department of Obstetrics, 519688Yantaishan Hospital, Yantai, China
| |
Collapse
|
9
|
circSLC41A1 Resists Porcine Granulosa Cell Apoptosis and Follicular Atresia by Promoting SRSF1 through miR-9820-5p Sponging. Int J Mol Sci 2022; 23:ijms23031509. [PMID: 35163432 PMCID: PMC8836210 DOI: 10.3390/ijms23031509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
Ovarian granulosa cell (GC) apoptosis is the major cause of follicular atresia. Regulation of non-coding RNAs (ncRNAs) was proved to be involved in regulatory mechanisms of GC apoptosis. circRNAs have been recognized to play important roles in cellular activity. However, the regulatory network of circRNAs in follicular atresia has not been fully validated. In this study, we report a new circRNA, circSLC41A1, which has higher expression in healthy follicles compared to atretic follicles, and confirm its circular structure using RNase R treatment. The resistant function of circSLC41A1 during GC apoptosis was detected by si-RNA transfection and the competitive binding of miR-9820-5p by circSLC41A1 and SRSF1 was detected with a dual-luciferase reporter assay and co-transfection of their inhibitors or siRNA. Additionally, we predicted the protein-coding potential of circSLC41A1 and analyzed the structure of circSLC41A1-134aa. Our study revealed that circSLC41A1 enhanced SRSF1 expression through competitive binding of miR-9820-5p and demonstrated a circSLC41A1–miR-9820-5p–SRSF1 regulatory axis in follicular GC apoptosis. The study adds to knowledge of the post-transcriptional regulation of follicular atresia and provides insight into the protein-coding function of circRNA.
Collapse
|
10
|
Shen C, Li J, Zhang Q, Tao Y, Li R, Ma Z, Wang Z. LncRNA GASAL1 promotes hepatocellular carcinoma progression by up-regulating USP10-stabilized PCNA. Exp Cell Res 2021; 415:112973. [PMID: 34914965 DOI: 10.1016/j.yexcr.2021.112973] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is a fatal malignancy which has insufficient treatment options. Long non-coding RNA (lncRNA) GASAL1 was discovered to be conspicuously up-regulated in HCC. However, the study on the role of GASAL1 in HCC reamins limited. Our study aimed at exploring the role and mechanism of GASAL1 in HCC. RT-qPCR or Western blot was conducted to examine the expression of RNAs or proteins. Functional assays were carried out to investigate the impact of GASAL1, USP10, and PCNA on HCC cells. Mechanism assays were performed to fathom out the relationship among GASAL1, miR-193b-5p, USP10, and PCNA. In vivo assays were also employed to determine the role of GASAL1 in HCC tumor growth and metastases. According to the data collected, GASAL1 displayed a high expression in HCC cells and GASAL1 knockdown led to impeded cell proliferation and migration, as well as tumor progression. A series of mechanism analysis demonstrated GASAL1 could sponge miR-193b-5p to raise the expression of USP10. Moreover, USP10 could induce PCNA deubiquitination to promote HCC cell growth. To conclude, GASAL1 plays an oncogenic role in HCC. GASAL1 could up-regulate USP10 via competitively binding to miR-193b-5p. And USP10 could strengthen cell proliferative and migratory abilities through deubiquitinating PCNA.
Collapse
Affiliation(s)
- Conghuan Shen
- Department of General Surgery, Affiliated Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Jianhua Li
- Department of General Surgery, Affiliated Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Quanbao Zhang
- Department of General Surgery, Affiliated Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Yifeng Tao
- Department of General Surgery, Affiliated Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Ruidong Li
- Department of General Surgery, Affiliated Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Zhenyu Ma
- Department of General Surgery, Affiliated Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Zhengxin Wang
- Department of General Surgery, Affiliated Huashan Hospital of Fudan University, Shanghai, 200040, China.
| |
Collapse
|
11
|
Abstract
Preeclampsia (PE) is an idiopathic disease that occurs during pregnancy. It comprises multiple organ and system damage, and can seriously threaten the safety of the mother and infant throughout the perinatal period. As the pathogenesis of PE is unclear, there are few specific remedies. Currently, the only way to eliminate the clinical symptoms is to terminate the pregnancy. Although noncoding RNA (ncRNA) was once thought to be the "junk" of gene transcription, it is now known to be widely involved in pathological and physiological processes, including pregnancy-related disorders. Moreover, there is growing evidence that the unbalanced expression of specific ncRNA is involved in the pathogenesis of PE. In the present review, we summarize the expression patterns of ncRNAs, i.e., microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), and the functional mechanisms by which they affect the development of PE, and examine the clinical significance of ncRNAs as biomarkers for the diagnosis of PE. We also discuss the contributions made by genetic polymorphisms and epigenetic ncRNA regulation to PE. In the present review, we wish to explore and reinforce the clinical value of ncRNAs as noninvasive biomarkers of PE.
Collapse
Affiliation(s)
- Ningxia Sun
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
- Department of Gynecology and obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Shiting Qin
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Lu Zhang
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Shiguo Liu
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
12
|
The Role of Long Non-Coding RNAs in Trophoblast Regulation in Preeclampsia and Intrauterine Growth Restriction. Genes (Basel) 2021; 12:genes12070970. [PMID: 34201957 PMCID: PMC8305149 DOI: 10.3390/genes12070970] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/06/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
Preeclampsia (PE) and Intrauterine Growth Restriction (IUGR) are two pregnancy-specific placental disorders with high maternal, fetal, and neonatal morbidity and mortality rates worldwide. The identification biomarkers involved in the dysregulation of PE and IUGR are fundamental for developing new strategies for early detection and management of these pregnancy pathologies. Several studies have demonstrated the importance of long non-coding RNAs (lncRNAs) as essential regulators of many biological processes in cells and tissues, and the placenta is not an exception. In this review, we summarize the importance of lncRNAs in the regulation of trophoblasts during the development of PE and IUGR, and other placental disorders.
Collapse
|
13
|
Liang G, Chen S, Xin S, Dong L. Overexpression of hsa_circ_0001445 reverses oxLDL‑induced inhibition of HUVEC proliferation via SRSF1. Mol Med Rep 2021; 24:507. [PMID: 33982782 PMCID: PMC8134882 DOI: 10.3892/mmr.2021.12146] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a primary cause of multiple types of cardiovascular disease, including myocardial infarction. In addition, injury of human umbilical vein endothelial cells (HUVECs) can lead to the development of atherosclerosis. Circular (circ)RNAs participate in atherosclerosis. It has previously been shown that circRNA cSMARCA5 (hsa_circ_0001445) expression is downregulated in atherosclerosis. However, the effects of hsa_circ_0001445 on the proliferation of HUVECs remain unclear. In order to mimic atherosclerosis in vitro, HUVECs were treated with oxidized low-density lipoprotein (oxLDL). The expression levels of specific genes and proteins were detected in HUVECs by reverse transcription-quantitative PCR and western blot analysis, respectively. Cell proliferation was assessed by Cell Counting Kit-8 and 5-Ethynyl-2′-deoxyuridine staining. Cell apoptosis and 5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine staining were examined by flow cytometry. In addition, the association between hsa_circ_0001445 and serine/arginine-rich splicing factor 1 (SRSF1) was investigated by RNA pull-down assay. hsa_circ_0001445 expression was downregulated in oxLDL-treated HUVECs. Moreover, oxLDL-induced inhibition of HUVEC proliferation was significantly reversed by overexpression of hsa_circ_0001445. oxLDL notably inhibited tube formation and mitochondrial membrane potential in HUVECs, while these effects were markedly reversed by hsa_circ_0001445 overexpression. Furthermore, overexpression of hsa_circ_0001445 reversed oxLDL-induced activation of β-catenin by binding to SRSF1. Collectively, these data demonstrated that overexpression of hsa_circ_0001445 reversed oxLDL-induced inhibition of HUVEC proliferation via activation of the SRSF1/β-catenin axis. These findings may provide novel targets for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Guiying Liang
- Department of Cardiology, First People's Hospital of Fuyang District, Hangzhou, Zhejiang 311400, P.R. China
| | - Sihua Chen
- Department of Cardiology, First People's Hospital of Fuyang District, Hangzhou, Zhejiang 311400, P.R. China
| | - Sha Xin
- Department of Cardiology, First People's Hospital of Fuyang District, Hangzhou, Zhejiang 311400, P.R. China
| | - Liang Dong
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|