1
|
Chen X, Gao Y, Xie J, Hua H, Pan C, Huang J, Jing M, Chen X, Xu C, Gao Y, Li P. Identification of FCN1 as a novel macrophage infiltration-associated biomarker for diagnosis of pediatric inflammatory bowel diseases. J Transl Med 2023; 21:203. [PMID: 36932401 PMCID: PMC10022188 DOI: 10.1186/s12967-023-04038-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/05/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND The incidence of pediatric inflammatory bowel disease (PIBD) has been steadily increasing globally. Delayed diagnosis of PIBD increases the risk of complications and contributes to growth retardation. To improve long-term outcomes, there is a pressing need to identify novel markers for early diagnosis of PIBD. METHODS The candidate biomarkers for PIBD were identified from the GSE117993 dataset by two machine learning algorithms, namely LASSO and mSVM-RFE, and externally validated in the GSE126124 dataset and our PIBD cohort. The role of ficolin-1 (FCN1) in PIBD and its association with macrophage infiltration was investigated using the CIBERSORT method and enrichment analysis of the single-cell dataset GSE121380, and further validated using immunoblotting, qRT-PCR, and immunostaining in colon biopsies from PIBD patients, a juvenile murine DSS-induced colitis model, and THP-1-derived macrophages. RESULTS FCN1 showed great diagnostic performance for PIBD in an independent clinical cohort with the AUC of 0.986. FCN1 expression was upregulated in both colorectal biopsies and blood samples from PIBD patients. Functionally, FCN1 was associated with immune-related processes in the colonic mucosa of PIBD patients, and correlated with increased proinflammatory M1 macrophage infiltration. Furthermore, single-cell transcriptome analysis and immunostaining revealed that FCN1 was almost exclusively expressed in macrophages infiltrating the colonic mucosa of PIBD patients, and these FCN1+ macrophages were related to hyper-inflammation. Notably, proinflammatory M1 macrophages derived from THP-1 expressed high levels of FCN1 and IL-1β, and FCN1 overexpression in THP-1-derived macrophages strongly promoted LPS-induced activation of the proinflammatory cytokine IL-1β via the NLRP3-caspase-1 axis. CONCLUSIONS FCN1 is a novel and promising diagnostic biomarker for PIBD. FCN1+ macrophages enriched in the colonic mucosa of PIBD exhibit proinflammatory phenotypes, and FCN1 promotes IL-1β maturation in macrophages via the NLRP3-caspase-1 axis.
Collapse
Affiliation(s)
- Xixi Chen
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China
| | - Yuanqi Gao
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China
| | - Jinfang Xie
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China
| | - Huiying Hua
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China
| | - Chun Pan
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China
| | - Jiebin Huang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China
| | - Mengxia Jing
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China
| | - Xuehua Chen
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China
| | - Chundi Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China.
| | - Yujing Gao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.
| | - Pu Li
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China.
| |
Collapse
|
2
|
Jarlhelt I, Genster N, Kirketerp-Møller N, Skjoedt MO, Garred P. The ficolin response to LPS challenge in mice. Mol Immunol 2019; 108:121-127. [PMID: 30818229 DOI: 10.1016/j.molimm.2019.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/07/2019] [Accepted: 02/15/2019] [Indexed: 12/30/2022]
Abstract
The ficolins belong to an important family of pattern recognition molecules, which contributes to complement activation via the lectin pathway. How the ficolins respond to inflammatory stimuli remains only partly understood. In the present study, we investigated the ficolin A and ficolin B expression and protein distribution patterns in a mouse model of LPS-induced inflammation. The time- and tissue-specific expression of ficolin A and B was determined by real time PCR. Furthermore, ficolin protein levels in serum and bone marrow extracts from LPS challenged mice were determined by novel in-house developed sandwich ELISAs. Ficolin A was mainly expressed in liver and spleen. However, our data also suggested that ficolin A is expressed in bone marrow, which is the main site of ficolin B expression. The level of ficolin A and B expression was increased after stimulation with LPS in the investigated tissues. This was followed by a downregulation of expression, causing mRNA levels to return to baseline 24 h post LPS challenge. Protein levels appeared to follow the same pattern as the expression profiles, with an exception of ficolin B levels in serum, which kept increasing for 24 h. Ficolin A was likewise significantly increased in bronchoalveolar lavage fluid from mice infected with the fungi A. fumigatus, pointing towards a similar effect of the ficolins in non-sterile mouse models of inflammation. The results demonstrate that LPS-induced inflammation can induce a significant ficolin response, suggesting that the murine ficolins are acute phase reactants with increase in both mRNA expression and protein levels during systemic inflammation.
Collapse
Affiliation(s)
- Ida Jarlhelt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ninette Genster
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj Kirketerp-Møller
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Holers VM, Banda NK. Complement in the Initiation and Evolution of Rheumatoid Arthritis. Front Immunol 2018; 9:1057. [PMID: 29892280 PMCID: PMC5985368 DOI: 10.3389/fimmu.2018.01057] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/27/2018] [Indexed: 01/03/2023] Open
Abstract
The complement system is a major component of the immune system and plays a central role in many protective immune processes, including circulating immune complex processing and clearance, recognition of foreign antigens, modulation of humoral and cellular immunity, removal of apoptotic and dead cells, and engagement of injury resolving and tissue regeneration processes. In stark contrast to these beneficial roles, however, inadequately controlled complement activation underlies the pathogenesis of human inflammatory and autoimmune diseases, including rheumatoid arthritis (RA) where the cartilage, bone, and synovium are targeted. Recent studies of this disease have demonstrated that the autoimmune response evolves over time in an asymptomatic preclinical phase that is associated with mucosal inflammation. Notably, experimental models of this disease have demonstrated that each of the three major complement activation pathways plays an important role in recognition of injured joint tissue, although the lectin and amplification pathways exhibit particularly impactful roles in the initiation and amplification of damage. Herein, we review the complement system and focus on its multi-factorial role in human patients with RA and experimental murine models. This understanding will be important to the successful integration of the emerging complement therapeutics pipeline into clinical care for patients with RA.
Collapse
Affiliation(s)
| | - Nirmal K. Banda
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
4
|
Shared hemocyte- and intestine-dominant expression profiles of intelectin genes in ascidian Ciona intestinalis: insight into the evolution of the innate immune system in chordates. Cell Tissue Res 2017; 370:129-142. [DOI: 10.1007/s00441-017-2647-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
|
5
|
Sheng L, Wang L, Sang X, Zhao X, Hong J, Cheng S, Yu X, Liu D, Xu B, Hu R, Sun Q, Cheng J, Cheng Z, Gui S, Hong F. Nano-sized titanium dioxide-induced splenic toxicity: a biological pathway explored using microarray technology. JOURNAL OF HAZARDOUS MATERIALS 2014; 278:180-188. [PMID: 24968254 DOI: 10.1016/j.jhazmat.2014.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 06/01/2014] [Accepted: 06/05/2014] [Indexed: 06/03/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have been widely used in various areas, and its potential toxicity has gained wide attention. However, the molecular mechanisms of multiple genes working together in the TiO2 NP-induced splenic injury are not well understood. In the present study, 2.5, 5, or 10mg/kg body weight TiO2 NPs were administered to the mice by intragastric administration for 90 consecutive days, their immune capacity in the spleen as well as the gene-expressed characteristics in the mouse damaged spleen were investigated using microarray assay. The findings showed that with increased dose, TiO2 NP exposure resulted in the increases of spleen indices, immune dysfunction, and severe macrophage infiltration as well as apoptosis in the spleen. Importantly, microarray data showed significant alterations in the expressions of 1041 genes involved in immune/inflammatory responses, apoptosis, oxidative stress, stress responses, metabolic processes, ion transport, signal transduction, cell proliferation/division, cytoskeleton and translation in the 10 mg/kg TiO2 NP-exposed spleen. Specifically, Cyp2e1, Sod3, Mt1, Mt2, Atf4, Chac1, H2-k1, Cxcl13, Ccl24, Cd14, Lbp, Cd80, Cd86, Cd28, Il7r, Il12a, Cfd, and Fcnb may be potential biomarkers of spleen toxicity following exposure to TiO2 NPs.
Collapse
Affiliation(s)
- Lei Sheng
- Medical College of Soochow University, Suzhou 215123, China
| | - Ling Wang
- Library of Soochow University, Suzhou 215123, China
| | - Xuezi Sang
- Medical College of Soochow University, Suzhou 215123, China
| | - Xiaoyang Zhao
- Medical College of Soochow University, Suzhou 215123, China
| | - Jie Hong
- Medical College of Soochow University, Suzhou 215123, China
| | - Shen Cheng
- Medical College of Soochow University, Suzhou 215123, China
| | - Xiaohong Yu
- Medical College of Soochow University, Suzhou 215123, China
| | - Dong Liu
- Medical College of Soochow University, Suzhou 215123, China
| | - Bingqing Xu
- Medical College of Soochow University, Suzhou 215123, China
| | - Renping Hu
- Medical College of Soochow University, Suzhou 215123, China
| | - Qingqing Sun
- Medical College of Soochow University, Suzhou 215123, China
| | - Jie Cheng
- Medical College of Soochow University, Suzhou 215123, China
| | - Zhe Cheng
- Medical College of Soochow University, Suzhou 215123, China
| | - Suxin Gui
- Medical College of Soochow University, Suzhou 215123, China
| | - Fashui Hong
- Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
6
|
Endo Y, Iwaki D, Ishida Y, Takahashi M, Matsushita M, Fujita T. Mouse ficolin B has an ability to form complexes with mannose-binding lectin-associated serine proteases and activate complement through the lectin pathway. J Biomed Biotechnol 2012; 2012:105891. [PMID: 22523468 PMCID: PMC3306798 DOI: 10.1155/2012/105891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 11/08/2011] [Indexed: 11/18/2022] Open
Abstract
Ficolins are thought to be pathogen-associated-molecular-pattern-(PAMP-) recognition molecules that function to support innate immunity. Like mannose-binding lectins (MBLs), most mammalian ficolins form complexes with MBL-associated serine proteases (MASPs), leading to complement activation via the lectin pathway. However, the ability of murine ficolin B, a homologue of human M-ficolin, to perform this function is still controversial. The results of the present study show that ficolin B in mouse bone marrow is an oligomeric protein. Ficolin B, pulled down using GlcNAc-agarose, contained very low, but detectable, amounts of MASP-2 and small MBL-associated protein (sMAP) and showed detectable C4-deposition activity on immobilized N-acetylglucosamine. These biochemical features of ficolin B were confirmed using recombinant mouse ficolin B produced in CHO cells. Taken together, these results suggest that like other mammalian homologues, murine ficolin B has an ability to exert its function via the lectin pathway.
Collapse
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, 1-Hikarigaoka, Fukushima 960-1295, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
Endo Y, Matsushita M, Fujita T. The role of ficolins in the lectin pathway of innate immunity. Int J Biochem Cell Biol 2011; 43:705-12. [PMID: 21315829 DOI: 10.1016/j.biocel.2011.02.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 11/29/2022]
Abstract
Ficolins are a family of oligomeric proteins consisting of an N-terminal collagen-like domain and a C-terminal globular fibrinogen-like domain. They are novel lectins that employ the fibrinogen-like domain as a functional domain. Ficolins specifically recognize N-acetyl compounds such as N-acetylglucosamine, components of bacterial and fungal cell walls, and certain bacteria. Like mannose-binding lectin (MBL), ficolins circulate in complexes with MBL-associated serine proteases (MASPs). MASP complexes form with ficolins and MBL, thereby activating the complement through the lectin pathway. Upon binding of ficolins and MBL to carbohydrates on pathogens, MASPs convert to active forms, and subsequently activate the complement. The activated complements lead to pathogen phagocytosis, aggregation and lysis. In humans, three ficolins (L-, M- and H-ficolins) have been identified, which exhibit differences in tissue expression, protein location site, ligand-binding and bacteria-recognition, suggesting a specific role of each ficolin. In addition, these ficolins form complexes with three MASPs (MASP-1, MASP-2 and MASP-3) and two nonenzymatic proteins (sMAP and MAP-1), suggesting a highly sophisticated organization and regulated activation of the ficolin-dependent lectin pathway. This review provides an overview of our current knowledge of ficolins, especially human ficolins and their mouse homologues. We also discuss their possible physiological roles in innate immunity, especially their defensive role against bacterial infection.
Collapse
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, 1-Hikarigaoka, Fukushima 960-1295, Japan.
| | | | | |
Collapse
|
8
|
Zhang J, Yang L, Ang Z, Yoong SL, Tran TTT, Anand GS, Tan NS, Ho B, Ding JL. Secreted M-ficolin anchors onto monocyte transmembrane G protein-coupled receptor 43 and cross talks with plasma C-reactive protein to mediate immune signaling and regulate host defense. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:6899-910. [PMID: 21037097 DOI: 10.4049/jimmunol.1001225] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Although transmembrane C-type lectins (CLs) are known to initiate immune signaling, the participation and mechanism of action of soluble CLs have remained enigmatic. In this study, we found that M-ficolin, a conserved soluble CL of monocyte origin, overcomes its lack of membrane-anchor domain by docking constitutively onto a monocyte transmembrane receptor, G protein-coupled receptor 43 (GPCR43), to form a pathogen sensor-cum-signal transducer. On encountering microbial invaders, the M-ficolin-GPCR43 complex activates the NF-κB cascade to upregulate IL-8 production. We showed that mild acidosis at the local site of infection induces conformational changes in the M-ficolin molecule, which provokes a strong interaction between the C-reactive protein (CRP) and the M-ficolin-GPCR43 complex. The collaboration among CRP-M-ficolin-GPCR43 under acidosis curtails IL-8 production thus preventing immune overactivation. Therefore, we propose that a soluble CL may become membrane-associated through interaction with a transmembrane protein, whereupon infection collaborates with other plasma protein to transduce the infection signal and regulate host defense. Our finding implies a possible mechanism whereby the host might expand its repertoire of immune recognition-cum-regulation tactics by promiscuous protein networking. Furthermore, our identification of the pH-sensitive interfaces of M-ficolin-CRP provides a powerful template for future design of potential immunomodulators.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Thomsen T, Moeller JB, Schlosser A, Sorensen GL, Moestrup SK, Palaniyar N, Wallis R, Mollenhauer J, Holmskov U. The recognition unit of FIBCD1 organizes into a noncovalently linked tetrameric structure and uses a hydrophobic funnel (S1) for acetyl group recognition. J Biol Chem 2009; 285:1229-38. [PMID: 19892701 DOI: 10.1074/jbc.m109.061523] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently identified FIBCD1 (Fibrinogen C domain containing 1) as a type II transmembrane endocytic receptor located primarily in the intestinal brush border. The ectodomain of FIBCD1 comprises a coiled coil, a polycationic region, and a C-terminal FReD (fibrinogen-related domain) that assembles into disulfide-linked homotetramers. The FIBCD1-FReD binds Ca(2+) dependently to acetylated structures like chitin, N-acetylated carbohydrates, and amino acids. FReDs are present in diverse innate immune pattern recognition proteins including the ficolins and horseshoe crab TL5A. Here, we use chemical cross-linking, combined with analytical ultracentrifugation and electron microscopy of the negatively stained recombinant FIBCD1-FReD to show that it assembles into noncovalent tetramers in the absence of the coiled coil. We use surface plasmon resonance, carbohydrate binding, and pulldown assays combined with site-directed mutagenesis to define the binding site involved in the interaction of FIBCD1 with acetylated structures. We show that mutations of central residues (A432V and H415G) in the hydrophobic funnel (S1) abolish the binding of FIBCD1 to acetylated bovine serum albumin and chitin. The double mutations (D393N/D395A) at the putative calcium-binding site reduce the ability of FIBCD1 to bind ligands. We conclude that the FReDs of FIBCD1 forms noncovalent tetramers and that the acetyl-binding site of FReDs of FIBCD1 is homologous to that of tachylectin 5A and M-ficolin but not to the FReD of L-ficolin. We suggest that the spatial organization of the FIBCD1-FReDs determine the molecular pattern recognition specificity and subsequent biological functions.
Collapse
Affiliation(s)
- Theresa Thomsen
- Medical Biotechnology Center, University of Southern Denmark, 5000 Odense, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Human M-ficolin is a pathogen-associated molecular recognition molecule in the innate immune system, and it binds to some sugars, such as GlcNAc (N-acetylglucosamine), on pathogen surfaces. From previous structural and functional studies of the FD1 (M-ficolin fibrinogen-like domain), we proposed that the ligand-binding region of FD1 exists in a conformational equilibrium between active and non-active states depending on three groups with a pK(a) of 6.2, which are probably histidine residues, and suggested that the 2-state conformational equilibrium as well as the trimer formation contributes to the discrimination mechanism between self and non-self of FD1 [Tanio, M., Kondo, S., Sugio, S. and Kohno, T. (2007) J. Biol. Chem. 282, 3889-3895]. To investigate the origins of the pH dependency, mutational analyses were performed on FD1 expressed by Brevibacillus choshinensis. The GlcNAc binding study of a series of single histidine mutants of FD1 demonstrated that His(251), His(284) and His(297) are required for the activity, and thus we concluded that the three histidines are the origins of the pH dependency of FD1. Monomeric mutants of FD1 show weaker affinity for the ligand than the trimeric wild-type, indicating that trimer formation confers high avidity for the ligand. In addition, analyses of the GlcNAc association and dissociation of FD1 provided evidence that FD1 always exchanges between the active and non-active states with the pH-dependent populations in solution. The biological roles of the histidine-regulated conformational equilibrium of M-ficolin are discussed in terms of the self and non-self discrimination mechanism.
Collapse
Affiliation(s)
- Michikazu Tanio
- Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo, Japan
| | | |
Collapse
|
11
|
Garlatti V, Martin L, Gout E, Reiser JB, Fujita T, Arlaud GJ, Thielens NM, Gaboriaud C. Structural basis for innate immune sensing by M-ficolin and its control by a pH-dependent conformational switch. J Biol Chem 2007; 282:35814-20. [PMID: 17897951 DOI: 10.1074/jbc.m705741200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ficolins are soluble oligomeric proteins with lectin-like activity, assembled from collagen fibers prolonged by fibrinogen-like recognition domains. They act as innate immune sensors by recognizing conserved molecular markers exposed on microbial surfaces and thereby triggering effector mechanisms such as enhanced phagocytosis and inflammation. In humans, L- and H-ficolins have been characterized in plasma, whereas a third species, M-ficolin, is secreted by monocytes and macrophages. To decipher the molecular mechanisms underlying their recognition properties, we previously solved the structures of the recognition domains of L- and H-ficolins, in complex with various model ligands (Garlatti, V., Belloy, N., Martin, L., Lacroix, M., Matsushita, M., Endo, Y., Fujita, T., Fontecilla-Camps, J. C., Arlaud, G. J., Thielens, N. M., and Gaboriaud, C. (2007) EMBO J. 24, 623-633). We now report the ligand-bound crystal structures of the recognition domain of M-ficolin, determined at high resolution (1.75-1.8 A), which provides the first structural insights into its binding properties. Interaction with acetylated carbohydrates differs from the one previously described for L-ficolin. This study also reveals the structural determinants for binding to sialylated compounds, a property restricted to human M-ficolin and its mouse counterpart, ficolin B. Finally, comparison between the ligand-bound structures obtained at neutral pH and nonbinding conformations observed at pH 5.6 reveals how the ligand binding site is dislocated at acidic pH. This means that the binding function of M-ficolin is subject to a pH-sensitive conformational switch. Considering that the homologous ficolin B is found in the lysosomes of activated macrophages (Runza, V. L., Hehlgans, T., Echtenacher, B., Zahringer, U., Schwaeble, W. J., and Mannel, D. N. (2006) J. Endotoxin Res. 12, 120-126), we propose that this switch could play a physiological role in such acidic compartments.
Collapse
Affiliation(s)
- Virginie Garlatti
- Laboratoire de Cristallographie et Cristallogénèse des Protéines, Institut de Biologie Structurale Jean-Pierre Ebel, Commissariat à l'Energie Atomique-CNRS-Université Joseph Fourier, 38027 Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Endo Y, Matsushita M, Fujita T. Role of ficolin in innate immunity and its molecular basis. Immunobiology 2007; 212:371-9. [PMID: 17544822 DOI: 10.1016/j.imbio.2006.11.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Revised: 11/07/2006] [Accepted: 11/29/2006] [Indexed: 10/23/2022]
Abstract
Ficolin is a multimeric protein consisting of an N-terminal collagen-like domain and a C-terminal fibrinogen-like domain. The structure is similar to mannose-binding lectin (MBL) and complement C1q owing to the collagen-like stalk. Accumulating data indicate that a key function of ficolin is to recognize the carbohydrate moieties on pathogens as a pattern-recognition molecule. Two or three kinds of ficolin have been identified in each species of mammals. They are similar but with some differences in the expression site, location site, ligand-binding specificity and ability to form complexes with MBL-associated serine proteases (MASPs). Like MBL, some ficolins are serum lectins and can form a complex with MASPs and small MBL-associated protein (sMAP). This complex activates the complement through "the lectin pathway". Our recent study suggests that ficolin acts through two distinct routes: the lectin pathway and a primitive opsonophagocytosis. All these observations suggest that ficolins function in clearance of non-self, based on their location sites and their molecular features.
Collapse
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, 1-Hikarigaoka, Fukushima 960-1295, Japan.
| | | | | |
Collapse
|