1
|
Zhu ZX, Genchev GZ, Wang YM, Ji W, Ren YY, Tian GL, Sriswasdi S, Lu H. Improving the second-tier classification of methylmalonic acidemia patients using a machine learning ensemble method. World J Pediatr 2024; 20:1090-1101. [PMID: 38401044 PMCID: PMC11502559 DOI: 10.1007/s12519-023-00788-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/10/2023] [Indexed: 02/26/2024]
Abstract
INTRODUCTION Methylmalonic acidemia (MMA) is a disorder of autosomal recessive inheritance, with an estimated prevalence of 1:50,000. First-tier clinical diagnostic tests often return many false positives [five false positive (FP): one true positive (TP)]. In this work, our goal was to refine a classification model that can minimize the number of false positives, currently an unmet need in the upstream diagnostics of MMA. METHODS We developed machine learning multivariable screening models for MMA with utility as a secondary-tier tool for false positives reduction. We utilized mass spectrometry-based features consisting of 11 amino acids and 31 carnitines derived from dried blood samples of neonatal patients, followed by additional ratio feature construction. Feature selection strategies (selection by filter, recursive feature elimination, and learned vector quantization) were used to determine the input set for evaluating the performance of 14 classification models to identify a candidate model set for an ensemble model development. RESULTS Our work identified computational models that explore metabolic analytes to reduce the number of false positives without compromising sensitivity. The best results [area under the receiver operating characteristic curve (AUROC) of 97%, sensitivity of 92%, and specificity of 95%] were obtained utilizing an ensemble of the algorithms random forest, C5.0, sparse linear discriminant analysis, and autoencoder deep neural network stacked with the algorithm stochastic gradient boosting as the supervisor. The model achieved a good performance trade-off for a screening application with 6% false-positive rate (FPR) at 95% sensitivity, 35% FPR at 99% sensitivity, and 39% FPR at 100% sensitivity. CONCLUSIONS The classification results and approach of this research can be utilized by clinicians globally, to improve the overall discovery of MMA in pediatric patients. The improved method, when adjusted to 100% precision, can be used to further inform the diagnostic process journey of MMA and help reduce the burden for patients and their families.
Collapse
Affiliation(s)
- Zhi-Xing Zhu
- Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Center for Biomedical Informatics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Georgi Z Genchev
- Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yan-Min Wang
- Newborn Screening Center, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Ji
- Newborn Screening Center, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong-Yong Ren
- SJTU-Yale Joint Center for Biostatistics and Data Science, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Li Tian
- Newborn Screening Center, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Sira Sriswasdi
- Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Center for Artificial Intelligence in Medicine, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Hui Lu
- Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Center for Biomedical Informatics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- SJTU-Yale Joint Center for Biostatistics and Data Science, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Wan Z, Liu W, Zhai Y, Ma Z, Cao Z. Performance Validation of the NeoBase 2 Non-Derivatized MSMS Assay Kit and Cutoff Values Establishment of Term and Preterm Neonates. Fetal Pediatr Pathol 2024:1-10. [PMID: 39105619 DOI: 10.1080/15513815.2024.2386659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
OBJECTIVE NeoBase 2 Non-derivatized MSMS assay kit (NeoBase 2 kit) was used for newborn screening, the performance of the NeoBase 2 kit should be validated before its implementation in clinical diagnostic laboratories. METHODS Leftover dried blood spot samples, quality control materials in the NeoBase 2 kit, and proficiency testing materials received from the NSQAP were used. Precision, accuracy, LOD, LLOQ, recovery, and stability were carried out to verify the performance of the Waters ACQUITY TQD MS/MS system with the NeoBase 2 kit for newborn screening. Cutoffs were determined and analytes requiring different cutoffs in preterm neonates were investigated. RESULTS Within-run and between-run precisions ranged from 3.95% to 14.41%. The accuracy and stability were within 15%. All analytes demonstrated acceptable LOD, LLOQ, and recoveries. Cutoffs for term and preterm neonates were established. CONCLUSIONS The performance of the NeoBase 2 kit is acceptable and can be implemented in clinical diagnostic laboratories.
Collapse
Affiliation(s)
- Zhihui Wan
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Wei Liu
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yanhong Zhai
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Zhijun Ma
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Zheng Cao
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
3
|
Therrell BL, Padilla CD, Borrajo GJC, Khneisser I, Schielen PCJI, Knight-Madden J, Malherbe HL, Kase M. Current Status of Newborn Bloodspot Screening Worldwide 2024: A Comprehensive Review of Recent Activities (2020-2023). Int J Neonatal Screen 2024; 10:38. [PMID: 38920845 PMCID: PMC11203842 DOI: 10.3390/ijns10020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 06/27/2024] Open
Abstract
Newborn bloodspot screening (NBS) began in the early 1960s based on the work of Dr. Robert "Bob" Guthrie in Buffalo, NY, USA. His development of a screening test for phenylketonuria on blood absorbed onto a special filter paper and transported to a remote testing laboratory began it all. Expansion of NBS to large numbers of asymptomatic congenital conditions flourishes in many settings while it has not yet been realized in others. The need for NBS as an efficient and effective public health prevention strategy that contributes to lowered morbidity and mortality wherever it is sustained is well known in the medical field but not necessarily by political policy makers. Acknowledging the value of national NBS reports published in 2007, the authors collaborated to create a worldwide NBS update in 2015. In a continuing attempt to review the progress of NBS globally, and to move towards a more harmonized and equitable screening system, we have updated our 2015 report with information available at the beginning of 2024. Reports on sub-Saharan Africa and the Caribbean, missing in 2015, have been included. Tables popular in the previous report have been updated with an eye towards harmonized comparisons. To emphasize areas needing attention globally, we have used regional tables containing similar listings of conditions screened, numbers of screening laboratories, and time at which specimen collection is recommended. Discussions are limited to bloodspot screening.
Collapse
Affiliation(s)
- Bradford L. Therrell
- Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
- National Newborn Screening and Global Resource Center, Austin, TX 78759, USA
| | - Carmencita D. Padilla
- Department of Pediatrics, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines;
| | - Gustavo J. C. Borrajo
- Detección de Errores Congénitos—Fundación Bioquímica Argentina, La Plata 1908, Argentina;
| | - Issam Khneisser
- Jacques LOISELET Genetic and Genomic Medical Center, Faculty of Medicine, Saint Joseph University, Beirut 1104 2020, Lebanon;
| | - Peter C. J. I. Schielen
- Office of the International Society for Neonatal Screening, Reigerskamp 273, 3607 HP Maarssen, The Netherlands;
| | - Jennifer Knight-Madden
- Caribbean Institute for Health Research—Sickle Cell Unit, The University of the West Indies, Mona, Kingston 7, Jamaica;
| | - Helen L. Malherbe
- Centre for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa;
- Rare Diseases South Africa NPC, The Station Office, Bryanston, Sandton 2021, South Africa
| | - Marika Kase
- Strategic Initiatives Reproductive Health, Revvity, PL10, 10101 Turku, Finland;
| |
Collapse
|
4
|
Tang C, Li L, Chen T, Li Y, Zhu B, Zhang Y, Yin Y, Liu X, Huang C, Miao J, Zhu B, Wang X, Zou H, Han L, Feng J, Huang Y. Newborn Screening for Inborn Errors of Metabolism by Next-Generation Sequencing Combined with Tandem Mass Spectrometry. Int J Neonatal Screen 2024; 10:28. [PMID: 38651393 PMCID: PMC11036227 DOI: 10.3390/ijns10020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
The aim of this study was to observe the outcomes of newborn screening (NBS) in a certain population by using next-generation sequencing (NGS) as a first-tier screening test combined with tandem mass spectrometry (MS/MS). We performed a multicenter study of 29,601 newborns from eight screening centers with NBS via NGS combined with MS/MS. A custom-designed panel targeting the coding region of the 142 genes of 128 inborn errors of metabolism (IEMs) was applied as a first-tier screening test, and expanded NBS using MS/MS was executed simultaneously. In total, 52 genes associated with the 38 IEMs screened by MS/MS were analyzed. The NBS performance of these two methods was analyzed and compared respectively. A total of 23 IEMs were diagnosed via NGS combined with MS/MS. The incidence of IEMs was approximately 1 in 1287. Within separate statistical analyses, the positive predictive value (PPV) for MS/MS was 5.29%, and the sensitivity was 91.3%. However, for genetic screening alone, the PPV for NGS was 70.83%, with 73.91% sensitivity. The three most common IEMs were methylmalonic academia (MMA), primary carnitine deficiency (PCD) and phenylketonuria (PKU). The five genes with the most common carrier frequencies were PAH (1:42), PRODH (1:51), MMACHC (1:52), SLC25A13 (1:55) and SLC22A5 (1:63). Our study showed that NBS combined with NGS and MS/MS improves the performance of screening methods, optimizes the process, and provides accurate diagnoses.
Collapse
Affiliation(s)
- Chengfang Tang
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510180, China;
| | - Lixin Li
- Department of Genetic, Shijiazhuang Maternal and Child Health Hospital, Shijiazhuang 050090, China;
| | - Ting Chen
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China;
| | - Yulin Li
- Neonatal Disease Screening Center, Jinan Maternity and Child Health Hospital Affiliated to Shandong First Medical University, Jinan 250001, China; (Y.L.); (H.Z.)
| | - Bo Zhu
- Department of Genetics, Inner Mongolia Maternity and Child Health Care Hospital, Hohhot 750306, China; (B.Z.); (X.W.)
| | - Yinhong Zhang
- Department of Medical Genetics, NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Yunnan Provincial Clinical Research Center for Birth Defects and Rare Diseases, The First People’s Hospital of Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China; (Y.Z.); (B.Z.)
| | - Yifan Yin
- Department of Pediatrics, Chongqing Health Center for Women and Children &Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China; (Y.Y.); (J.M.)
| | - Xiulian Liu
- Neonatal Disease Screening Center, Hainan Women and Children’s Medical Center, Haikou 570206, China; (X.L.); (C.H.)
| | - Cidan Huang
- Neonatal Disease Screening Center, Hainan Women and Children’s Medical Center, Haikou 570206, China; (X.L.); (C.H.)
| | - Jingkun Miao
- Department of Pediatrics, Chongqing Health Center for Women and Children &Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China; (Y.Y.); (J.M.)
| | - Baosheng Zhu
- Department of Medical Genetics, NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Yunnan Provincial Clinical Research Center for Birth Defects and Rare Diseases, The First People’s Hospital of Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China; (Y.Z.); (B.Z.)
| | - Xiaohua Wang
- Department of Genetics, Inner Mongolia Maternity and Child Health Care Hospital, Hohhot 750306, China; (B.Z.); (X.W.)
| | - Hui Zou
- Neonatal Disease Screening Center, Jinan Maternity and Child Health Hospital Affiliated to Shandong First Medical University, Jinan 250001, China; (Y.L.); (H.Z.)
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China;
| | - Jizhen Feng
- Department of Genetic, Shijiazhuang Maternal and Child Health Hospital, Shijiazhuang 050090, China;
| | - Yonglan Huang
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510180, China;
| |
Collapse
|
5
|
Lin Y, Lin C, Lin B, Zheng Z, Lin W, Chen Y, Chen D, Peng W. Newborn screening for fatty acid oxidation disorders in a southern Chinese population. Heliyon 2024; 10:e23671. [PMID: 38187300 PMCID: PMC10770602 DOI: 10.1016/j.heliyon.2023.e23671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Background and aims Fatty acid oxidation disorders (FAODs) are a group of autosomal recessive metabolic diseases included in many newborn screening (NBS) programs, but the incidence and disease spectrum vary widely between ethnic groups. We aimed to elucidate the incidence, disease spectrum, and genetic features of FAODs in a southern Chinese population. Materials and methods The FAODs screening results of 643,606 newborns from 2014 to 2022 were analyzed. Results Ninety-two patients were eventually diagnosed with FAODs, of which 61 were PCD, 20 were MADD, 5 were SCADD, 4 were VLCADD, and 2 were CPT-IAD. The overall incidence of FAODs was 1:6996 (95 % CI: 1:5814-1:8772) newborns. All PCD patients had low C0 levels during NBS, while nine patients (14.8 %) had normal C0 levels during the recall review. All but one MADD patients had elevated C8, C10, and C12 levels during NBS, while eight patients (40 %) had normal acylcarnitine levels during the recall review. The most frequent SLC22A5 variant was c.760C > T (p.R254*) with an allele frequency of 29.51 %, followed by c.51C > G (p.F17L) (17.21 %) and c.1400C > G (p.S467C) (16.39 %). The most frequent ETFDH variant was c.250G > A (p.A84T) with an allelic frequency of 47.5 %, followed by c.524G > A (R175H) (12.5 %), c.998A > G (p.Y333C) (12.5 %), and c.1657T > C (p.Y553H) (7.5 %). Conclusion The prevalence, disease spectrum, and genetic characteristics of FAODs in a southern Chinese population were clarified. PCD was the most common FAOD, followed by MADD. Hotspot variants were found in SLC22A5 and ETFDH genes, while the remaining FAODs showed great molecular heterogeneity. Incorporating second-tier genetic screening is critical for FAODs.
Collapse
Affiliation(s)
- Yiming Lin
- Department of Clinical Laboratory, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province, 362000, China
| | - Chunmei Lin
- Department of Clinical Laboratory, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province, 362000, China
| | - Bangbang Lin
- Administrative office, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province, 362000, China
| | - Zhenzhu Zheng
- Department of Clinical Laboratory, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province, 362000, China
| | - Weihua Lin
- Center of Neonatal Disease Screening, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province, 362000, China
| | - Yanru Chen
- Center of Neonatal Disease Screening, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province, 362000, China
| | - Dongmei Chen
- Department of Neonatology, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province, 362000, China
| | - Weilin Peng
- Department of Clinical Laboratory, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province, 362000, China
| |
Collapse
|
6
|
Hao L, Liang L, Gao X, Zhan X, Ji W, Chen T, Xu F, Qiu W, Zhang H, Gu X, Han L. Screening of 1.17 million newborns for inborn errors of metabolism using tandem mass spectrometry in Shanghai, China: A 19-year report. Mol Genet Metab 2024; 141:108098. [PMID: 38061323 DOI: 10.1016/j.ymgme.2023.108098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/20/2023] [Accepted: 11/26/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Inborn errors of metabolism (IEMs) frequently result in progressive and irreversible clinical consequences if not be diagnosed or treated timely. The tandem mass spectrometry (MS/MS)-based newborn screening (NBS) facilitates early diagnosis and treatment of IEMs. The aim of this study was to determine the characteristics of IEMs and the successful deployment and application of MS/MS screening over a 19-year time period in Shanghai, China, to inform national NBS policy. METHODS The amino acids and acylcarnitines in dried blood spots from 1,176,073 newborns were assessed for IEMs by MS/MS. The diagnosis of IEMs was made through a comprehensive consideration of clinical features, biochemical performance and genetic testing results. The levels of MS/MS testing parameters were compared between various IEM subtypes and genotypes. RESULTS A total of 392 newborns were diagnosed with IEMs from January 2003 to June 2022. There were 196 newborns with amino acid disorders (50.00%, 1: 5910), 115 newborns with organic acid disorders (29.59%, 1: 10,139), and 81 newborns with fatty acid oxidation disorders (20.41%; 1:14,701). Phenylalanine hydroxylase deficiency, methylmalonic acidemia and primary carnitine deficiency were the three most common disorders. Some hotspot variations in eight IEM genes (PAH, SLC22A5, MMACHC, MMUT, MAT1A, MCCC2, ACADM, ACAD8), 35 novel variants and some genotype-biochemical phenotype associations were identified. CONCLUSIONS A total of 28 types of IEMs were identified, with an overall incidence of 1: 3000 in Shanghai, China. Our study offered clinical guidance for the implementation of MS/MS-based NBS and genetic counseling for IEMs in this city.
Collapse
Affiliation(s)
- Lili Hao
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lili Liang
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xiaolan Gao
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xia Zhan
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Wenjun Ji
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Ting Chen
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Feng Xu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
7
|
Zhao B, Chen P, She X, Chen X, Ni Z, Zhou D, Yu Z, Liu C, Huang X. China nationwide landscape of 16 types inherited metabolic disorders: a retrospective analysis on 372,255 clinical cases. Orphanet J Rare Dis 2023; 18:228. [PMID: 37537594 PMCID: PMC10398906 DOI: 10.1186/s13023-023-02834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Inherited metabolic disorders (IMDs) usually occurs at young age and hence it severely threatening the health and life of young people. While so far there lacks a comprehensive study which can reveals China's nationwide landscape of IMDs. This study aimed to evaluate IMDs incidence and regional distributions in China at a national and province level to guide clinicians and policy makers. METHODS The retrospective study conducted from January 2012 to March 2021, we analyzed and characterized 372255 cases' clinical test information and diagnostic data from KingMed Diagnostics Laboratory. The samples were from 32 provincial regions of China, the urine organic acids were detected by gas chromatography-mass spectrometry (GC-MS), amino acids and acylcarnitines in dried blood spots were detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS). We did a statistical analysis of the distribution of the 16 most common IMDs in amino acid disorders and organic acidemias, and then paid special attention to analyze the age and regional distributions of different IMDs. The statistical analyses and visualization analysis were performed with the programming language R (version 4.2.1). RESULTS There were 4911 positive cases diagnosed, which was 1.32% of the total sample during the ten-year study period. Most diseases tended to occur at ages younger than 18 year-old. The Ornithine Transcarbamylase Deficiency tended to progress on male infants who were less than 28 days old. While the peak of the positive case number of Citrin Deficiency disease (CD) was at 1-6 months. Different IMDs' had different distribution patterns in China's provinces. Methylmalonic Acidemias and Hyperphenylalaninemia had an imbalanced distribution pattern in China and its positive rate was significantly higher in North China than South China. Conversely, the positive rate of CD was significantly higher in South China than North China. CONCLUSIONS Results of this work, such as the differences in distribution pattern of different diseases in terms of age, region, etc. provide important insights and references for clinicians, researchers and healthcare policy makers. The policy makers could optimize the better health screening programs for covering children and infants in specific ages and regions based on our findings.
Collapse
Affiliation(s)
- Beibei Zhao
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Bisheng Road, Hangzhou City, 310052, Zhejiang Province, China
- Clinical Mass Spectrometry Center, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou International Bioisland, No.10 Luoxuan Third Road, Guangzhou City, 510005, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Genetic Disease Diagnositc, Guangzhou International Bioisand, No.10 Luoxuan Third Road, Guangzhou City, 510005, Guangdong Province, China
| | - Peichun Chen
- Shenzhen Guangming Maternity and Child Healthcare Hospital, University of Chinese Academy of Science, No.39 of Huaxia Road, Guangming District, Shenzhen, 518107, Guangdong, China
| | - Xuhui She
- Clinical Mass Spectrometry Center, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou International Bioisland, No.10 Luoxuan Third Road, Guangzhou City, 510005, Guangdong Province, China
| | - Xiuru Chen
- Clinical Mass Spectrometry Center, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou International Bioisland, No.10 Luoxuan Third Road, Guangzhou City, 510005, Guangdong Province, China
| | - Zhou Ni
- Clinical Mass Spectrometry Center, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou International Bioisland, No.10 Luoxuan Third Road, Guangzhou City, 510005, Guangdong Province, China
| | - Duo Zhou
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Bisheng Road, Hangzhou City, 310052, Zhejiang Province, China
| | - Zinan Yu
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Bisheng Road, Hangzhou City, 310052, Zhejiang Province, China
| | - Chang Liu
- Clinical Mass Spectrometry Center, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou International Bioisland, No.10 Luoxuan Third Road, Guangzhou City, 510005, Guangdong Province, China
| | - Xinwen Huang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Bisheng Road, Hangzhou City, 310052, Zhejiang Province, China.
| |
Collapse
|
8
|
Yang RL, Qian GL, Wu DW, Miao JK, Yang X, Wu BQ, Yan YQ, Li HB, Mao XM, He J, Shen H, Zou H, Xue SY, Li XZ, Niu TT, Xiao R, Zhao ZY. A multicenter prospective study of next-generation sequencing-based newborn screening for monogenic genetic diseases in China. World J Pediatr 2023; 19:663-673. [PMID: 36847978 PMCID: PMC10258179 DOI: 10.1007/s12519-022-00670-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/30/2022] [Indexed: 03/01/2023]
Abstract
BACKGROUND Newborn screening (NBS) is an important and successful public health program that helps improve the long-term clinical outcomes of newborns by providing early diagnosis and treatment of certain inborn diseases. The development of next-generation sequencing (NGS) technology provides new opportunities to expand current newborn screening methodologies. METHODS We designed a a newborn genetic screening (NBGS) panel targeting 135 genes associated with 75 inborn disorders by multiplex PCR combined with NGS. With this panel, a large-scale, multicenter, prospective multidisease analysis was conducted on dried blood spot (DBS) profiles from 21,442 neonates nationwide. RESULTS We presented the positive detection rate and carrier frequency of diseases and related variants in different regions; and 168 (0.78%) positive cases were detected. Glucose-6-Phosphate Dehydrogenase deficiency (G6PDD) and phenylketonuria (PKU) had higher prevalence rates, which were significantly different in different regions. The positive detection of G6PD variants was quite common in south China, whereas PAH variants were most commonly identified in north China. In addition, NBGS identified 3 cases with DUOX2 variants and one with SLC25A13 variants, which were normal in conventional NBS, but were confirmed later as abnormal in repeated biochemical testing after recall. Eighty percent of high-frequency gene carriers and 60% of high-frequency variant carriers had obvious regional differences. On the premise that there was no significant difference in birth weight and gestational age, the biochemical indicators of SLC22A5 c.1400C > G and ACADSB c.1165A > G carriers were significantly different from those of non-carriers. CONCLUSIONS We demonstrated that NBGS is an effective strategy to identify neonates affected with treatable diseases as a supplement to current NBS methods. Our data also showed that the prevalence of diseases has significant regional characteristics, which provides a theoretical basis for screening diseases in different regions.
Collapse
Affiliation(s)
- Ru-Lai Yang
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gu-Ling Qian
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ding-Wen Wu
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing-Kun Miao
- Chongqing Health Center for Women and Children, Neonatal Screening Center, Chongqing, China
| | - Xue Yang
- Guiyang Maternal and Child Health Hospital, Guiyang, China
| | - Ben-Qing Wu
- University of the Chinese Academy of Science, Shenzhen Hospital, Shenzhen, 518000, Guangdong, China
| | - Ya-Qiong Yan
- Shanxi Children's Hospital Shanxi Maternal and Child Health Hospital, Taiyuan, Shanxi, China
| | - Hai-Bo Li
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, 315012, Zhejiang, China
| | - Xin-Mei Mao
- Maternal and Child Health Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jun He
- Changsha Maternal and Child Health Hospital, Changsha, Hunan, China
| | - Huan Shen
- Yunnan Maternal and Child Health Hospital, Kunming, Yunan, China
| | - Hui Zou
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shu-Yuan Xue
- Urumqi Maternal and Child Health Care Hospital, Xinjiang Uygur Autonomous Region, Urumqi City, China
| | - Xiao-Ze Li
- Medical Genetic Center, Changzhi Maternal and Child Health Care Hospital, Changzhi, Shanxi, China
| | - Ting-Ting Niu
- Maternal and Child Health Care Hospital of Shandong Province, Jinan, Shandong, China
| | - Rui Xiao
- National Engineering Laboratory for Key Technology of Birth Defect Control and Prevention, Screening and Diagnostic R and D Center, Hangzhou, China
| | - Zheng-Yan Zhao
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
9
|
Ding S, Han L. Newborn screening for genetic disorders: Current status and prospects for the future. Pediatr Investig 2022; 6:291-298. [PMID: 36582269 PMCID: PMC9789938 DOI: 10.1002/ped4.12343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022] Open
Abstract
Newborn screening (NBS) is a public health service aimed at identifying infants with severe genetic disorders, thus providing effective treatment early enough to prevent or ameliorate the onset of symptoms. Current NBS uses biochemical analysis of dried blood spots, predominately with time-resolved fluorescence immunoassay and tandem mass spectrometry, which produces some false positives and false negatives. The application of enzymatic activity-based testing technology provides a reliable screening method for some disorders. Genetic testing is now commonly used for secondary or confirmatory testing after a positive result in some NBS programs. Recently, next-generation sequencing (NGS) has emerged as a robust tool that enables large panels of genes to be scanned together rapidly. Rapid advances in NGS emphasize the potential for genomic sequencing to improve NBS programs. However, some challenges still remain and require solution before this is applied for population screening.
Collapse
Affiliation(s)
- Si Ding
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric ResearchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric ResearchShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
10
|
Yu M, Xu J, Song X, Du J. Cost-effectiveness analysis of newborn screening by tandem mass spectrometry in Shenzhen, China: value and affordability of new screening technology. BMC Health Serv Res 2022; 22:1039. [PMID: 35971172 PMCID: PMC9376130 DOI: 10.1186/s12913-022-08394-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Newborn screening (NBS) can prevent inborn errors of metabolism (IEMs), which may cause long-term disability and even death in newborns. However, in China, tandem mass spectrometry (MS/MS) screening has just started. This study aimed to assess the cost-effectiveness of NBS using MS/MS in Shenzhen under the nationally recommended program, as well as evaluate the value and affordability of introducing this new screening technology. METHODS A Markov model was built to estimate the cost and quality-adjusted life-years (QALYs) of different screening programs. We compared PKU screening using traditional immunofluorescence (IF) with the other 11 IEMs not screened and all 12 IEMs screened using MS/MS, and the programs detecting different numbers of IEMs chosen from the national recommended program were also compared. A sensitivity analysis and budget impact analysis (BIA) were performed. RESULTS The incremental cost-effectiveness ratio (ICER) of detecting all 12 IEMs in the national program is 277,823 RMB per QALY, below three times per capita GDP in Shenzhen. MS/MS screening in Shenzhen can be cost-effective only if at least three diseases (PKU, PCD and MMA) are covered and when the screening program covers five diseases (PKU, PCD, MMA, MSUD, IVA), the ICER closely approaches its critical threshold. The BIA indicated the implementation cost of the national program to be around 490 million RMB over 10 years and showed no difference in budget between programs detecting different numbers of IEMs. CONCLUSIONS We conclude that the newborn screening using MS/MS in Shenzhen is cost-effective, and the budget affordable for the Shenzhen government. Two concepts for selecting the IEMs to be detected are also presented. One is to choose the most cost-effective screening programs detecting highest number of IEMs to achieve a minimal ICER. The other considers the curability and affordability of the disease as the basis of healthcare decisions to screen suitable IEMs, achieving an ICER under the threshold and close to the minimum value.
Collapse
Affiliation(s)
- Mingren Yu
- School of Medicine and Health Management, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Juan Xu
- School of Medicine and Health Management, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
- Hubei Provincial Research Center for Health Technology Assessment, Wuhan, China.
| | - Xiaohong Song
- Department of Family Development and Maternal and Child Health, Shenzhen Municipal Health Commission, Shenzhen, China
| | - Jiayue Du
- Department of Science and Education, the Fourth Affiliated Hospital of School of Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
11
|
Gayduk A, Vlasov Y, Smirnova D. Application of modern approaches in the screening and early diagnosis programs for the orphan diseases. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:30-39. [DOI: 10.17116/jnevro202212206130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|