1
|
Mahboobnia K, Beveridge DJ, Yeoh GC, Kabir TD, Leedman PJ. MicroRNAs in Hepatocellular Carcinoma Pathogenesis: Insights into Mechanisms and Therapeutic Opportunities. Int J Mol Sci 2024; 25:9393. [PMID: 39273339 PMCID: PMC11395074 DOI: 10.3390/ijms25179393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health burden, with alarming statistics revealing its rising incidence and high mortality rates. Despite advances in medical care, HCC treatment remains challenging due to late-stage diagnosis, limited effective therapeutic options, tumor heterogeneity, and drug resistance. MicroRNAs (miRNAs) have attracted substantial attention as key regulators of HCC pathogenesis. These small non-coding RNA molecules play pivotal roles in modulating gene expression, implicated in various cellular processes relevant to cancer development. Understanding the intricate network of miRNA-mediated molecular pathways in HCC is essential for unraveling the complex mechanisms underlying hepatocarcinogenesis and developing novel therapeutic approaches. This manuscript aims to provide a comprehensive review of recent experimental and clinical discoveries regarding the complex role of miRNAs in influencing the key hallmarks of HCC, as well as their promising clinical utility as potential therapeutic targets.
Collapse
Affiliation(s)
- Khadijeh Mahboobnia
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Dianne J Beveridge
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - George C Yeoh
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Tasnuva D Kabir
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
2
|
Su D, Zhu S, Hou Z, Hao F, Xu K, Xu F, Zhu Y, Liu D, Xu J, Tao J. Toxoplasma gondii infection regulates apoptosis of host cells via miR-185/ARAF axis. Parasit Vectors 2023; 16:371. [PMID: 37858158 PMCID: PMC10585723 DOI: 10.1186/s13071-023-05991-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Toxoplasmosis is a zoonosis with a worldwide presence that is caused by the intracellular parasite Toxoplasma gondii. Active regulation of apoptosis is an important immune mechanism by which host cells resist the growth of T. gondii or avoid excessive pathological damage induced by this parasite. Previous studies found that upregulated expression of microRNA-185 (miR-185) during T. gondii infection has a potential role in regulating the expression of the ARAF gene, which is reported to be associated with cell proliferation and apoptosis. METHODS The expression levels of miR-185 and the ARAF gene were evaluated by qPCR and Western blot, respectively, in mice tissues, porcine kidney epithelial cells (PK-15) and porcine alveolar macrophages (3D4/21) following infection with the T. gondii ToxoDB#9 and RH strains. The dual luciferase reporter assay was then used to verify the relationship between miR-185 and ARAF targets in PK-15 cells. PK-15 and 3D4/21 cell lines with stable knockout of the ARAF gene were established by CRISPR, and then the apoptosis rates of the cells following T. gondii infection were detected using cell flow cytometry assays. Simultaneously, the activities of cleaved caspase-3, as a key apoptosis executive protein, were detected by Western blot to evaluate the apoptosis levels of cells. RESULTS Infection with both the T. gondii ToxoDB#9 and RH strains induced an increased expression of miR-185 and a decreased expression of ARAF in mice tissues, PK-15 and 3D4/21 cells. MiR-185 mimic transfections showed a significantly negative correlation in expression levels between miR-185 and the ARAF gene. The dual luciferase reporter assay confirmed that ARAF was a target of miR-185. Functional investigation revealed that T. gondii infection induced the apoptosis of PK-15 and 3D4/21 cells, which could be inhibited by ARAF knockout or overexpression of miR-185. The expression levels of cleaved caspase-3 protein were significantly lower in cells with ARAF knockout than in normal cells, which were consistent with the results of the cell flow cytometry assays. CONCLUSIONS Toxoplasma gondii infection could lead to the upregulation of miR-185 and the downregulation of ARAF, which was not related to the strain of T. gondii and the host cells. Toxoplasma gondii infection could regulate the apoptosis of host cells via the miR-185/ARAF axis, which represents an additional strategy used by T. gondii to counteract host-cell apoptosis in order to maintain survival and reproduce in the host cells.
Collapse
Affiliation(s)
- Dingzeyang Su
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009 Jiangsu People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009 People’s Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Shifan Zhu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009 Jiangsu People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009 People’s Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Zhaofeng Hou
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009 Jiangsu People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009 People’s Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Fuxing Hao
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 225300 People’s Republic of China
| | - Kangzhi Xu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009 Jiangsu People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009 People’s Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Fan Xu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009 Jiangsu People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009 People’s Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Yuyang Zhu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009 Jiangsu People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009 People’s Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009 Jiangsu People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009 People’s Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009 Jiangsu People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009 People’s Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009 Jiangsu People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009 People’s Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| |
Collapse
|
3
|
Arias C, Salazar LA. Ethanolic Extract of Propolis Modulates Autophagy-Related microRNAs in Osteoarthritic Chondrocytes. Int J Mol Sci 2023; 24:14767. [PMID: 37834215 PMCID: PMC10573165 DOI: 10.3390/ijms241914767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Osteoarthritis is a multifactorial joint disease characterized by degeneration, and aging stands as a significant risk factor. Autophagy, a crucial cellular homeostasis mechanism, is influenced by aging and closely linked to cartilage health. This correlation between autophagy, cell death, and OA underscores its relevance in disease progression. MicroRNAs have emerged as autophagy regulators, with miRNA-based interventions showing promise in preclinical models. Remarkably, the ethanolic extract of propolis exhibits positive effects on autophagy-related proteins and healthy cartilage markers in an in vitro osteoarthritis model. The aim of this brief report was to evaluate through in silico analysis and postulate five microRNAs that could regulate autophagy proteins (AKT1, ATG5, and LC3) and assess whether the ethanolic extract of propolis could regulate the expression of these microRNAs. Among the examined miRNAs (miR-19a, miR-125b, miR-181a, miR-185, and miR-335), the ethanolic extract of propolis induced significant changes in four of them. Specifically, miR-125b responded to EEP by counteracting IL-1β-induced effects, while miR-181a, miR-185, and miR-335 exhibited distinct patterns of expression under EEP treatment. These findings unveil a potential link between miRNAs, EEP, and autophagy modulation in OA, offering promising therapeutic insights. Nevertheless, further validation and clinical translation are warranted to substantiate these promising observations.
Collapse
Affiliation(s)
- Consuelo Arias
- Escuela de Kinesiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago 8380000, Chile
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
4
|
Pordel S, Khorrami M, Saadatpour F, Rezaee D, Cho WC, Jahani S, Aghaei-Zarch SM, Hashemi E, Najafi S. The role of microRNA-185 in the pathogenesis of human diseases: A focus on cancer. Pathol Res Pract 2023; 249:154729. [PMID: 37639952 DOI: 10.1016/j.prp.2023.154729] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/29/2023] [Indexed: 08/31/2023]
Abstract
MicroRNAs (miRNAs) are a widely-studied class of non-coding RNAs characterized by their short length (18-25 nucleotides). The precise functions of miRNAs are not well-elucidated; however, an increasing number of studies suggest their involvement in various physiologic processes and deregulation in pathologic conditions. miRNA-185 (miR-185) is among the mostly-studied miRNAs in human diseases, which is found to play putative roles in conditions like metabolic disorders, asthma, frailty, schizophrenia, and hepatitis. Notably, many cancer studies report the downregulation of miR-185 in cell lines, tumor tissues, and plasma specimens of patients, while it demonstrates a suppressing role on the malignant properties of cancer cells in vitro and in vivo. Accordingly, miR-185 can be considered a tumor suppressor miRNA in human malignancies, while a few studies also report inconsistent findings. Being suggested as a prognostic/diagnostic biomarker, mi-185 is also found to offer clinical potentials, particularly for early diagnosis and prediction of the prognosis of cancer patients. In this review, we have outlined the studies that have evaluated the functions and clinical significance of miR-185 in different human diseases with a particular focus on cancer.
Collapse
Affiliation(s)
- Safoora Pordel
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology and Allergy, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Motahare Khorrami
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Saadatpour
- Pharmaceutical Biotechnology Lab, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China
| | | | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elham Hashemi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Lucarini V, Nardozi D, Angiolini V, Benvenuto M, Focaccetti C, Carrano R, Besharat ZM, Bei R, Masuelli L. Tumor Microenvironment Remodeling in Gastrointestinal Cancer: Role of miRNAs as Biomarkers of Tumor Invasion. Biomedicines 2023; 11:1761. [PMID: 37371856 DOI: 10.3390/biomedicines11061761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Gastrointestinal (GI) cancers are the most frequent neoplasm, responsible for half of all cancer-related deaths. Metastasis is the leading cause of death from GI cancer; thus, studying the processes that regulate cancer cell migration is of paramount importance for the development of new therapeutic strategies. In this review, we summarize the mechanisms adopted by cancer cells to promote cell migration and the subsequent metastasis formation by highlighting the key role that tumor microenvironment components play in deregulating cellular pathways involved in these processes. We, therefore, provide an overview of the role of different microRNAs in promoting tumor metastasis and their role as potential biomarkers for the prognosis, monitoring, and diagnosis of GI cancer patients. Finally, we relate the possible use of nutraceuticals as a new strategy for targeting numerous microRNAs and different pathways involved in GI tumor invasiveness.
Collapse
Affiliation(s)
- Valeria Lucarini
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Daniela Nardozi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Valentina Angiolini
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
- Departmental Faculty of Medicine and Surgery, Saint Camillus International University of Health and Medical Sciences, via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Zein Mersini Besharat
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
6
|
Zandieh MA, Farahani MH, Rajabi R, Avval ST, Karimi K, Rahmanian P, Razzazan M, Javanshir S, Mirzaei S, Paskeh MDA, Salimimoghadam S, Hushmandi K, Taheriazam A, Pandey V, Hashemi M. Epigenetic regulation of autophagy by non-coding RNAs in gastrointestinal tumors: Biological functions and therapeutic perspectives. Pharmacol Res 2023; 187:106582. [PMID: 36436707 DOI: 10.1016/j.phrs.2022.106582] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
Cancer is the manifestation of changes and mutations in genetic and epigenetic levels. Non-coding RNAs (ncRNAs) are commonly dysregulated in disease pathogenesis, and their role in cancer has been well-documented. The ncRNAs regulate various molecular pathways and mechanisms in cancer that can lead to induction/inhibition of carcinogenesis. Autophagy is a molecular "self-digestion" mechanism its function can be pro-survival or pro-death in tumor cells. The aim of the present review is to evaluate the role of ncRNAs in regulating autophagy in gastrointestinal tumors. The role of the ncRNA/autophagy axis in affecting the progression of gastric, liver, colorectal, pancreatic, esophageal, and gallbladder cancers is investigated. Both ncRNAs and autophagy mechanisms can function as oncogenic or onco-suppressor and this interaction can determine the growth, invasion, and therapy response of gastrointestinal tumors. ncRNA/autophagy axis can reduce/increase the proliferation of gastrointestinal tumors via the glycolysis mechanism. Furthermore, related molecular pathways of metastasis, such as EMT and MMPs, are affected by the ncRNA/autophagy axis. The response of gastrointestinal tumors to chemotherapy and radiotherapy can be suppressed by pro-survival autophagy, and ncRNAs are essential regulators of this mechanism. miRNAs can regulate related genes and proteins of autophagy, such as ATGs and Beclin-1. Furthermore, lncRNAs and circRNAs down-regulate miRNA expression via sponging to modulate the autophagy mechanism. Moreover, anti-cancer agents can affect the expression level of ncRNAs regulating autophagy in gastrointestinal tumors. Therefore, translating these findings into clinics can improve the prognosis of patients.
Collapse
Affiliation(s)
- Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Kimia Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Salar Javanshir
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Vijay Pandey
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
7
|
Sadri Nahand J, Salmaninejad A, Mollazadeh S, Tamehri Zadeh SS, Rezaee M, Sheida AH, Sadoughi F, Dana PM, Rafiyan M, Zamani M, Taghavi SP, Dashti F, Mirazimi SMA, Bannazadeh Baghi H, Moghoofei M, Karimzadeh M, Vosough M, Mirzaei H. Virus, Exosome, and MicroRNA: New Insights into Autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:97-162. [DOI: 10.1007/5584_2022_715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
HCV Proteins Modulate the Host Cell miRNA Expression Contributing to Hepatitis C Pathogenesis and Hepatocellular Carcinoma Development. Cancers (Basel) 2021; 13:cancers13102485. [PMID: 34069740 PMCID: PMC8161081 DOI: 10.3390/cancers13102485] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary According to the last estimate by the World Health Organization (WHO), more than 71 million individuals have chronic hepatitis C worldwide. The persistence of HCV infection leads to chronic hepatitis, which can evolve into liver cirrhosis and ultimately into hepatocellular carcinoma (HCC). Although the pathogenic mechanisms are not fully understood, it is well established that an interplay between host cell factors, including microRNAs (miRNA), and viral components exist in all the phases of the viral infection and replication. Those interactions establish a complex equilibrium between host cells and HCV and participate in multiple mechanisms characterizing hepatitis C pathogenesis. The present review aims to describe the role of HCV structural and non-structural proteins in the modulation of cellular miRNA during HCV infection and pathogenesis. Abstract Hepatitis C virus (HCV) genome encodes for one long polyprotein that is processed by cellular and viral proteases to generate 10 polypeptides. The viral structural proteins include the core protein, and the envelope glycoproteins E1 and E2, present at the surface of HCV particles. Non-structural (NS) proteins consist of NS1, NS2, NS3, NS4A, NS4B, NS5a, and NS5b and have a variable function in HCV RNA replication and particle assembly. Recent findings evidenced the capacity of HCV virus to modulate host cell factors to create a favorable environment for replication. Indeed, increasing evidence has indicated that the presence of HCV is significantly associated with aberrant miRNA expression in host cells, and HCV structural and non-structural proteins may be responsible for these alterations. In this review, we summarize the recent findings on the role of HCV structural and non-structural proteins in the modulation of host cell miRNAs, with a focus on the molecular mechanisms responsible for the cell re-programming involved in viral replication, immune system escape, as well as the oncogenic process. In this regard, structural and non-structural proteins have been shown to modulate the expression of several onco-miRNAs or tumor suppressor miRNAs.
Collapse
|
9
|
Hepigenetics: A Review of Epigenetic Modulators and Potential Therapies in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9593254. [PMID: 33299889 PMCID: PMC7707949 DOI: 10.1155/2020/9593254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/13/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma is the fifth most common cancer worldwide and the second most lethal, following lung cancer. Currently applied therapeutic practices rely on surgical resection, chemotherapy and radiotherapy, or a combination thereof. These treatment options are associated with extreme adversities, and risk/benefit ratios do not always work in patients' favor. Anomalies of the epigenome lie at the epicenter of aberrant molecular mechanisms by which the disease develops and progresses. Modulation of these anomalous events poses a promising prospect for alternative treatment options, with an abundance of felicitous results reported in recent years. Herein, the most recent epigenetic modulators in hepatocellular carcinoma are recapitulated on.
Collapse
|
10
|
Pourhanifeh MH, Vosough M, Mahjoubin-Tehran M, Hashemipour M, Nejati M, Abbasi-Kolli M, Sahebkar A, Mirzaei H. Autophagy-related microRNAs: Possible regulatory roles and therapeutic potential in and gastrointestinal cancers. Pharmacol Res 2020; 161:105133. [DOI: 10.1016/j.phrs.2020.105133] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
|
11
|
Fan J, Shi Y, Peng Y. Autophagy and Liver Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:497-528. [PMID: 32671772 DOI: 10.1007/978-981-15-4272-5_37] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autophagy plays an important role in the physiology and pathology of the liver. It is involved in the development of many liver diseases such as α-1-antitrypsin deficiency, chronic hepatitis virus infection, alcoholic liver disease, nonalcoholic fatty liver disease, and liver cancer. Autophagy has thus become a new target for the treatment of liver diseases. How to treat liver diseases by regulating autophagy has been a hot topic.
Collapse
Affiliation(s)
- Jia Fan
- Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, China.
| | - Yinghong Shi
- Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, China
| | - Yuanfei Peng
- Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, China
| |
Collapse
|
12
|
Liang Y, Liang Q, Qiao L, Xiao F. MicroRNAs Modulate Drug Resistance-Related Mechanisms in Hepatocellular Carcinoma. Front Oncol 2020; 10:920. [PMID: 32695666 PMCID: PMC7338562 DOI: 10.3389/fonc.2020.00920] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022] Open
Abstract
Primary liver cancer [hepatocellular carcinoma (HCC)] is one of the most common malignant tumors worldwide, causing serious health threats because of its high morbidity and mortality, rapid growth, and strong invasiveness. Patients with HCC frequently develop resistance to the current chemotherapeutic drugs, and this is largely attributed to the high-level heterogeneity of the tumor tissue. MicroRNAs (miRNAs) are a group of master regulators for multiple physiological and pathological processes and play important roles in the tumorigenesis. More recent studies have indicated that miRNAs also play a non-negligible role in the development of drug resistance in liver cancer. In this review, we summarize the data from the latest studies on the mechanisms of drug resistance in liver cancer, including autophagy, membrane transporters, epithelial-mesenchymal transitions (EMTs), tumor microenvironment, and genes and proteins that are associated with apoptosis. The data herein will provide valuable information for the development of novel approaches to tackle drug resistance in the management of liver cancer.
Collapse
Affiliation(s)
- Yuehui Liang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Qi Liang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Liang Qiao
- Storr Liver Center, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Fang Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
13
|
Danbaran GR, Aslani S, Sharafkandi N, Hemmatzadeh M, Hosseinzadeh R, Azizi G, Jadidi-Niaragh F, Babaie F, Mohammadi H. How microRNAs affect the PD-L1 and its synthetic pathway in cancer. Int Immunopharmacol 2020; 84:106594. [PMID: 32416456 DOI: 10.1016/j.intimp.2020.106594] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
Abstract
Programmed cell death-ligand 1 (PD-L1) is a glycoprotein that is expressed on the cell surface of both hematopoietic and nonhematopoietic cells. PD-L1 play a role in the immune tolerance and protect self-tissues from immune system attack. Dysfunction of this molecule has been highlighted in the pathogenesis of tumors, autoimmunity, and infectious disorders. MicroRNAs (miRNAs) are endogenous molecules that are classified as small non-coding RNA with approximately 20-22 nucleotides (nt) length. The function of miRNAs is based on complementary interactions with target mRNA via matching completely or incompletely. The result of this function is decay of the target mRNA or preventing mRNA translation. In the past decades, several miRNAs have been discovered which play an important role in the regulation of PD-L1 in various malignancies. In this review, we discuss the effect of miRNAs on PD-L1 expression and consider the effect of miRNAs on the synthetic pathway of PD-L1, especially during cancers.
Collapse
Affiliation(s)
| | - Saeed Aslani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nadia Sharafkandi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Hosseinzadeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Babaie
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
14
|
Marengo B, Pulliero A, Izzotti A, Domenicotti C. miRNA Regulation of Glutathione Homeostasis in Cancer Initiation, Progression and Therapy Resistance. Microrna 2020; 9:187-197. [PMID: 31849293 PMCID: PMC7366003 DOI: 10.2174/2211536609666191218103220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/04/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022]
Abstract
Glutathione (GSH) is the most abundant antioxidant that contributes to regulating the cellular production of Reactive Oxygen Species (ROS) which, maintained at physiological levels, can exert a function of second messengers in living organisms. In fact, it has been demonstrated that moderate amounts of ROS can activate the signaling pathways involved in cell growth and proliferation, while high levels of ROS induce DNA damage leading to cancer development. Therefore, GSH is a crucial player in the maintenance of redox homeostasis and its metabolism has a role in tumor initiation, progression, and therapy resistance. Our recent studies demonstrated that neuroblastoma cells resistant to etoposide, a common chemotherapeutic drug, show a partial monoallelic deletion of the locus coding for miRNA 15a and 16-1 leading to a loss of these miRNAs and the activation of GSH-dependent responses. Therefore, the aim of this review is to highlight the role of specific miRNAs in the modulation of intracellular GSH levels in order to take into consideration the use of modulators of miRNA expression as a useful strategy to better sensitize tumors to current therapies.
Collapse
Affiliation(s)
- Barbara Marengo
- Address correspondence to this author at the Department of Experimental Medicine, University of Genoa, Genoa, Italy; Tel: +39 010 3538831; Fax: +39 010 3538836; E-mail:
| | | | | | | |
Collapse
|
15
|
Gkountakos A, Pilotto S, Mafficini A, Vicentini C, Simbolo M, Milella M, Tortora G, Scarpa A, Bria E, Corbo V. Unmasking the impact of Rictor in cancer: novel insights of mTORC2 complex. Carcinogenesis 2019; 39:971-980. [PMID: 29955840 DOI: 10.1093/carcin/bgy086] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/16/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022] Open
Abstract
Genomic alterations affecting components of the mechanistic target of rapamycin (mTOR) pathway are found rather frequently in cancers, suggesting that aberrant pathway activity is implicated in oncogenesis of different tumor types. mTOR functions as the core catalytic kinase of two distinct complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2), which control numerous vital cellular processes. There is growing evidence indicating that Rictor, an essential subunit of the mTORC2 complex, is inappropriately overexpressed across numerous cancer types and this is associated with poor survival. To date, the candidate mechanisms responsible for aberrant Rictor expression described in cancer are two: (i) gene amplification and (ii) epigenetic regulation, mainly by microRNAs. Moreover, different mTOR-independent Rictor-containing complexes with oncogenic role have been documented, revealing alternative routes of Rictor-driven tumorigenesis, but simultaneously, paving the way for identifying novel biomarkers and therapeutic targets. Here, we review the main preclinical and clinical data regarding the role of Rictor in carcinogenesis and metastatic behavior as well as the potentiality of its alteration as a target.
Collapse
Affiliation(s)
- Anastasios Gkountakos
- Section of Pathology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Sara Pilotto
- Medical Oncology Section, Department of Medicine, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Andrea Mafficini
- ARC-NET Applied Research on Cancer Center, University of Verona, Verona, Italy
| | - Caterina Vicentini
- Section of Pathology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy.,ARC-NET Applied Research on Cancer Center, University of Verona, Verona, Italy
| | - Michele Simbolo
- Section of Pathology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Michele Milella
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giampaolo Tortora
- Medical Oncology Section, Department of Medicine, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Aldo Scarpa
- Section of Pathology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy.,ARC-NET Applied Research on Cancer Center, University of Verona, Verona, Italy
| | - Emilio Bria
- Medical Oncology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo Corbo
- Section of Pathology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy.,ARC-NET Applied Research on Cancer Center, University of Verona, Verona, Italy
| |
Collapse
|
16
|
张 杰, 韩 增, 董 立, 李 甄, 栗 坤, 石 明, 刘 志, 李 健. [MicroRNA-152 and microRNA-448 inhibit proliferation of colorectal cancer cells in vitro by targeting Rictor]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:533-539. [PMID: 31140416 PMCID: PMC6743937 DOI: 10.12122/j.issn.1673-4254.2019.05.06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To screen the microRNAs (miRNAs) targeting Rictor and investigate their effects in regulating the biological behaviors of colorectal cancer (CRC). METHODS Human colorectal cancer cell line KM12SM was transfected with the miRNAs targeting Rictor identified by prediction software to test inhibitory effects of these miRNAs on Rictor expression using qRT-PCR and Western blotting. Dual luciferase reporter assay was used to further confirm the binding of these miRNAs to the 3'UTR of Rictor mRNA. Cell survival and colony formation assays were used to investigate the effects of these miRNAs on survival and colony formation in KM12SM cells. RESULTS miR-152 and miR-448 were identified as the Rictor-targeting miRNAs, which significantly inhibited the expression of Rictor in KM12SM cells (P < 0.05). The two miRNAs were confirmed to bind to the 3'UTR of Rictor mRNA and significantly inhibited luciferase activity in KM12SM cells (P < 0.01, P < 0.05); they also showed activities of posttranscriptional modulation of Rictor. Overexpression of miR-152 and miR-448 both significantly inhibited the growth and colony formation of KM12SM cells. CONCLUSIONS miR-152 and miR-448 can down-regulate the protein expression of Rictor by targeting Rictor mRNA to negatively regulate the growth and colony formation of colorectal cancer cells.
Collapse
Affiliation(s)
- 杰 张
- 燕山大学环境与化学工程学院,河北 秦皇岛 066004College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- 燕山大学河北省应用化学重点实验室,河北 秦皇岛 066004Key Laboratory of Applied Chemistry of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - 增胜 韩
- 燕山大学环境与化学工程学院,河北 秦皇岛 066004College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- 燕山大学河北省应用化学重点实验室,河北 秦皇岛 066004Key Laboratory of Applied Chemistry of Hebei Province, Yanshan University, Qinhuangdao 066004, China
- 秦皇岛市功能核酸工程技术研究中心,河北 秦皇岛 066000Research Center of Functional Nucleic Acids Engineering in Qinhuangdao, Qinhuangdao 066004, China
| | - 立新 董
- 河北省秦皇岛市第一医院肿瘤科,河北 秦皇岛 066000Department of Oncology, First Hospital of Qinhuangdao City, Qinhuangdao 066000, China
| | - 甄 李
- 燕山大学环境与化学工程学院,河北 秦皇岛 066004College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- 燕山大学河北省应用化学重点实验室,河北 秦皇岛 066004Key Laboratory of Applied Chemistry of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - 坤 栗
- 燕山大学环境与化学工程学院,河北 秦皇岛 066004College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- 燕山大学河北省应用化学重点实验室,河北 秦皇岛 066004Key Laboratory of Applied Chemistry of Hebei Province, Yanshan University, Qinhuangdao 066004, China
- 秦皇岛市功能核酸工程技术研究中心,河北 秦皇岛 066000Research Center of Functional Nucleic Acids Engineering in Qinhuangdao, Qinhuangdao 066004, China
| | - 明 石
- 燕山大学环境与化学工程学院,河北 秦皇岛 066004College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- 燕山大学河北省应用化学重点实验室,河北 秦皇岛 066004Key Laboratory of Applied Chemistry of Hebei Province, Yanshan University, Qinhuangdao 066004, China
- 秦皇岛市功能核酸工程技术研究中心,河北 秦皇岛 066000Research Center of Functional Nucleic Acids Engineering in Qinhuangdao, Qinhuangdao 066004, China
- 秦皇岛拜恩发生物技术有限公司,河北 秦皇岛 066000Qinhuangdao Biopha Biotechnology co. LTD., Qinhuangdao 066000, China
| | - 志伟 刘
- 燕山大学环境与化学工程学院,河北 秦皇岛 066004College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- 燕山大学河北省应用化学重点实验室,河北 秦皇岛 066004Key Laboratory of Applied Chemistry of Hebei Province, Yanshan University, Qinhuangdao 066004, China
- 秦皇岛市功能核酸工程技术研究中心,河北 秦皇岛 066000Research Center of Functional Nucleic Acids Engineering in Qinhuangdao, Qinhuangdao 066004, China
- 秦皇岛拜恩发生物技术有限公司,河北 秦皇岛 066000Qinhuangdao Biopha Biotechnology co. LTD., Qinhuangdao 066000, China
| | - 健 李
- 燕山大学环境与化学工程学院,河北 秦皇岛 066004College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- 秦皇岛市功能核酸工程技术研究中心,河北 秦皇岛 066000Research Center of Functional Nucleic Acids Engineering in Qinhuangdao, Qinhuangdao 066004, China
| |
Collapse
|
17
|
Hu XM, Li RT, Zhang MM, Wu KY, Li HH, Huang NH, Sun B, Chen JX. Phenanthroline-linked berberine dimer and fluorophore-tagged DNA conjugate for the selective detection of microRNA-185: Experimental and molecular docking studies. Anal Chim Acta 2019; 1051:153-159. [DOI: 10.1016/j.aca.2018.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/06/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
|
18
|
Yazdani HO, Huang H, Tsung A. Autophagy: Dual Response in the Development of Hepatocellular Carcinoma. Cells 2019; 8:cells8020091. [PMID: 30695997 PMCID: PMC6406383 DOI: 10.3390/cells8020091] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/22/2019] [Accepted: 01/26/2019] [Indexed: 12/16/2022] Open
Abstract
Autophagy is an evolutionary conserved intracellular mechanism which helps eukaryotic cells in maintaining their metabolic state to afford high-efficiency energy requirements. In the physiology of a normal liver and the pathogenesis of liver diseases, autophagy plays a crucial role. Autophagy has been found to be both upregulated and downregulated in different cancers providing the evidence that autophagy plays a dual role in suppressing and promoting cell survival. Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the major leading cause of cancer mortality worldwide. In light of its high complexity and poor prognosis, it is essential to improve our understanding of autophagy’s role in HCC. In this review, we summarize the dual mechanism of autophagy in the development of HCC and elucidate the currently used therapeutic strategies for anti-HCC therapy.
Collapse
Affiliation(s)
- Hamza O Yazdani
- Department of Surgery, University of Pittsburgh, Pittsburg, PA 15213-2582, USA.
| | - Hai Huang
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, N924 Doan Hall, 410 West 10th Ave., Columbus, OH 43210, USA.
| | - Allan Tsung
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, N924 Doan Hall, 410 West 10th Ave., Columbus, OH 43210, USA.
| |
Collapse
|
19
|
Ozturk DG, Kocak M, Akcay A, Kinoglu K, Kara E, Buyuk Y, Kazan H, Gozuacik D. MITF-MIR211 axis is a novel autophagy amplifier system during cellular stress. Autophagy 2018; 15:375-390. [PMID: 30290719 DOI: 10.1080/15548627.2018.1531197] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Macroautophagy (autophagy) is an evolutionarily conserved recycling and stress response mechanism. Active at basal levels in eukaryotes, autophagy is upregulated under stress providing cells with building blocks such as amino acids. A lysosome-integrated sensor system composed of RRAG GTPases and MTOR complex 1 (MTORC1) regulates lysosome biogenesis and autophagy in response to amino acid availability. Stress-mediated inhibition of MTORC1 results in the dephosphorylation and nuclear translocation of the TFE/MITF family of transcriptional factors, and triggers an autophagy- and lysosomal-related gene transcription program. The role of family members TFEB and TFE3 have been studied in detail, but the importance of MITF proteins in autophagy regulation is not clear so far. Here we introduce for the first time a specific role for MITF in autophagy control that involves upregulation of MIR211. We show that, under stress conditions including starvation and MTOR inhibition, a MITF-MIR211 axis constitutes a novel feed-forward loop that controls autophagic activity in cells. Direct targeting of the MTORC2 component RICTOR by MIR211 led to the inhibition of the MTORC1 pathway, further stimulating MITF translocation to the nucleus and completing an autophagy amplification loop. In line with a ubiquitous function, MITF and MIR211 were co-expressed in all tested cell lines and human tissues, and the effects on autophagy were observed in a cell-type independent manner. Thus, our study provides direct evidence that MITF has rate-limiting and specific functions in autophagy regulation. Collectively, the MITF-MIR211 axis constitutes a novel and universal autophagy amplification system that sustains autophagic activity under stress conditions. Abbreviations: ACTB: actin beta; AKT: AKT serine/threonine kinase; AKT1S1/PRAS40: AKT1 substrate 1; AMPK: AMP-activated protein kinase; ATG: autophagy-related; BECN1: beclin 1; DEPTOR: DEP domain containing MTOR interacting protein; GABARAP: GABA type A receptor-associated protein; HIF1A: hypoxia inducible factor 1 subunit alpha; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAPKAP1/SIN1: mitogen-activated protein kinase associated protein 1; MITF: melanogenesis associated transcription factor; MLST8: MTOR associated protein, LST8 homolog; MRE: miRNA response element; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; MTORC2: MTOR complex 2; PRR5/Protor 1: proline rich 5; PRR5L/Protor 2: proline rich 5 like; RACK1: receptor for activated C kinase 1; RPTOR: regulatory associated protein of MTOR complex 1; RICTOR: RPTOR independent companion of MTOR complex 2; RPS6KB/p70S6K: ribosomal protein S6 kinase; RT-qPCR: quantitative reverse transcription-polymerase chain reaction; SQSTM1: sequestosome 1; STK11/LKB1: serine/threonine kinase 11; TFE3: transcription factor binding to IGHM enhancer 3; TFEB: transcription factor EB; TSC1/2: TSC complex subunit 1/2; ULK1: unc-51 like autophagy activating kinase 1; UVRAG: UV radiation resistance associated; VIM: vimentin; VPS11: VPS11, CORVET/HOPS core subunit; VPS18: VPS18, CORVET/HOPS core subunit; WIPI1: WD repeat domain, phosphoinositide interacting 1.
Collapse
Affiliation(s)
- Deniz Gulfem Ozturk
- a Sabanci University , Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program , Orhanli-Tuzla , Turkey
| | - Muhammed Kocak
- a Sabanci University , Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program , Orhanli-Tuzla , Turkey
| | - Arzu Akcay
- b Council of Forensic Medicine , Ministry of Justice , Bahcelievler , Turkey
| | - Kubilay Kinoglu
- b Council of Forensic Medicine , Ministry of Justice , Bahcelievler , Turkey
| | - Erdogan Kara
- b Council of Forensic Medicine , Ministry of Justice , Bahcelievler , Turkey
| | - Yalcin Buyuk
- b Council of Forensic Medicine , Ministry of Justice , Bahcelievler , Turkey
| | - Hilal Kazan
- c Antalya Bilim University, Faculty of Engineering , Department of Computer Engineering , Antalya , Turkey
| | - Devrim Gozuacik
- a Sabanci University , Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program , Orhanli-Tuzla , Turkey.,d Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN) , Orhanli-Tuzla , Turkey.,e Sabanci University Nanotechnology Research and Application Center (SUNUM) , Sabanci University , Orhanli-Tuzla , Turkey
| |
Collapse
|
20
|
Yuwen D, Ma Y, Wang D, Gao J, Li X, Xue W, Fan M, Xu Q, Shen Y, Shu Y. Prognostic Role of Circulating Exosomal miR-425-3p for the Response of NSCLC to Platinum-Based Chemotherapy. Cancer Epidemiol Biomarkers Prev 2018; 28:163-173. [PMID: 30228154 DOI: 10.1158/1055-9965.epi-18-0569] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/10/2018] [Accepted: 09/07/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Platinum-based doublets with a third-generation agent are the recommended option for many patients with non-small cell lung cancer (NSCLC) with no contraindications to platinum compounds. Unfortunately, the clinical effectiveness of such chemotherapy is limited by intrinsic or acquired resistance. METHODS Circulating exosomal miRNAs were isolated and used to perform HiSeq deep-sequencing analyses on serum pool samples from platinum-resistant or platinum-sensitive patients, and six exosomal miRNAs were further validated for their predictive utility by qRT-PCR in 170 serum samples of patients with advanced NSCLC. Gain- and loss-of-function experiments clarified the responsiveness regulating role of the clinically relevant miRNA. IHC analyses were performed to evaluate the association between basal autophagy in lung cancer tissues and responsiveness in 203 patients with NSCLC receiving platinum-based chemotherapy. RESULTS Six circulating exosomal miRNAs (miR-425-3p, miR-1273h, miR-4755-5p, miR-9-5p, miR-146a-5p, and miR-215-5p) were found to be differentially expressed with the largest fold change in platinum-resistant patients compared with platinum-sensitive patients. High miR-425-3p proved to be a potent predictive biomarker for low responsiveness and poor progression-free survival (PFS). Mechanistically, miR-425-3p upregulated the autophagic levels via targeting AKT1, leading to the decrease in therapeutic response. Concordantly, high levels of basal autophagy in lung cancer tissues correlate with low responsiveness in patients with NSCLC within the early and advanced disease stages. CONCLUSIONS Our study highlights circulating exosomal miR-425-3p as a potential biomarker for improved predictions of the clinical response to platinum-based chemotherapy in patients with NSCLC. IMPACT This study provides the first evidence that miR-425-3p in NSCLC patient-derived exosomes can be a marker for predicating the clinical response to platinum-based chemotherapy.
Collapse
Affiliation(s)
- Daolu Yuwen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuzhu Ma
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Deqiang Wang
- Cancer Therapy Center, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xin Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenwen Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Minmin Fan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Yongqian Shu
- Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
21
|
Lin Z, He R, Luo H, Lu C, Ning Z, Wu Y, Han C, Tan G, Wang Z. Integrin-β5, a miR-185-targeted gene, promotes hepatocellular carcinoma tumorigenesis by regulating β-catenin stability. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:17. [PMID: 29386044 PMCID: PMC5793391 DOI: 10.1186/s13046-018-0691-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/24/2018] [Indexed: 12/15/2022]
Abstract
Background The tumour microenvironment is essential for cancer progress and metastasis. Integrin-β5 (ITGB5), a member of the integrin family, has been implicated to mediate the interactions of cells with the extracellular matrix (ECM) and promote tumorigenesis in several malignancies. However, the role of ITGB5 in hepatocellular carcinoma (HCC) is still unknown. Methods The biological function of ITGB5 in HCC was investigated using migration, colony formation assays. The potential molecular mechanism of ITGB5 in regulating HCC tumorigenesis and β-catenin stabilization was investigated by western blotting, co-immunoprecipitation and ubiquitination assays. The expression level of ITGB5 mediated by miR-185 was confirmed by bioinformatic analysis, luciferase assay. The clinical significance of ITGB5 was based on human tissue microarray (TMA) analysis. Results Here, we found that the expression of ITGB5 is increased in HCC tissues. Elevated ITGB5 markedly facilitates HCC cell migration and tumorigenesis in vitro and in vivo. Further mechanistic studies revealed that ITGB5, as a partner of β-catenin, directly interacts with β-catenin and inhibits its degradation, thus leading to WNT/β-catenin activity. Subsequently, we also found that ITGB5 is a direct targeted gene of miR-185. The downregulation of miR-185 in HCC cells promotes an increase in ITGB5. An additional increase of ITGB5 is associated with β-catenin upregulation and a miR-185 decrease in HCC tissues. Conclusions Our data reveal that the miR-185-ITGB5-β-catenin pathway plays an important role in HCC tumorigenesis, and ITGB5 may be a promising specific target for HCC therapy. Electronic supplementary material The online version of this article (10.1186/s13046-018-0691-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhikun Lin
- Department of Hepatobiliary Surgery of the First Affiliated Hospital& Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116027, China
| | - Ruiping He
- Department of Hepatobiliary Surgery of the First Affiliated Hospital& Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116027, China
| | - Haifeng Luo
- Department of Hepatobiliary Surgery of the First Affiliated Hospital& Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116027, China
| | - Chang Lu
- Department of Hepatobiliary Surgery of the First Affiliated Hospital& Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116027, China
| | - Zhen Ning
- Department of Hepatobiliary Surgery of the First Affiliated Hospital& Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116027, China
| | - Yuanhang Wu
- Department of Oncology of the First Affiliated Hospital, Dalian Medical University, Dalian, 116027, China
| | - Chuanchun Han
- Department of Hepatobiliary Surgery of the First Affiliated Hospital& Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116027, China.
| | - Guang Tan
- Department of Hepatobiliary Surgery of the First Affiliated Hospital& Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116027, China.
| | - Zhongyu Wang
- Department of Hepatobiliary Surgery of the First Affiliated Hospital& Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116027, China.
| |
Collapse
|
22
|
Octyl gallate reduces ATP levels and Ki67 expression leading HepG2 cells to cell cycle arrest and mitochondria-mediated apoptosis. Toxicol In Vitro 2017; 48:11-25. [PMID: 29288082 DOI: 10.1016/j.tiv.2017.12.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/09/2017] [Accepted: 12/22/2017] [Indexed: 12/17/2022]
Abstract
Octyl gallate (OG) is an antioxidant that has shown anti-tumor, anti-diabetic and anti-amyloidogenic activities. Mitochondria play an important role in hepatocellular carcinoma, mainly by maintaining accelerated cellular proliferation through the production of ATP. Thus, the mitochondria may be a target for antitumor therapies. Here, we investigated the effects of OG in the hepatocarcinoma cell line (HepG2) and the mechanisms involved. We report, for the first time, that treatment with OG for 24h inhibited HepG2 cell growth by decreasing mitochondrial activity and mass, which led to the reduction of ATP levels. This reduction in the energy supply triggered a decrease in Ki67 protein expression, leading cells to cycle arrest. In addition, treatment with two doses of OG for 48h induced loss of mitochondrial functionality, mitochondrial swelling and apoptosis. Finally, we report that HepG2 cells had no resistance to treatment after multiple doses. Collectively, our findings indicate that metabolic dysregulation and Ki67 protein reduction are key events in the initial anti-proliferative action of OG, whereas mitochondrial swelling and apoptosis induction are involved in the action mechanism of OG after prolonged exposure. This suggests that OG targets mitochondria, thus representing a candidate for further research on therapies for hepatocarcinoma.
Collapse
|
23
|
Zhou L, Liu S, Han M, Ma Y, Feng S, Zhao J, Lu H, Yuan X, Cheng J. miR-185 Inhibits Fibrogenic Activation of Hepatic Stellate Cells and Prevents Liver Fibrosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 10:91-102. [PMID: 29499960 PMCID: PMC5735261 DOI: 10.1016/j.omtn.2017.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023]
Abstract
Recent studies have shown the effect of microRNAs on HSC activation and transformation, which is essential for the pathogenesis of liver fibrosis. In our study, we explored the role of miR-185 in liver fibrosis. Plasma miR-185 was detected in hepatitis B virus-related liver fibrosis patients (S2/3, n = 10) by Illumina HiSeq sequencing, and healthy volunteers were selected (n = 8) as the control group. We found that the plasma miR-185 level in fibrosis patients was significantly downregulated. CCl4-induced fibrosis tissues in mouse livers and TGF-β1-activated HSCs also presented downregulated miR-185 concomitant with an increased expression of RHEB and RICTOR. To explore the correlations, LX-2 cells were transiently transfected with miR-185 mimics. The expression levels of α-SMA, collagen I, and collagen III were decreased as well as RHEB and RICTOR. Inhibition of endogenous miR-185 increased fibrogenic activity. Furthermore, dual-luciferase reporter assays indicated that miR-185 inhibited the expression of RHEB and RICTOR by directly targeting their 3' UTRs. Moreover, silencing RHEB and RICTOR suppressed α-SMA and collagen expression levels. In conclusion, miR-185 prevents liver fibrogenesis by inhibiting HSC activation via inhibition of RHEB and RICTOR. These results provide new insights into the mechanisms behind the anti-fibrotic effect of miR-185.
Collapse
Affiliation(s)
- Li Zhou
- Peking University Ditan Teaching Hospital, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China; Institiute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Shunai Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China; Institiute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ming Han
- Peking University Ditan Teaching Hospital, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China; Institiute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yanhua Ma
- Peking University Ditan Teaching Hospital, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
| | - Shenghu Feng
- Peking University Ditan Teaching Hospital, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
| | - Jing Zhao
- Peking University Ditan Teaching Hospital, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
| | - Hongping Lu
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China; Institiute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xiaoxue Yuan
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China; Institiute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Jun Cheng
- Peking University Ditan Teaching Hospital, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China; Institiute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China.
| |
Collapse
|
24
|
Low Frequency Magnetic Fields Induce Autophagy-associated Cell Death in Lung Cancer through miR-486-mediated Inhibition of Akt/mTOR Signaling Pathway. Sci Rep 2017; 7:11776. [PMID: 28924214 PMCID: PMC5603574 DOI: 10.1038/s41598-017-10407-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022] Open
Abstract
Low frequency magnetic fields (LF-MFs) can affect cell proliferation in a cell-type and intensity-dependent way. Previous study has reported the anti-tumor effect of LF-MFs in lung cancers. Our previous study also optimized the intensity and duration of LF-MFs to effectively inhibit the proliferation of lung cancer cells. However, the anti-tumor mechanism of LF-MFs remains unclear, which limit the clinical application of LF-MFs in anti-tumor therapy. Here, in a well-established Lewis Lung Cancer (LLC) mouse model, we found that LF-MFs inhibit tumor growth and induce an autophagic cell death in lung cancer. We also found that LF-MFs could up-regulate the expression level of miR-486, which was involved in LF-MFs activated cell autophagy. Furthermore, we found B-cell adaptor for phosphatidylinositol 3-kinase (BCAP) is a direct target of miR-486. miR-486 inhibit AKT/mTOR signaling through inhibiting expression of BCAP. Moreover, a decreased expression of miR-486 and an increased expression of BCAP were found in tumor tissues of lung cancer patients. Taken together, this study proved that LF-MFs can inhibit lung cancers through miR-486 induced autophagic cell death, which suggest a clinical application of LF-MFs in cancer treatment.
Collapse
|