1
|
Griffin P, Hill WA, Rossi F, Boohaker R, Stinson K, Sherman I. High anti-tumor activity of a novel alpha-fetoprotein-maytansinoid conjugate targeting alpha-fetoprotein receptors in colorectal cancer xenograft model. Cancer Cell Int 2023; 23:60. [PMID: 37016369 PMCID: PMC10074858 DOI: 10.1186/s12935-023-02910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/28/2023] [Indexed: 04/06/2023] Open
Abstract
The alpha-fetoprotein receptor (AFPR) is a novel target for cancer therapeutics. It is expressed on most cancers and myeloid derived suppressor cells (MDSCs) but generally absent on normal tissues. Studies were performed to investigate the use of recombinant human AFP (ACT-101) conjugated with maytansinoid toxins for targeted toxin delivery to cancer. Four structurally different ACT-101-maytansinoid conjugates containing cleavable glutathione sensitive linkers were initially investigated in a mouse xenograft model of colorectal cancer. Reduction in tumor volume was seen for all four conjugates compared to control (p < 0.05). The anti-tumor effects of the conjugate selected for further development (ACT-903) persisted after treatment discontinuation, with tumors becoming undetectable in 9 of 10 mice, and all 10 mice surviving through Day 60 with no obvious signs of toxicity. A follow-up study performed in the same model compared the effects of single intravenous doses of ACT-903 (10-50 mg/kg) to that of control groups receiving vehicle or ACT-101. A significant reduction of tumor burden compared to control was achieved in the 40 and 50 mg/kg dose groups. Survival was significantly prolonged in these 2 groups (40 mg/kg (p < 0.0001); 50 mg/kg (p = 0.0037). Free maytansine blood levels at 4 h were 0.008% of the dose, indicating stability of the conjugate in circulation as was expected based on in vitro plasma stability studies. No obvious signs of toxicity were seen in any of the treated groups. Observed efficacy and excellent tolerability of ACT-903 in these xenograft models support advancing the development of ACT-903 toward clinical use.
Collapse
Affiliation(s)
- Patricia Griffin
- Biocatalyst4Development Inc., 33 Markham Road, Scarborough, ON, M1M 2Z5, Canada
| | - Wendy A Hill
- Biocatalyst4Development Inc., 33 Markham Road, Scarborough, ON, M1M 2Z5, Canada
| | - Fabio Rossi
- Abzena Ltd., Babraham Research Campus, Cambridge, CB22-3AT, UK
| | - Rebecca Boohaker
- Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL, 35205, USA
| | - Karr Stinson
- Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL, 35205, USA
| | - Igor Sherman
- Alpha Cancer Technologies Inc., MaRS Centre-South Tower, 200-101 College Street, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
2
|
Głowska-Ciemny J, Szymański M, Kuszerska A, Malewski Z, von Kaisenberg C, Kocyłowski R. The Role of Alpha-Fetoprotein (AFP) in Contemporary Oncology: The Path from a Diagnostic Biomarker to an Anticancer Drug. Int J Mol Sci 2023; 24:ijms24032539. [PMID: 36768863 PMCID: PMC9917199 DOI: 10.3390/ijms24032539] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023] Open
Abstract
This article presents contemporary opinion on the role of alpha-fetoprotein in oncologic diagnostics and treatment. This role stretches far beyond the already known one-that of the biomarker of hepatocellular carcinoma. The turn of the 20th and 21st centuries saw a significant increase in knowledge about the fundamental role of AFP in the neoplastic processes, and in the induction of features of malignance and drug resistance of hepatocellular carcinoma. The impact of AFP on the creation of an immunosuppressive environment for the developing tumor was identified, giving rise to attempts at immunotherapy. The paper presents current and prospective therapies using AFP and its derivatives and the gene therapy options. We directed our attention to both the benefits and risks associated with the use of AFP in oncologic therapy.
Collapse
Affiliation(s)
- Joanna Głowska-Ciemny
- PreMediCare New Med Medical Center, ul. Czarna Rola 21, 61-625 Poznań, Poland
- Correspondence: (J.G.-C.); (R.K.)
| | - Marcin Szymański
- PreMediCare New Med Medical Center, ul. Czarna Rola 21, 61-625 Poznań, Poland
| | - Agata Kuszerska
- PreMediCare New Med Medical Center, ul. Czarna Rola 21, 61-625 Poznań, Poland
| | - Zbyszko Malewski
- Department of Perinatology and Gynecology, Poznan University of Medical Sciences, 60-535 Poznań, Poland
| | - Constantin von Kaisenberg
- Department of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Rafał Kocyłowski
- PreMediCare New Med Medical Center, ul. Czarna Rola 21, 61-625 Poznań, Poland
- Correspondence: (J.G.-C.); (R.K.)
| |
Collapse
|
3
|
Mollaev M, Zabolotskii A, Gorokhovets N, Nikolskaya E, Sokol M, Tsedilin A, Mollaeva M, Chirkina M, Kuvaev T, Pshenichnikova A, Yabbarov N. Expression of acid cleavable Asp-Pro linked multimeric AFP peptide in E. coli. J Genet Eng Biotechnol 2021; 19:155. [PMID: 34648110 PMCID: PMC8517049 DOI: 10.1186/s43141-021-00265-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/05/2021] [Indexed: 03/05/2023]
Abstract
Background Difficult to express peptides are usually produced by co-expression with fusion partners. In this case, a significant mass part of the recombinant product falls on the subsequently removed fusion partner. On the other hand, multimerization of peptides is known to improve its proteolytic stability in E. coli due to the inclusion of body formation, which is sequence specific. Thereby, the peptide itself may serve as a fusion partner and one may produce more than one mole of the desired product per mole of fusion protein. This paper proposes a method for multimeric production of a human alpha-fetoprotein fragment with optimized multimer design and processing. This fragment may further find its application in the cytotoxic drug delivery field or as an inhibitor of endogenous alpha-fetoprotein. Results Multimerization of the extended alpha-fetoprotein receptor-binding peptide improved its stability in E. coli, and pentamer was found to be the largest stable with the highest expression level. As high as 10 aspartate-proline bonds used to separate peptide repeats were easily hydrolyzed in optimized formic acid-based conditions with 100% multimer conversion. The major product was represented by unaltered functional alpha-fetoprotein fragment while most side-products were its formyl-Pro, formyl-Tyr, and formyl-Lys derivatives. Single-step semi-preparative RP-HPLC was enough to separate unaltered peptide from the hydrolysis mixture. Conclusions A recombinant peptide derived from human alpha-fetoprotein can be produced via multimerization with subsequent formic acid hydrolysis and RP-HPLC purification. The reported procedure is characterized by the lower reagent cost in comparison with enzymatic hydrolysis of peptide fusions and solid-phase synthesis. This method may be adopted for different peptide expression, especially with low amino and hydroxy side chain content. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-021-00265-5.
Collapse
Affiliation(s)
- Murad Mollaev
- Biotechnology and Industrial Pharmacy Department, Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, 86 Vernadsky avenue, Moscow, 119454, Russia.,Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Laboratory of Molecular Immunology, 1 Samory Mashela street, Moscow, 117997, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 8 Simferopolsky boulevard, Moscow, 117638, Russia
| | - Artur Zabolotskii
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 8 Simferopolsky boulevard, Moscow, 117638, Russia.,Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119991, Russia
| | - Neonila Gorokhovets
- I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya street, Moscow, 119991, Russia
| | - Elena Nikolskaya
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 8 Simferopolsky boulevard, Moscow, 117638, Russia.,N. M. Emanuel Institute of Biochemical Physics, RAS. 4 Kosygina street, Moscow, 119334, Russia
| | - Maria Sokol
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 8 Simferopolsky boulevard, Moscow, 117638, Russia.,N. M. Emanuel Institute of Biochemical Physics, RAS. 4 Kosygina street, Moscow, 119334, Russia
| | - Andrey Tsedilin
- Fundamentals of Biotechnology Federal Research Center, RAS, 33 Leninsky avenue, Moscow, 119071, Russia
| | - Mariia Mollaeva
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 8 Simferopolsky boulevard, Moscow, 117638, Russia.,N. M. Emanuel Institute of Biochemical Physics, RAS. 4 Kosygina street, Moscow, 119334, Russia
| | - Margarita Chirkina
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 8 Simferopolsky boulevard, Moscow, 117638, Russia.,N. M. Emanuel Institute of Biochemical Physics, RAS. 4 Kosygina street, Moscow, 119334, Russia
| | - Timofey Kuvaev
- National Research Center "Kurchatov Institute", Research Institute for Genetics and Selection of Industrial Microorganisms, 1 1-Y Dorozhnyy Proyezd, Moscow, 117545, Russia
| | - Anna Pshenichnikova
- Biotechnology and Industrial Pharmacy Department, Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, 86 Vernadsky avenue, Moscow, 119454, Russia
| | - Nikita Yabbarov
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 8 Simferopolsky boulevard, Moscow, 117638, Russia. .,N. M. Emanuel Institute of Biochemical Physics, RAS. 4 Kosygina street, Moscow, 119334, Russia.
| |
Collapse
|
4
|
Lin B, Dong X, Wang Q, Li W, Zhu M, Li M. AFP-Inhibiting Fragments for Drug Delivery: The Promise and Challenges of Targeting Therapeutics to Cancers. Front Cell Dev Biol 2021; 9:635476. [PMID: 33898423 PMCID: PMC8061420 DOI: 10.3389/fcell.2021.635476] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/12/2021] [Indexed: 01/08/2023] Open
Abstract
Alpha fetoprotein (AFP) plays a key role in stimulating the growth, metastasis and drug resistance of hepatocellular carcinoma (HCC). AFP is an important target molecule in the treatment of HCC. The application of AFP-derived peptides, AFP fragments and recombinant AFP (AFP-inhibiting fragments, AIFs) to inhibit the binding of AFP to intracellular proteins or its receptors is the basis of a new strategy for the treatment of HCC and other cancers. In addition, AIFs can be combined with drugs and delivery agents to target treatments to cancer. AIFs conjugated to anticancer drugs not only destroy cancer cells with these drugs but also activate immune cells to kill cancer cells. Furthermore, AIF delivery of drugs relieves immunosuppression and enhances chemotherapy effects. The synergism of immunotherapy and targeted chemotherapy is expected to play an important role in enhancing the treatment effect of patients with cancer. AIF delivery of drugs will be an available strategy for the targeted treatment of cancer in the future.
Collapse
Affiliation(s)
- Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Xu Dong
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Qiujiao Wang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Wei Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China.,Institution of Tumor, Hainan Medical College, Haikou, China
| |
Collapse
|
5
|
Qi L, Song F, Han Y, Zhang Y, Ding Y. Atractyloside targets cancer-associated fibroblasts and inhibits the metastasis of colon cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1443. [PMID: 33313188 PMCID: PMC7723590 DOI: 10.21037/atm-20-1531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Several evidences have proved that cancer-associated fibroblasts (CAFs) play a crucial role in tumor progression. In fact, CAFs form a major component of tumor microenvironment (TME). Therefore, the development and metastasis of tumors can be effectively inhibited by small molecular compounds that target CAFs. Methods In this study, we mainly analyzed the expression profile of colon cancer (CC). We determined the intensity of CAFs in CC tissues by using the immune cell infiltration score. Gene enrichment analysis and the screening of differentially expressed genes were performed on the basis of the intensity of CAFs in CC tissues. We screened the small molecular compounds that were converted from differentially expressed genes. The results indicated that atractyloside was a small molecular compound related to CAFs in CC tissues. We identified the relationship between atractylosides and CAFs through target protein analysis and network analysis, and verified the inhibition effect of atractylosides on CC cells (CCC) by migration assay and scratch wound-healing assays. Results We found that many target proteins of atractyloside, such as the matrix metalloproteinase family and integrin proteins, were related to the biological function of CAFs. By performing network analysis, we found that the target proteins FGF1, ITGB1, and EDNRA were closely related to tumor angiogenesis, while the target proteins MMP9 and ITGAV were correlated to an extracellular matrix (ECM) and cell motility. These findings which further confirmed the relationship between atractylosides and CAFs. In addition, transwell cell migration and scratch wound-healing assays proved that atractylosides could significantly inhibit the migration of CCCs. Conclusions The atractyloside might be a small molecular compound that potentially targets CAFs and inhibits the development as well as metastasis of CC by changing the TME.
Collapse
Affiliation(s)
- Lu Qi
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, China
| | - Fuyao Song
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, China
| | - Yue Han
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, China
| | - Ying Zhang
- Department of Radiation Medicine, School of Public Health, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangzhou, China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, China
| |
Collapse
|