1
|
Piel RB, Veneziano SE, Nicholson EM, Walsh DP, Lomax AD, Nichols TA, Seabury CM, Schneider DA. Validation of a real-time quaking-induced conversion (RT-QuIC) assay protocol to detect chronic wasting disease using rectal mucosa of naturally infected, pre-clinical white-tailed deer (Odocoileus virginianus). PLoS One 2024; 19:e0303037. [PMID: 38870153 PMCID: PMC11175469 DOI: 10.1371/journal.pone.0303037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/18/2024] [Indexed: 06/15/2024] Open
Abstract
Chronic wasting disease (CWD) is a fatal prion disease of cervids spreading across North America. More effective mitigation efforts may require expansion of the available toolkit to include new methods that provide earlier antemortem detection, higher throughput, and less expense than current immunohistochemistry (IHC) methods. The rectal mucosa near the rectoanal junction is a site of early accumulation of CWD prions and is safely sampled in living animals by pinch biopsy. A fluorescence-based, 96-well format, protein-aggregation assay-the real-time quaking-induced conversion (RT-QuIC) assay-is capable of ultra-sensitive detection of CWD prions. Notably, the recombinant protein substrate is crucial to the assay's performance and is now commercially available. In this blinded independent study, the preclinical diagnostic performance of a standardized RT-QuIC protocol using a commercially sourced substrate (MNPROtein) and a laboratory-produced substrate was studied using mock biopsy samples of the rectal mucosa from 284 white-tailed deer (Odocoileus virginianus). The samples were from a frozen archive of intact rectoanal junctions collected at depopulations of farmed herds positive for CWD in the United States. All deer were pre-clinical at the time of depopulation and infection status was established from the regulatory record, which evaluated the medial retropharyngeal lymph nodes (MRPLNs) and obex by CWD-IHC. A pre-analytic sample precipitation step was found to enhance the protocol's detection limit. Performance metrics were influenced by the choice of RT-QuIC diagnostic cut points (minimum number of positive wells and assay time) and by deer attributes (preclinical infection stage and prion protein genotype). The peak overall diagnostic sensitivities of the protocol were similar for both substrates (MNPROtein, 76.8%; laboratory-produced, 73.2%), though each was achieved at different cut points. Preclinical infection stage and prion protein genotype at codon 96 (G = glycine, S = serine) were primary predictors of sensitivity. The diagnostic sensitivities in late preclinical infections (CWD-IHC positive MPRLNs and obex) were similar, ranging from 96% in GG96 deer to 80% in xS96 deer (x = G or S). In early preclinical infections (CWD-IHC positive MRPLNs only), the diagnostic sensitivity was 64-71% in GG96 deer but only 25% in xS96 deer. These results demonstrate that this standardized RT-QuIC protocol for rectal biopsy samples using a commercial source of substrate produced stratified diagnostic sensitivities similar to or greater than those reported for CWD-IHC but in less than 30 hours of assay time and in a 96-well format. Notably, the RT-QuIC protocol used herein represents a standardization of protocols from several previous studies. Alignment of the sensitivities across these studies suggests the diagnostic performance of the assay is robust given quality reagents, optimized diagnostic criteria, and experienced staff.
Collapse
Affiliation(s)
- Robert B. Piel
- U.S. Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, Washington, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Susan E. Veneziano
- U.S. Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
| | - Eric M. Nicholson
- U.S. Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
| | - Daniel P. Walsh
- U.S. Geological Survey, Montana Cooperative Wildlife Research Unit, Missoula, Montana, United States of America
- Wildlife Biology Program, University of Montana, Missoula, Montana, United States of America
| | - Aaron D. Lomax
- Department of Soil Science, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Tracy A. Nichols
- U.S. Department of Agriculture, Animal Plant Health Inspection Service, Veterinary Services, Fort Collins, Colorado, United States of America
| | - Christopher M. Seabury
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - David A. Schneider
- U.S. Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, Washington, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
2
|
Sargeant GA, Wild MA, Schroeder GM, Powers JG, Galloway NL. Spatial network clustering reveals elk population structure and local variation in prevalence of chronic wasting disease. Ecosphere 2021. [DOI: 10.1002/ecs2.3781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Glen A. Sargeant
- Northern Prairie Wildlife Research Center U.S. Geological Survey 8711 37th St. SE Jamestown North Dakota 58401 USA
| | - Margaret A. Wild
- College of Veterinary Medicine Washington State University P.O. Box 647040 Pullman Washington 99164 USA
| | - Gregory M. Schroeder
- Wind Cave National Park National Park Service 26611 U.S. Highway 385 Hot Springs South Dakota 57747 USA
| | - Jenny G. Powers
- Biological Resources Division National Park Service 1201 Oakridge Drive #200 Fort Collins Colorado 80525 USA
| | - Nathan L. Galloway
- Biological Resources Division National Park Service 1201 Oakridge Drive #200 Fort Collins Colorado 80525 USA
| |
Collapse
|
3
|
Detection of Pathognomonic Biomarker PrP Sc and the Contribution of Cell Free-Amplification Techniques to the Diagnosis of Prion Diseases. Biomolecules 2020; 10:biom10030469. [PMID: 32204429 PMCID: PMC7175149 DOI: 10.3390/biom10030469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Transmissible spongiform encephalopathies or prion diseases are rapidly progressive neurodegenerative diseases, the clinical manifestation of which can resemble other promptly evolving neurological maladies. Therefore, the unequivocal ante-mortem diagnosis is highly challenging and was only possible by histopathological and immunohistochemical analysis of the brain at necropsy. Although surrogate biomarkers of neurological damage have become invaluable to complement clinical data and provide more accurate diagnostics at early stages, other neurodegenerative diseases show similar alterations hindering the differential diagnosis. To solve that, the detection of the pathognomonic biomarker of disease, PrPSc, the aberrantly folded isoform of the prion protein, could be used. However, the amounts in easily accessible tissues or body fluids at pre-clinical or early clinical stages are extremely low for the standard detection methods. The solution comes from the recent development of in vitro prion propagation techniques, such as Protein Misfolding Cyclic Amplification (PMCA) and Real Time-Quaking Induced Conversion (RT-QuIC), which have been already applied to detect minute amounts of PrPSc in different matrixes and make early diagnosis of prion diseases feasible in a near future. Herein, the most relevant tissues and body fluids in which PrPSc has been detected in animals and humans are being reviewed, especially those in which cell-free prion propagation systems have been used with diagnostic purposes.
Collapse
|
4
|
|
5
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Gironés R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Skandamis P, Snary E, Speybroeck N, Kuile BT, Threlfall J, Wahlström H, Benestad S, Gavier-Widen D, Miller MW, Telling GC, Tryland M, Latronico F, Ortiz-Pelaez A, Stella P, Simmons M. Scientific opinion on chronic wasting disease (II). EFSA J 2018; 16:e05132. [PMID: 32625679 PMCID: PMC7328883 DOI: 10.2903/j.efsa.2018.5132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The European Commission asked EFSA for a scientific opinion on chronic wasting disease in two parts. Part one, on surveillance, animal health risk-based measures and public health risks, was published in January 2017. This opinion (part two) addresses the remaining Terms of Reference, namely, 'are the conclusions and recommendations in the EFSA opinion of June 2004 on diagnostic methods for chronic wasting disease still valid? If not, an update should be provided', and 'update the conclusions of the 2010 EFSA opinion on the results of the European Union survey on chronic wasting disease in cervids, as regards its occurrence in the cervid population in the European Union'. Data on the performance of authorised rapid tests in North America are not comprehensive, and are more limited than those available for the tests approved for statutory transmissible spongiform encephalopathies surveillance applications in cattle and sheep. There are no data directly comparing available rapid test performances in cervids. The experience in Norway shows that the Bio-Rad TeSeE™ SAP test, immunohistochemistry and western blotting have detected reindeer, moose and red deer cases. It was shown that testing both brainstem and lymphoid tissue from each animal increases the surveillance sensitivity. Shortcomings in the previous EU survey limited the reliability of inferences that could be made about the potential disease occurrence in Europe. Subsequently, testing activity in Europe was low, until the detection of the disease in Norway, triggering substantial testing efforts in that country. Available data neither support nor refute the conclusion that chronic wasting disease does not occur widely in the EU and do not preclude the possibility that the disease was present in Europe before the survey was conducted. It appears plausible that chronic wasting disease could have become established in Norway more than a decade ago.
Collapse
|
6
|
Mabbott NA. How do PrP Sc Prions Spread between Host Species, and within Hosts? Pathogens 2017; 6:pathogens6040060. [PMID: 29186791 PMCID: PMC5750584 DOI: 10.3390/pathogens6040060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 12/22/2022] Open
Abstract
Prion diseases are sub-acute neurodegenerative diseases that affect humans and some domestic and free-ranging animals. Infectious prion agents are considered to comprise solely of abnormally folded isoforms of the cellular prion protein known as PrPSc. Pathology during prion disease is restricted to the central nervous system where it causes extensive neurodegeneration and ultimately leads to the death of the host. The first half of this review provides a thorough account of our understanding of the various ways in which PrPSc prions may spread between individuals within a population, both horizontally and vertically. Many natural prion diseases are acquired peripherally, such as by oral exposure, lesions to skin or mucous membranes, and possibly also via the nasal cavity. Following peripheral exposure, some prions accumulate to high levels within the secondary lymphoid organs as they make their journey from the site of infection to the brain, a process termed neuroinvasion. The replication of PrPSc prions within secondary lymphoid organs is important for their efficient spread to the brain. The second half of this review describes the key tissues, cells and molecules which are involved in the propagation of PrPSc prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. This section also considers how additional factors such as inflammation and aging might influence prion disease susceptibility.
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
7
|
Pathogen-mediated selection in free-ranging elk populations infected by chronic wasting disease. Proc Natl Acad Sci U S A 2017; 114:12208-12212. [PMID: 29087314 DOI: 10.1073/pnas.1707807114] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pathogens can exert a large influence on the evolution of hosts via selection for alleles or genotypes that moderate pathogen virulence. Inconsistent interactions between parasites and the host genome, such as those resulting from genetic linkages and environmental stochasticity, have largely prevented observation of this process in wildlife species. We examined the prion protein gene (PRNP) in North American elk (Cervus elaphus nelsoni) populations that have been infected with chronic wasting disease (CWD), a contagious, fatal prion disease, and compared allele frequency to populations with no history of exposure to CWD. The PRNP in elk is highly conserved and a single polymorphism at codon 132 can markedly extend CWD latency when the minor leucine allele (132L) is present. We determined population exposure to CWD, genotyped 1,018 elk from five populations, and developed a hierarchical Bayesian model to examine the relationship between CWD prevalence and PRNP 132L allele frequency. Populations infected with CWD for at least 30-50 y exhibited 132L allele frequencies that were on average twice as great (range = 0.23-0.29) as those from uninfected populations (range = 0.04-0.17). Despite numerous differences between the elk populations in this study, the consistency of increase in 132L allele frequency suggests pathogen-mediated selection has occurred due to CWD. Although prior modeling work predicted that selection will continue, the potential for fitness costs of the 132L allele or new prion protein strains to arise suggest that it is prudent to assume balancing selection may prevent fixation of the 132L allele in populations with CWD.
Collapse
|
8
|
Haley NJ, Richt JA. Evolution of Diagnostic Tests for Chronic Wasting Disease, a Naturally Occurring Prion Disease of Cervids. Pathogens 2017; 6:pathogens6030035. [PMID: 28783058 PMCID: PMC5617992 DOI: 10.3390/pathogens6030035] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/29/2017] [Accepted: 08/01/2017] [Indexed: 12/23/2022] Open
Abstract
Since chronic wasting disease (CWD) was first identified nearly 50 years ago in a captive mule deer herd in the Rocky Mountains of the United States, it has slowly spread across North America through the natural and anthropogenic movement of cervids and their carcasses. As the endemic areas have expanded, so has the need for rapid, sensitive, and cost effective diagnostic tests—especially those which take advantage of samples collected antemortem. Over the past two decades, strategies have evolved from the recognition of microscopic spongiform pathology and associated immunohistochemical staining of the misfolded prion protein to enzyme-linked immunoassays capable of detecting the abnormal prion conformer in postmortem samples. In a history that parallels the diagnosis of more conventional infectious agents, both qualitative and real-time amplification assays have recently been developed to detect minute quantities of misfolded prions in a range of biological and environmental samples. With these more sensitive and semi-quantitative approaches has come a greater understanding of the pathogenesis and epidemiology of this disease in the native host. Because the molecular pathogenesis of prion protein misfolding is broadly analogous to the misfolding of other pathogenic proteins, including Aβ and α-synuclein, efforts are currently underway to apply these in vitro amplification techniques towards the diagnosis of Alzheimer’s disease, Parkinson’s disease, and other proteinopathies. Chronic wasting disease—once a rare disease of Colorado mule deer—now represents one of the most prevalent prion diseases, and should serve as a model for the continued development and implementation of novel diagnostic strategies for protein misfolding disorders in the natural host.
Collapse
Affiliation(s)
- Nicholas J Haley
- Department of Microbiology and Immunology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA.
| | - Jürgen A Richt
- College of Veterinary Medicine, Kansas State University (KSU), Manhattan, KS 66506, USA.
| |
Collapse
|
9
|
Mabbott NA. Immunology of Prion Protein and Prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:203-240. [PMID: 28838662 DOI: 10.1016/bs.pmbts.2017.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many natural prion diseases are acquired peripherally, such as following the oral consumption of contaminated food or pasture. After peripheral exposure many prion isolates initially accumulate to high levels within the host's secondary lymphoid tissues. The replication of prions within these tissues is essential for their efficient spread to the brain where they ultimately cause neurodegeneration. This chapter describes our current understanding of the critical tissues, cells, and molecules which the prions exploit to mediate their efficient propagation from the site of exposure (such as the intestine) to the brain. Interactions between the immune system and prions are not only restricted to the secondary lymphoid tissues. Therefore, an account of how the activation status of the microglial in the brain can also influence progression of prion disease pathogenesis is provided. Prion disease susceptibility may also be influenced by additional factors such as chronic inflammation, coinfection with other pathogens, and aging. Finally, the potential for immunotherapy to provide a means of safe and effective prophylactic or therapeutic intervention in these currently untreatable diseases is considered.
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Midlothian, United Kingdom.
| |
Collapse
|
10
|
Donaldson DS, Mabbott NA. The influence of the commensal and pathogenic gut microbiota on prion disease pathogenesis. J Gen Virol 2016; 97:1725-1738. [PMID: 27193137 DOI: 10.1099/jgv.0.000507] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Prion diseases are a unique group of transmissible, chronic, neurodegenerative disorders. Following peripheral exposure (e.g. oral), prions often accumulate first within the secondary lymphoid tissues before they infect the central nervous system (CNS). Prion replication within secondary lymphoid tissues is crucial for the efficient spread of disease to the CNS. Once within the CNS, the responses of innate immune cells within it can have a significant influence on neurodegeneration and disease progression. Recently, there have been substantial advances in our understanding of how cross-talk between the host and the vast community of commensal microorganisms present at barrier surfaces such as the gut influences the development and regulation of the host's immune system. These effects are evident not only in the mucosal immune system in the gut, but also in the CNS. The actions of this microbial community (the microbiota) have many important beneficial effects on host health, from metabolism of nutrients and regulation of host development to protection from pathogen infection. However, the microbiota can also have detrimental effects in some circumstances. In this review we discuss the many and varied interactions between prions, the host and the gut microbiota. Particular emphasis is given to the ways by which changes to the composition of the commensal gut microbiota or congruent pathogen infection may influence prion disease pathogenesis and/or disease susceptibility. Understanding how these factors influence prion pathogenesis and disease susceptibility is important for assessing the risk to infection and the design of novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- David S Donaldson
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, UK
| | - Neil A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
11
|
Seeded Amplification of Chronic Wasting Disease Prions in Nasal Brushings and Recto-anal Mucosa-Associated Lymphoid Tissues from Elk by Real-Time Quaking-Induced Conversion. J Clin Microbiol 2016; 54:1117-26. [PMID: 26888899 DOI: 10.1128/jcm.02700-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/06/2016] [Indexed: 11/20/2022] Open
Abstract
Chronic wasting disease (CWD), a transmissible spongiform encephalopathy of cervids, was first documented nearly 50 years ago in Colorado and Wyoming and has since been detected across North America and the Republic of Korea. The expansion of this disease makes the development of sensitive diagnostic assays and antemortem sampling techniques crucial for the mitigation of its spread; this is especially true in cases of relocation/reintroduction or prevalence studies of large or protected herds, where depopulation may be contraindicated. This study evaluated the sensitivity of the real-time quaking-induced conversion (RT-QuIC) assay of recto-anal mucosa-associated lymphoid tissue (RAMALT) biopsy specimens and nasal brushings collected antemortem. These findings were compared to results of immunohistochemistry (IHC) analysis of ante- and postmortem samples. RAMALT samples were collected from populations of farmed and free-ranging Rocky Mountain elk (Cervus elaphus nelsoni;n= 323), and nasal brush samples were collected from a subpopulation of these animals (n= 205). We hypothesized that the sensitivity of RT-QuIC would be comparable to that of IHC analysis of RAMALT and would correspond to that of IHC analysis of postmortem tissues. We found RAMALT sensitivity (77.3%) to be highly correlative between RT-QuIC and IHC analysis. Sensitivity was lower when testing nasal brushings (34%), though both RAMALT and nasal brush test sensitivities were dependent on both thePRNPgenotype and disease progression determined by the obex score. These data suggest that RT-QuIC, like IHC analysis, is a relatively sensitive assay for detection of CWD prions in RAMALT biopsy specimens and, with further investigation, has potential for large-scale and rapid automated testing of antemortem samples for CWD.
Collapse
|
12
|
Antemortem Detection of Chronic Wasting Disease Prions in Nasal Brush Collections and Rectal Biopsy Specimens from White-Tailed Deer by Real-Time Quaking-Induced Conversion. J Clin Microbiol 2016; 54:1108-16. [PMID: 26865693 DOI: 10.1128/jcm.02699-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/04/2016] [Indexed: 11/20/2022] Open
Abstract
Chronic wasting disease (CWD), a transmissible spongiform encephalopathy of cervids, was first documented nearly 50 years ago in Colorado and Wyoming and has since spread to cervids in 23 states, two Canadian provinces, and the Republic of Korea. The expansion of this disease makes the development of sensitive diagnostic assays and antemortem sampling techniques crucial for the mitigation of its spread; this is especially true in cases of relocation/reintroduction of farmed or free-ranging deer and elk or surveillance studies of private or protected herds, where depopulation is contraindicated. This study sought to evaluate the sensitivity of the real-time quaking-induced conversion (RT-QuIC) assay by using recto-anal mucosa-associated lymphoid tissue (RAMALT) biopsy specimens and nasal brush samples collected antemortem from farmed white-tailed deer (n= 409). Antemortem findings were then compared to results from ante- and postmortem samples (RAMALT, brainstem, and medial retropharyngeal lymph nodes) evaluated by using the current gold standardin vitroassay, immunohistochemistry (IHC) analysis. We hypothesized that the sensitivity of RT-QuIC would be comparable to IHC analysis in antemortem tissues and would correlate with both the genotype and the stage of clinical disease. Our results showed that RAMALT testing by RT-QuIC assay had the highest sensitivity (69.8%) compared to that of postmortem testing, with a specificity of >93.9%. These data suggest that RT-QuIC, like IHC analysis, is an effective assay for detection of PrP(CWD)in rectal biopsy specimens and other antemortem samples and, with further research to identify more sensitive tissues, bodily fluids, or experimental conditions, has potential for large-scale and rapid automated testing for CWD diagnosis.
Collapse
|
13
|
Abstract
A naturally occurring transmissible spongiform encephalopathy (TSE) of mule deer was first reported in Colorado and Wyoming in 1967 and has since spread to other members of the cervid family in 22 states, 2 Canadian provinces, and the Republic of Korea. Chronic wasting disease (CWD), caused by exposure to an abnormally folded isoform of the cellular prion protein, is characterized by progressive neurological disease in susceptible natural and experimental hosts and is ultimately fatal. CWD is thought to be transmitted horizontally in excreta and through contaminated environments, features common to scrapie of sheep, though rare among TSEs. Evolving detection methods have revealed multiple strains of CWD and with continued development may lead to an effective antemortem test. Managing the spread of CWD, through the development of a vaccine or environmental cleanup strategies, is an active area of interest. As such, CWD represents a unique challenge in the study of prion diseases.
Collapse
Affiliation(s)
- Nicholas J Haley
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas 66506;
| | | |
Collapse
|
14
|
Garza MC, Monzón M, Marín B, Badiola JJ, Monleón E. Distribution of peripheral PrP(Sc) in sheep with naturally acquired scrapie. PLoS One 2014; 9:e97768. [PMID: 24828439 PMCID: PMC4020850 DOI: 10.1371/journal.pone.0097768] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/22/2014] [Indexed: 12/21/2022] Open
Abstract
Accumulation of prion protein (PrPSc) in the central nervous system is the hallmark of transmissible spongiform encephalopathies. However, in some of these diseases such as scrapie or chronic wasting disease, the PrPSc can also accumulate in other tissues, particularly in the lymphoreticular system. In recent years, PrPSc in organs other than nervous and lymphoid have been described, suggesting that distribution of this protein in affected individuals may be much larger than previously thought. In the present study, 11 non-nervous/non-lymphoid organs from 16 naturally scrapie infected sheep in advanced stages of the disease were examined for the presence of PrPSc. Fourteen infected sheep were of the ARQ/ARQ PRNP genotype and 2 of the VRQ/VRQ, where the letters A, R, Q, and V represent the codes for amino-acids alanine, arginine, glutamine and valine, respectively. Adrenal gland, pancreas, heart, skin, urinary bladder and mammary gland were positive for PrPSc by immunohistochemistry and IDEXX HerdChek scrapie/BSE Antigen EIA Test in at least one animal. Lung, liver, kidney and skeletal muscle exhibited PrPSc deposits by immunohistochemistry only. To our knowledge, this is the first report regarding the presence of PrPSc in the heart, pancreas and urinary bladder in naturally acquired scrapie infections. In some other organs examined, in which PrPSc had been previously detected, PrPSc immunolabeling was observed to be associated with new structures within those organs. The results of the present study illustrate a wide dissemination of PrPSc in both ARQ/ARQ and VRQ/VRQ infected sheep, even when the involvement of the lymphoreticular system is scarce or absent, thus highlighting the role of the peripheral nervous system in the spread of PrPSc.
Collapse
Affiliation(s)
- María Carmen Garza
- Centro de Encefalopatías Espongiformes y Enfermedades Emergentes, Universidad de Zaragoza, Zaragoza, Spain
- Centre for Prions and Protein Folding Diseases, University of Alberta, Alberta, Canada
| | - Marta Monzón
- Centro de Encefalopatías Espongiformes y Enfermedades Emergentes, Universidad de Zaragoza, Zaragoza, Spain
| | - Belén Marín
- Centro de Encefalopatías Espongiformes y Enfermedades Emergentes, Universidad de Zaragoza, Zaragoza, Spain
| | - Juan José Badiola
- Centro de Encefalopatías Espongiformes y Enfermedades Emergentes, Universidad de Zaragoza, Zaragoza, Spain
| | - Eva Monleón
- Centro de Encefalopatías Espongiformes y Enfermedades Emergentes, Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Anatomía e Histología Humanas, Universidad de Zaragoza, Zaragoza, Spain
- * E-mail:
| |
Collapse
|
15
|
Monello RJ, Powers JG, Hobbs NT, Spraker TR, Watry MK, Wild MA. Survival and population growth of a free-ranging elk population with a long history of exposure to chronic wasting disease. J Wildl Manage 2014. [DOI: 10.1002/jwmg.665] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ryan J. Monello
- Biological Resource Management Division; National Park Service; 1201 Oakridge STE 200 Fort Collins CO 80525
| | - Jenny G. Powers
- Biological Resource Management Division; National Park Service; 1201 Oakridge STE 200 Fort Collins CO 80525
| | - N. Thompson Hobbs
- Natural Resource Ecology Laboratory and Graduate Degree Program in Ecology; Colorado State University; Fort Collins CO 80523
| | - Terry R. Spraker
- Colorado State Diagnostic Laboratory; College of Veterinary Medicine; Colorado State University; Fort Collins CO 80523
| | - Mary Kay Watry
- Rocky Mountain National Park; National Park Service; Estes Park CO 80517
| | - Margaret A. Wild
- Biological Resource Management Division; National Park Service; 1201 Oakridge STE 200 Fort Collins CO 80525
| |
Collapse
|
16
|
Haley NJ, Van de Motter A, Carver S, Henderson D, Davenport K, Seelig DM, Mathiason C, Hoover E. Prion-seeding activity in cerebrospinal fluid of deer with chronic wasting disease. PLoS One 2013; 8:e81488. [PMID: 24282599 PMCID: PMC3839929 DOI: 10.1371/journal.pone.0081488] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/18/2013] [Indexed: 01/08/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are a uniformly fatal family of neurodegenerative diseases in mammals that includes chronic wasting disease (CWD) of cervids. The early and ante-mortem identification of TSE-infected individuals using conventional western blotting or immunohistochemistry (IHC) has proven difficult, as the levels of infectious prions in readily obtainable samples, including blood and bodily fluids, are typically beyond the limits of detection. The development of amplification-based seeding assays has been instrumental in the detection of low levels of infectious prions in clinical samples. In the present study, we evaluated the cerebrospinal fluid (CSF) of CWD-exposed (n=44) and naïve (n=4) deer (n=48 total) for CWD prions (PrPd) using two amplification assays: serial protein misfolding cyclic amplification with polytetrafluoroethylene beads (sPMCAb) and real-time quaking induced conversion (RT-QuIC) employing a truncated Syrian hamster recombinant protein substrate. Samples were evaluated blindly in parallel with appropriate positive and negative controls. Results from amplification assays were compared to one another and to obex immunohistochemistry, and were correlated to available clinical histories including CWD inoculum source (e.g. saliva, blood), genotype, survival period, and duration of clinical signs. We found that both sPMCAb and RT-QuIC were capable of amplifying CWD prions from cervid CSF, and results correlated well with one another. Prion seeding activity in either assay was observed in approximately 50% of deer with PrPd detected by IHC in the obex region of the brain. Important predictors of amplification included duration of clinical signs and time of first tonsil biopsy positive results, and ultimately the levels of PrPd identified in the obex by IHC. Based on our findings, we expect that both sPMCAb and RT-QuIC may prove to be useful detection assays for the detection of prions in CSF.
Collapse
Affiliation(s)
- Nicholas J. Haley
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| | - Alexandra Van de Motter
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Scott Carver
- School of Zoology, University of Tasmania, Hobart, Tasmania, Australia
| | - Davin Henderson
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kristen Davenport
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Davis M. Seelig
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Candace Mathiason
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Edward Hoover
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
17
|
Thomsen BV, Schneider DA, O'Rourke KI, Gidlewski T, McLane J, Allen RW, McIsaac AA, Mitchell GB, Keane DP, Spraker TR, Balachandran A. Diagnostic accuracy of rectal mucosa biopsy testing for chronic wasting disease within white-tailed deer (Odocoileus virginianus) herds in North America: effects of age, sex, polymorphism at PRNP codon 96, and disease progression. J Vet Diagn Invest 2013; 24:878-87. [PMID: 22914819 DOI: 10.1177/1040638712453582] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
An effective live animal diagnostic test is needed to assist in the control of chronic wasting disease (CWD), which has spread through captive and wild herds of white-tailed deer (Odocoileus virginianus) in Canada and the United States. In the present study, the diagnostic accuracy of rectal mucosa biopsy sample testing was determined in white-tailed deer from 4 CWD-infected captive herds. Specifically, the current study compared the immunohistochemical detection of disease-associated prion protein in postmortem rectal mucosa biopsy samples to the CWD status of each deer as determined by immunodiagnostic evaluations of the brainstem at the obex, the medial retropharyngeal lymph node, and the palatine tonsil. The effects of age, sex, genotype, and disease progression were also evaluated. Diagnostic sensitivity on rectal biopsy samples for CWD in white-tailed deer ranged from 63% to 100%; the pooled estimate of sensitivity was 68% with 95% confidence limits (95% CLs) of 49% and 82%. However, diagnostic sensitivity was dependent on genotype at prion protein gene (PRNP) codon 96 and on disease progression as assessed by obex grade. Diagnostic sensitivity was 76% (95% CLs: 49%, 91%) for 96GG deer but only 42% (95% CLs: 13%, 79%) for 96GS deer. Furthermore, diagnostic sensitivity was only 36% for deer in the earliest stage of disease (obex grade 0) but was 100% for deer in the last 2 stages of preclinical disease (obex grades 3 and 4). The overall diagnostic specificity was 99.8%. Selective use of antemortem rectal biopsy sample testing would provide valuable information during disease investigations of CWD-suspect deer herds.
Collapse
Affiliation(s)
- Bruce V Thomsen
- National Veterinary Services Laboratories, U.S. Department of Agriculture, 1920 Dayton Avenue, Ames, IA 50010, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mabbott NA. Prion pathogenesis and secondary lymphoid organs (SLO): tracking the SLO spread of prions to the brain. Prion 2012; 6:322-33. [PMID: 22895090 PMCID: PMC3609058 DOI: 10.4161/pri.20676] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Prion diseases are subacute neurodegenerative diseases that affect humans and a range of domestic and free-ranging animal species. These diseases are characterized by the accumulation of PrPSc, an abnormally folded isoform of the cellular prion protein (PrPC), in affected tissues. The pathology during prion disease appears to occur almost exclusively within the central nervous system. The extensive neurodegeneration which occurs ultimately leads to the death of the host. An intriguing feature of the prion diseases, when compared with other protein-misfolding diseases, is their transmissibility. Following peripheral exposure, some prion diseases accumulate to high levels within lymphoid tissues. The replication of prions within lymphoid tissue has been shown to be important for the efficient spread of disease to the brain. This article describes recent progress in our understanding of the cellular mechanisms that influence the propagation of prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. A thorough understanding of these events will lead to the identification of important targets for therapeutic intervention, or alternatively, reveal additional processes that influence disease susceptibility to peripherally-acquired prion diseases.
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Midlothian, UK.
| |
Collapse
|
19
|
Nichols TA, Spraker TR, Gidlewski T, Powers JG, Telling GC, VerCauteren KC, Zabel MD. Detection of prion protein in the cerebrospinal fluid of elk (Cervus canadensis nelsoni) with chronic wasting disease using protein misfolding cyclic amplification. J Vet Diagn Invest 2012; 24:746-9. [PMID: 22621952 DOI: 10.1177/1040638712448060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cerebrospinal fluid (CSF) has been examined as a possible source for preclinical diagnosis of prion diseases in hamsters and sheep. The present report describes the detection of chronic wasting disease (CWD) in the CSF of elk and evaluates its usefulness as an antemortem test for CWD. The CSF from 6 captive and 31 free-ranging adult elk was collected at necropsy and evaluated for the presence of the abnormal isoform of the prion protein that has been associated with CWD (PrP(CWD)) via protein misfolding cyclic amplification. Additionally, the obex from each animal was examined by immunohistochemistry (IHC). Four out of 6 captive animals were CWD-positive and euthanized due to signs of terminal CWD. The remaining 2 were CWD negative. None of the 31 free-range animals showed overt signs of CWD, but 12 out of 31 tested positive for CWD by IHC. Protein misfolding cyclic amplification detected PrP(CWD) from 3 of the 4 captive animals showing clinical signs of CWD and none of the nonclinical animals that were CWD positive by IHC. The data suggests that CWD prions can be detected in the CSF of elk, but only relatively late in the course of the disease.
Collapse
Affiliation(s)
- Tracy A Nichols
- National Wildlife Research Center, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, 4101 La Porte Avenue, Fort Collins, CO 80521, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Haley NJ, Mathiason CK, Carver S, Telling GC, Zabel MD, Hoover EA. Sensitivity of protein misfolding cyclic amplification versus immunohistochemistry in ante-mortem detection of chronic wasting disease. J Gen Virol 2012; 93:1141-1150. [PMID: 22278825 DOI: 10.1099/vir.0.039073-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
As the only prion disease affecting free-ranging animals, ante-mortem identification of affected cervids has become paramount in understanding chronic wasting disease (CWD) pathogenesis, prevalence and control of horizontal or vertical transmission. To seek maximal sensitivity in ante-mortem detection of CWD infection, this study used paired tonsil biopsy samples collected at various time points from 48 CWD-exposed cervids to compare blinded serial protein misfolding cyclic amplification (sPMCA) with the assay long considered the 'gold standard' for CWD detection, immunohistochemistry (IHC). sPMCA-negative controls (34 % of the samples evaluated) included tissues from mock-inoculated animals and unspiked negative controls, all of which tested negative throughout the course of the study. It was found that sPMCA on tonsil biopsies detected CWD infection significantly earlier (2.78 months, 95 % confidence interval 2.40-3.15) than conventional IHC. Interestingly, a correlation was observed between early detection by sPMCA and host PRNP genotype. These findings demonstrate that in vitro-amplification assays provide enhanced sensitivity and advanced detection of CWD infection in the peripheral tissues of cervids, with a potential role for spike or substrate genotype in sPMCA amplification efficiency.
Collapse
Affiliation(s)
- Nicholas J Haley
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Candace K Mathiason
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Scott Carver
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Glenn C Telling
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Mark D Zabel
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Edward A Hoover
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
21
|
Blasche T, Schenck EV, Balachandran A, Miller MW, Langenberg J, Frölich K, Steinbach F. Rapid detection of CWD PrP: comparison of tests designed for the detection of BSE or scrapie. Transbound Emerg Dis 2011; 59:405-15. [PMID: 22212828 DOI: 10.1111/j.1865-1682.2011.01294.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) mainly affecting cervids in North America. The accumulation of an abnormal form of host-encoded prion protein (PrP(CWD) ) in the CNS and lymphoid tissues is characteristic of the disease and known to be caused by pathogenic prion proteins (PrP(res) ), which are thought to be transmitted mainly by contact with body fluids, such like saliva. Species known to be naturally infected by CWD include Rocky Mountain elk (Cervus elaphus nelsoni), white-tailed deer (Odocoileus virginianus) and mule deer (Odocoileus hemionus). Recently, large-scale disease eradication or control programs have been attempted to curtail the spread of disease. But reports of diseased free-ranging and farmed cervids in many locations in the USA and Canada are still continuing. The goal of this study was to find sensitive rapid test systems that are reliably able to detect CWD-associated PrP(CWD) in cervids, thereby reviewing an important control tool in case the disease spreads further and reaches Europe. Seven tests, originally developed for the detection of other TSE diseases such as Scrapie and bovine spongiform encephalopathy, including two Western blots, four enzyme-linked immunosorbent assays (ELISAs), and one lateral flow device, were included in this study. All seven tests evaluated were able to detect pathogenic prion proteins (PrP(CWD) ) in Northern American infected animals and distinguish physiologic prion protein (PrP(c) ) in brainstem (obex region) and lymph node samples from North American and European cervids, respectively. However, the specificity and sensitivity of the tests differed significantly. Highly sensitive tests for the detection of prion proteins are an important tool both for the design of effective disease surveillance and control strategies and the safety of the food chain. Thus, this study contributes to the emergency preparedness against CWD.
Collapse
Affiliation(s)
- T Blasche
- Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str., Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Garza MC, Fernández-Borges N, Bolea R, Badiola JJ, Castilla J, Monleón E. Detection of PrPres in genetically susceptible fetuses from sheep with natural scrapie. PLoS One 2011; 6:e27525. [PMID: 22194786 PMCID: PMC3237407 DOI: 10.1371/journal.pone.0027525] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 10/18/2011] [Indexed: 11/19/2022] Open
Abstract
Scrapie is a transmissible spongiform encephalopathy with a wide PrPres dissemination in many non-neural tissues and with high levels of transmissibility within susceptible populations. Mechanisms of transmission are incompletely understood. It is generally assumed that it is horizontally transmitted by direct contact between animals or indirectly through the environment, where scrapie can remain infectious for years. In contrast, in utero vertical transmission has never been demonstrated and has rarely been studied. Recently, the use of the protein misfolding cyclic amplification technique (PMCA) has allowed prion detection in various tissues and excretions in which PrPres levels have been undetectable by traditional assays. The main goal of this study was to detect PrPres in fetal tissues and the amniotic fluid from natural scrapie infected ewes using the PMCA technique. Six fetuses from three infected pregnant ewes in an advanced clinical stage of the disease were included in the study. From each fetus, amniotic fluid, brain, spleen, ileo-cecal valve and retropharyngeal lymph node samples were collected and analyzed using Western blotting and PMCA. Although all samples were negative using Western blotting, PrPres was detected after in vitro amplification. Our results represent the first time the biochemical detection of prions in fetal tissues, suggesting that the in utero transmission of scrapie in natural infected sheep might be possible.
Collapse
Affiliation(s)
- María Carmen Garza
- Centro de Investigación en Encefalopatías Espongiformes Transmisibles y Enfermedades Emergentes, Universidad de Zaragoza, Zaragoza, Spain
| | | | - Rosa Bolea
- Centro de Investigación en Encefalopatías Espongiformes Transmisibles y Enfermedades Emergentes, Universidad de Zaragoza, Zaragoza, Spain
| | - Juan José Badiola
- Centro de Investigación en Encefalopatías Espongiformes Transmisibles y Enfermedades Emergentes, Universidad de Zaragoza, Zaragoza, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Eva Monleón
- Centro de Investigación en Encefalopatías Espongiformes Transmisibles y Enfermedades Emergentes, Universidad de Zaragoza, Zaragoza, Spain
- Producció Animal, Universitat de Lleida, LLeida, Spain
- * E-mail:
| |
Collapse
|
23
|
Powers JG, Baker DL, Davis TL, Conner MM, Lothridge AH, Nett TM. Effects of gonadotropin-releasing hormone immunization on reproductive function and behavior in captive female Rocky Mountain elk (Cervus elaphus nelsoni). Biol Reprod 2011; 85:1152-60. [PMID: 21753192 DOI: 10.1095/biolreprod.110.088237] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Fertility control is a potential method for managing overabundant wildlife populations; however, current technology is limited by duration of treatment efficacy and unacceptable side effects. The objective of this study was to determine the efficacy of a single immunization with gonadotropin-releasing hormone (GnRH) vaccine to suppress reproductive function in pregnant female elk and to evaluate potential behavioral and pathological side effects of treatment. Eighteen captive adult female elk were randomly allocated to one of two experimental groups. Ten females were administered a conjugated and adjuvanted GnRH vaccine intramuscularly, and eight elk received an adjuvant sham vaccine without conjugated GnRH. We compared success of existing pregnancy, neonatal survival, subsequent fertility, reproductive behavior rates, and side effects of treatment between January 2006 and January 2010. The GnRH vaccination did not affect existing pregnancy or calf survival during the year that it was applied; however, it reduced the proportion of pregnant females for 3 yr. Male precopulatory behavior rates exhibited toward GnRH-vaccinated females tended to be greater than those directed at sham-vaccinated females during the second half of the breeding season, when GnRH vaccinates continued to be proceptive. Strong immune and inflammatory responses, including robust GnRH antibody concentrations in GnRH vaccinates, and sterile pyogranulomatous injection site abscesses in both groups, were consistent with vaccination. In conclusion, this GnRH vaccine resulted in prolonged, albeit reversible, impairment of fertility, and is associated with extended reproductive behaviors and partial suppression of hypothalamic-pituitary-gonadal axis function in captive female elk.
Collapse
Affiliation(s)
- Jenny G Powers
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA.
| | | | | | | | | | | |
Collapse
|
24
|
An assessment of the efficiency of PrPsc detection in rectal mucosa and third-eyelid biopsies from animals infected with scrapie. Vet Microbiol 2010; 147:237-43. [PMID: 20685048 DOI: 10.1016/j.vetmic.2010.06.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2009] [Revised: 06/21/2010] [Accepted: 06/29/2010] [Indexed: 12/30/2022]
Abstract
In classical scrapie, detection of PrPsc on lymphoreticular system is used for the in vivo and post mortem diagnosis of the disease. However, the sensitivity of this methodology is not well characterised because the magnitude and duration of lymphoid tissue involvement can vary considerably. The aim of the present study was to evaluate the efficiency of detecting PrPsc in rectal mucosa and third-eyelid biopsies. A total of 474 genetically susceptible sheep and 24 goats from three scrapie infected flocks were included in this study. A sample from rectal mucosa and a sample from third-eyelid lymphoid tissue were collected from each animal. Biopsy samples were fixed in formaldehyde and processed for immunohistochemical examination. Animals with negative biopsy results were studied more closely through a post mortem examination of central nervous and lymphoreticular systems and if there was a positive result, additional biopsy sections were further tested. The sensitivity of rectal mucosa and third-eyelid assays were 36% and 40% respectively on initial examination but increased to 48% and 44% respectively after retesting. The results of this field study show a high percentage of infected animals that do not have detectable levels of PrPsc in the biopsied lymphoid tissue, due mainly to the relatively high number of animals with minimal or no involvement of lymphoid tissue in the pathogenesis of the disease.
Collapse
|
25
|
Spraker TR, O'Rourke KI, Gidlewski T, Powers JG, Greenlee JJ, Wild MA. Detection of the abnormal isoform of the prion protein associated with chronic wasting disease in the optic pathways of the brain and retina of Rocky Mountain elk (Cervus elaphus nelsoni). Vet Pathol 2010; 47:536-46. [PMID: 20382822 DOI: 10.1177/0300985810363702] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Eyes and nuclei of the visual pathways in the brain were examined in 30 Rocky Mountain elk (Cervus elaphus nelsoni) representing 3 genotypes of the prion protein gene PRNP (codon 132: MM, ML, or LL). Tissues were examined for the presence of the abnormal isoform of the prion protein associated with chronic wasting disease (PrP(CWD)). Nuclei and axonal tracts from a single section of brain stem at the level of the dorsal motor nucleus of the vagus nerve were scored for intensity and distribution of PrP(CWD) immunoreactivity and degree of spongiform degeneration. This obex scoring ranged from 0 (elk with no PrP(CWD) in the brain stem) to 10 (representing elk in terminal stage of disease). PrP(CWD) was detected in the retina of 16 of 18 (89%) elk with an obex score of > 7. PrP(CWD) was not detected in the retina of the 3 chronic wasting disease-negative elk and 9 elk with an obex score of < 6. PrP(CWD) was found in the nuclei of the visual pathways in the brain before it was found in the retina. Within the retina, PrP(CWD) was first found in the inner plexiform layer, followed by the outer plexiform layer. Intracytoplasmic accumulation of PrP(CWD) was found in a few neurons in the ganglion cell layer in the PRNP 132ML elk but was a prominent feature in the PRNP 132LL elk. Small aggregates of PrP(CWD) were present on the inner surface of the outer limiting membrane in PRNP 132LL elk but not in PRNP 132MM or 132ML elk. This study demonstrates PrP(CWD) accumulation in nuclei of the visual pathways of the brain, followed by PrP(CWD) in the retina.
Collapse
Affiliation(s)
- T R Spraker
- Colorado State University Diagnostic Laboratory, 300 West Drake Road, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80526, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Haley NJ, Mathiason CK, Zabel MD, Telling GC, Hoover EA. Detection of sub-clinical CWD infection in conventional test-negative deer long after oral exposure to urine and feces from CWD+ deer. PLoS One 2009; 4:e7990. [PMID: 19956732 PMCID: PMC2776529 DOI: 10.1371/journal.pone.0007990] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 10/29/2009] [Indexed: 01/10/2023] Open
Abstract
Background Chronic wasting disease (CWD) of cervids is a prion disease distinguished by high levels of transmissibility, wherein bodily fluids and excretions are thought to play an important role. Using cervid bioassay and established CWD detection methods, we have previously identified infectious prions in saliva and blood but not urine or feces of CWD+ donors. More recently, we identified very low concentrations of CWD prions in urine of deer by cervid PrP transgenic (Tg[CerPrP]) mouse bioassay and serial protein misfolding cyclic amplification (sPMCA). This finding led us to examine further our initial cervid bioassay experiments using sPMCA. Objectives We sought to investigate whether conventional test-negative deer, previously exposed orally to urine and feces from CWD+ sources, may be harboring low level CWD infection not evident in the 19 month observation period. We further attempted to determine the peripheral PrPCWD distribution in these animals. Methods Various neural and lymphoid tissues from conventional test-negative deer were reanalyzed for CWD prions by sPMCA and cervid transgenic mouse bioassay in parallel with appropriate tissue-matched positive and negative controls. Results PrPCWD was detected in the tissues of orally exposed deer by both sPMCA and Tg[CerPrP] mouse bioassay; each assay revealed very low levels of CWD prions previously undetectable by western blot, ELISA, or IHC. Serial PMCA analysis of individual tissues identified that obex alone was positive in 4 of 5 urine/feces exposed deer. PrPCWD was amplified from both lymphoid and neural tissues of positive control deer but not from identical tissues of negative control deer. Discussion Detection of subclinical infection in deer orally exposed to urine and feces (1) suggests that a prolonged subclinical state can exist, necessitating observation periods in excess of two years to detect CWD infection, and (2) illustrates the sensitive and specific application of sPMCA in the diagnosis of low-level prion infection. Based on these results, it is possible that low doses of prions, e.g. following oral exposure to urine and saliva of CWD-infected deer, bypass significant amplification in the LRS, perhaps utilizing a neural conduit between the alimentary tract and CNS, as has been demonstrated in some other prion diseases.
Collapse
Affiliation(s)
- Nicholas J. Haley
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Candace K. Mathiason
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Mark D. Zabel
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Glenn C. Telling
- Department of Molecular Biology and Genetics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Edward A. Hoover
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
27
|
Spraker TR, VerCauteren KC, Gidlewski TL, Munger RD, Walter WD, Balachandran A. Impact of Age and Sex of Rocky Mountain Elk (Cervus Elaphus Nelsoni) on Follicle Counts from Rectal Mucosal Biopsies for Preclinical Detection of Chronic Wasting Disease. J Vet Diagn Invest 2009; 21:868-70. [DOI: 10.1177/104063870902100618] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To determine if the number of rectal lymphoid follicles decreases with respect to age and sex relative to diagnosis of chronic wasting disease (CWD), rectal biopsies ( n = 1,361) were taken from captive Rocky Mountain elk ( Cervus elaphus nelsoni) at 4 ranches in the western United States between 2005 and 2008. Rectal tissues were stained with a monoclonal antibody (F99/97.6.1), which selectively stains the abnormal isoform of the prion protein associated with CWD of elk. The number of lymphoid follicles obtained from typical biopsy tissues decreased with the age of the animal. The acceptable number of lymphoid follicles for detection of CWD was not considered to be a problem in elk up to 8.5 years of age, but in elk over 8.5 years of age, the follicle count was considered to be low. Sex of the animal had no effect on the number of lymphoid follicles observed in each age group. Rectal biopsies were an accurate test to diagnose preclinical stages of CWD in elk but may be best suited to elk that are less then 8.5 years of age.
Collapse
Affiliation(s)
- Terry R. Spraker
- Colorado State University Diagnostic Laboratory, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Kurt C. VerCauteren
- The National Wildlife Research Center, U.S. Department of Agriculture, Animal Plant and Health Inspection Service, Wildlife Services, National Wildlife Research Center
| | | | | | - W. David Walter
- The National Wildlife Research Center, U.S. Department of Agriculture, Animal Plant and Health Inspection Service, Wildlife Services, National Wildlife Research Center
| | - Aru Balachandran
- The Animal Disease Research Institute, Canadian Food Inspection Agency, Nepean, Ontario, Canada
| |
Collapse
|
28
|
Brown KL, Wathne GJ, Sales J, Bruce ME, Mabbott NA. The effects of host age on follicular dendritic cell status dramatically impair scrapie agent neuroinvasion in aged mice. THE JOURNAL OF IMMUNOLOGY 2009; 183:5199-207. [PMID: 19786551 DOI: 10.4049/jimmunol.0802695] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Following peripheral exposure, many transmissible spongiform encephalopathy (TSE) agents accumulate first in lymphoid tissues before spreading to the CNS (termed neuroinvasion) where they cause neurodegeneration. Early TSE agent accumulation upon follicular dendritic cells (FDCs) in lymphoid follicles appears critical for efficient neuroinvasion. Most clinical cases of variant Creutzfeldt-Jakob disease have occurred in young adults, although the reasons behind this apparent age-related susceptibility are uncertain. Host age has a significant influence on immune function. As FDC status and immune complex trapping is reduced in aged mice (600 days old), we hypothesized that this aging-related decline in FDC function might impair TSE pathogenesis. We show that coincident with the effects of host age on FDC status, the early TSE agent accumulation in the spleens of aged mice was significantly impaired. Furthermore, following peripheral exposure, none of the aged mice developed clinical TSE disease during their lifespans, although most mice displayed histopathological signs of TSE disease in their brains. Our data imply that the reduced status of FDCs in aged mice significantly impairs the early TSE agent accumulation in lymphoid tissues and subsequent neuroinvasion. Furthermore, the inefficient neuroinvasion in aged individuals may lead to significant levels of subclinical TSE disease in the population.
Collapse
Affiliation(s)
- Karen L Brown
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Roslin, United Kingdom
| | | | | | | | | |
Collapse
|
29
|
Spraker TR, VerCauteren KC, Gidlewski T, Schneider DA, Munger R, Balachandran A, O'Rourke KI. Antemortem detection of PrPCWD in preclinical, ranch-raised Rocky Mountain elk (Cervus elaphus nelsoni) by biopsy of the rectal mucosa. J Vet Diagn Invest 2009; 21:15-24. [PMID: 19139496 DOI: 10.1177/104063870902100103] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Antemortem biopsy of the rectal mucosa was evaluated as a method for the preclinical diagnosis of chronic wasting disease (CWD) in a herd of ranch-raised Rocky Mountain elk (Cervus elaphus nelsoni) quarantined because of exposure to CWD. Biopsy samples were obtained from 41 elk during the winter of 2005-2006 and from 26 elk from that herd still alive and available for testing during the winter of 2006-2007. Samples were examined for PrP(CWD), the protein marker for CWD infection, by immunohistochemistry. PrP(CWD) was detected in follicles of the rectoanal mucosa-associated lymphoid tissue in biopsy samples from 1 elk with clinical signs of chronic wasting disease and 5 clinically normal elk. The diagnosis was confirmed in all 6 animals by postmortem analysis of brain and peripheral lymph nodes. PrP(CWD) was also observed in the submucosal plexus and myenteric plexus of the enteric nervous system, and in close association with nonmyelinated mucosal and submucosal nerve fibers. In antemortem rectal biopsy samples from positive animals, immunostaining was consistently observed in approximately 60% of the mucosa-associated lymphoid tissue follicles if 10 or more total follicles per biopsy were present for evaluation. Most antemortem biopsy samples obtained from elk younger than 6.5 years contained at least 10 follicles per rectal mucosal biopsy. These findings support the analysis of antemortem biopsy of the rectal mucosa samples as part of an integrated strategy to manage chronic wasting disease in Rocky Mountain elk.
Collapse
Affiliation(s)
- Terry R Spraker
- Colorado State University Diagnostic Laboratory, College of Veterinary Medecine, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Validation of use of rectoanal mucosa-associated lymphoid tissue for immunohistochemical diagnosis of chronic wasting disease in white-tailed deer (Odocoileus virginianus). J Clin Microbiol 2009; 47:1412-7. [PMID: 19261781 DOI: 10.1128/jcm.02209-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The examination of rectoanal mucosa-associated lymphoid tissue (RAMALT) biopsy specimens for the diagnosis of transmissible spongiform encephalopathies has been described in sheep, elk, and small numbers of mule and white-tailed deer. Previous sample numbers have been too small to validate examination of this type of tissue as a viable antemortem diagnostic test. In this study, we examined RAMALT collected postmortem from 76 white-tailed deer removed from a farm in Wisconsin known to be affected by chronic wasting disease (CWD) and from 210 free-ranging white-tailed deer harvested from an area in Wisconsin where the overall prevalence of CWD among the deer was approximately 4 to 6%. The results of immunohistochemical (IHC) staining of the RAMALT sections were compared to the results of IHC staining of sections from the brain stem at the convergence of the dorsal motor nucleus of the vagus nerve, sections of the medial retropharyngeal lymph nodes (RLNs), and sections of tonsil (sections of tonsil only from captive animals were tested). The sensitivities of the IHC staining test with RAMALT sections were 81% for the captive animals and 91% for the free-ranging animals. False-negative results were usually associated with early infection, indicated by a low intensity of immunostaining in the obex and/or a polymorphism at PRNP codon 96. While the RLN remains the tissue of choice for use for the diagnosis of CWD in white-tailed deer, the results of the present study further support the use of RAMALTs collected antemortem as an adjunct to testing of tonsil biopsy specimens and surveillance by necropsy for the screening of farmed deer which have been put at risk through environmental exposure or exposure to deer with CWD.
Collapse
|
31
|
González L, Horton R, Ramsay D, Toomik R, Leathers V, Tonelli Q, Dagleish MP, Jeffrey M, Terry L. Adaptation and evaluation of a rapid test for the diagnosis of sheep scrapie in samples of rectal mucosa. J Vet Diagn Invest 2008; 20:203-8. [PMID: 18319433 DOI: 10.1177/104063870802000209] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent publications, it was shown that disease-associated prion protein (PrP(d)) accumulates in the lymphoid tissue of the rectal mucosa of a high proportion of scrapie-infected sheep at clinical and preclinical stages, regardless of several host factors; PrP(d) can also be detected in biopsy specimens of rectal mucosa, with an increased probability proportional to age or incubation period and with an efficiency almost identical to that of tonsil biopsies. Rectal biopsies have the advantages of providing higher numbers of lymphoid follicles and of being simpler to perform, which makes them suitable for scrapie screening in the field. In biopsy samples, PrP(d) could be demonstrated by immunohistochemical (IHC) and Western immunoblotting methods, and the purpose of the present study was to optimize and evaluate a "rapid test" for the diagnosis of scrapie in rectal biopsy samples. The HerdChek CWD (chronic wasting disease) antigen EIA (enzyme immunoassay) test was chosen and, once optimized, provided specificity and sensitivity figures of 99.2% and 93.5%, respectively, compared with IHC results in the same samples obtained at a postmortem. The sensitivity of the assay increased from 82.1%, when a single rectal mucosa sample was tested to 99.4% for those sheep in which 3 or more samples were analyzed. Similarly, sensitivity values of the HerdChek CWD antigen EIA test on biopsy samples increased from 95% to 100% for sheep subjected to 1 or 2 sequential biopsies 4 months apart, respectively. Thus, a preclinical diagnosis of scrapie in live sheep can be achieved by a combination of a simple sampling procedure, which can be repeated several times with no detrimental effect for the animals, and a rapid and efficient laboratory method.
Collapse
Affiliation(s)
- Lorenzo González
- Veterinary Laboratories Agency, Pentlands Science Park, Bush Loan, PENICUIK, Midlothian EH26 0PZ, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sigurdson CJ. A prion disease of cervids: chronic wasting disease. Vet Res 2008; 39:41. [PMID: 18381058 DOI: 10.1051/vetres:2008018] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 03/31/2008] [Indexed: 11/15/2022] Open
Abstract
Chronic wasting disease (CWD) is a prion disease of deer, elk, and moose, initially recognized in Colorado mule deer. The discovery of CWD beyond the borders of Colorado and Wyoming, in Canada and as far east as New York, has led to its emergence as a prion disease of international importance. Epidemiological studies indicate that CWD is horizontally transmitted among free-ranging animals, potentially indirectly by prion-containing secreta or excreta contaminating the environment. Experimental CWD transmission attempts to other wild and domestic mammals and to transgenic mice expressing the prion protein of cattle, sheep, and humans have shed light on CWD species barriers. Transgenic mice expressing the cervid prion protein have proven useful for assessing the genetic influences of Prnp polymorphisms on CWD susceptibility. Accumulating evidence of CWD pathogenesis indicates that the misfolded prion protein or prion infectivity seems to be widely disseminated in many nonneural organs and in blood. This review highlights contemporary research findings in this prion disease of free-ranging wildlife.
Collapse
Affiliation(s)
- Christina J Sigurdson
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093-0612, USA.
| |
Collapse
|
33
|
González L, Dagleish MP, Martin S, Dexter G, Steele P, Finlayson J, Jeffrey M. Diagnosis of preclinical scrapie in live sheep by the immunohistochemical examination of rectal biopsies. Vet Rec 2008; 162:397-403. [DOI: 10.1136/vr.162.13.397] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- L. González
- Veterinary Laboratories Agency - Lasswade; Pentlands Science Park, Bush Loan Midlothian EH26 0PZ
| | - M. P. Dagleish
- Moredun Research Institute; Pentlands Science Park, Bush Loan Midlothian EH26 0PZ
| | - S. Martin
- Veterinary Laboratories Agency - Lasswade; Pentlands Science Park, Bush Loan Midlothian EH26 0PZ
| | - G. Dexter
- Veterinary Laboratories Agency - Weybridge; Addlestone Surrey KT15 3NB
| | - P. Steele
- Moredun Research Institute; Pentlands Science Park, Bush Loan Midlothian EH26 0PZ
| | - J. Finlayson
- Moredun Research Institute; Pentlands Science Park, Bush Loan Midlothian EH26 0PZ
| | - M. Jeffrey
- Veterinary Laboratories Agency - Lasswade; Pentlands Science Park, Bush Loan Midlothian EH26 0PZ
| |
Collapse
|
34
|
Abstract
The transmissible spongiform encephalopathies (TSEs) invariably result in fatal neurodegeneration and accumulation of PrP, an abnormal form of the host prion protein PrP, encoded by the PRNP gene. A naturally occurring polymorphism (methionine/valine) at PRNP codon 129 is associated with variation in relative disease susceptibility, incubation time, clinical presentation, neuropathology, and/or PrP biochemical characteristics in a range of human TSEs. A methionine/leucine polymorphism at the corresponding site in the Rocky Mountain elk PRNP gene is associated with variation in relative susceptibility and incubation time in the cervid TSE chronic wasting disease. We now report that elk lacking the predisposing 132-methionine allele develop chronic wasting disease after a long incubation period and display a novel PrP folding pattern.
Collapse
|