1
|
Isidoro-Ayza M, Lorch JM, Klein BS. The skin I live in: Pathogenesis of white-nose syndrome of bats. PLoS Pathog 2024; 20:e1012342. [PMID: 39207947 PMCID: PMC11361426 DOI: 10.1371/journal.ppat.1012342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The emergence of white-nose syndrome (WNS) in North America has resulted in mass mortalities of hibernating bats and total extirpation of local populations. The need to mitigate this disease has stirred a significant body of research to understand its pathogenesis. Pseudogymnoascus destructans, the causative agent of WNS, is a psychrophilic (cold-loving) fungus that resides within the class Leotiomycetes, which contains mainly plant pathogens and is unrelated to other consequential pathogens of animals. In this review, we revisit the unique biology of hibernating bats and P. destructans and provide an updated analysis of the stages and mechanisms of WNS progression. The extreme life history of hibernating bats, the psychrophilic nature of P. destructans, and its evolutionary distance from other well-characterized animal-infecting fungi translate into unique host-pathogen interactions, many of them yet to be discovered.
Collapse
Affiliation(s)
- Marcos Isidoro-Ayza
- Department of Pediatrics, Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jeffrey M. Lorch
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Bruce S. Klein
- Department of Pediatrics, Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
2
|
Isidoro-Ayza M, Klein BS. Pathogenic strategies of Pseudogymnoascus destructans during torpor and arousal of hibernating bats. Science 2024; 385:194-200. [PMID: 38991070 DOI: 10.1126/science.adn5606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/14/2024] [Indexed: 07/13/2024]
Abstract
Millions of hibernating bats across North America have died from white-nose syndrome (WNS), an emerging disease caused by a psychrophilic (cold-loving) fungus, Pseudogymnoascus destructans, that invades their skin. Mechanisms of P. destructans invasion of bat epidermis remain obscure. Guided by our in vivo observations, we modeled hibernation with a newly generated little brown bat (Myotis lucifugus) keratinocyte cell line. We uncovered the stealth intracellular lifestyle of P. destructans, which inhibits apoptosis of keratinocytes and spreads through the cells by two epidermal growth factor receptor (EGFR)-dependent mechanisms: active penetration during torpor and induced endocytosis during arousal. Melanin of endocytosed P. destructans blocks endolysosomal maturation, facilitating P. destructans survival and germination after return to torpor. Blockade of EGFR aborts P. destructans entry into keratinocytes.
Collapse
Affiliation(s)
- Marcos Isidoro-Ayza
- Department of Pediatrics, Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bruce S Klein
- Department of Pediatrics, Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
3
|
Greening SS, Haman K, Drazenovich T, Chacon-Heszele M, Scafini M, Turner G, Huckabee J, Leonhardt J, vanWestrienen J, Perelman M, Thompson P, Keel MK. Validation of a Field-Portable, Handheld Real-Time PCR System for Detecting Pseudogymnoascus destructans, the Causative Agent of White-Nose Syndrome in Bats. J Wildl Dis 2024; 60:298-305. [PMID: 38329747 DOI: 10.7589/jwd-d-23-00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024]
Abstract
White-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans, has decimated bat populations across North America. Despite ongoing management programs, WNS continues to expand into new populations, including in US states previously thought to be free from the pathogen and disease. This expansion highlights a growing need for surveillance tools that can be used to enhance existing monitoring programs and support the early detection of P. destructans in new areas. We evaluated the feasibility of using a handheld, field-portable, real-time (quantitative) PCR (qPCR) thermocycler known as the Biomeme two3 and the associated field-based nucleic acid extraction kit and assay reagents for the detection of P. destructans in little brown bats (Myotis lucifugus). Results from the field-based protocol using the Biomeme platform were compared with those from a commonly used laboratory-based qPCR protocol. When using dilutions of known conidia concentrations, the lowest detectable concentration with the laboratory-based approach was 108.8 conidia/mL, compared with 1,087.5 conidia/mL (10 times higher, i.e., one fewer 10× dilution) using the field-based approach. Further comparisons using field samples suggest a high level of concordance between the two protocols, with positive and negative agreements of 98.2% and 100% respectively. The cycle threshold values were marginally higher for most samples using the field-based protocol. These results are an important step in establishing and validating a rapid, field-assessable detection platform for P. destructans, which is urgently needed to improve the surveillance and monitoring capacity for WNS and support on-the-ground management and response efforts.
Collapse
Affiliation(s)
- Sabrina S Greening
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, 382 West Street Road, Kennett Square, Pennsylvania 19348, USA
| | - Katie Haman
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, 382 West Street Road, Kennett Square, Pennsylvania 19348, USA
- Washington Department of Fish and Wildlife, 1111 Washington Street, Olympia, Washington 98501, USA
| | - Tracy Drazenovich
- One Health Institute, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive, Davis, California 95616, USA
| | - Maria Chacon-Heszele
- Biomeme, 401 North Broad Street, Suite 222, Philadelphia, Pennsylvania 19108, USA
| | - Michael Scafini
- Bureau of Wildlife Management, Pennsylvania Game Commission, 2001 Elmerton Avenue, Harrisburg, Pennsylvania 17110, USA
| | - Greg Turner
- Bureau of Wildlife Management, Pennsylvania Game Commission, 2001 Elmerton Avenue, Harrisburg, Pennsylvania 17110, USA
| | - John Huckabee
- PAWS Wildlife Center, 15305 44th Avenue West, Lynnwood, Washington 98087, USA
| | - Jean Leonhardt
- PAWS Wildlife Center, 15305 44th Avenue West, Lynnwood, Washington 98087, USA
| | - Jesse vanWestrienen
- Biomeme, 401 North Broad Street, Suite 222, Philadelphia, Pennsylvania 19108, USA
| | - Max Perelman
- Biomeme, 401 North Broad Street, Suite 222, Philadelphia, Pennsylvania 19108, USA
| | - Patricia Thompson
- Washington Department of Fish and Wildlife, 1111 Washington Street, Olympia, Washington 98501, USA
| | - M Kevin Keel
- Department of Veterinary Medicine, Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive, Davis, California 95616, USA
| |
Collapse
|
4
|
Pérez AA, Tobin A, Stechly JV, Ferrante JA, Hunter ME. A minimally invasive, field-applicable CRISPR/Cas biosensor to aid in the detection of Pseudogymnoascus destructans, the causative fungal agent of white-nose syndrome in bats. Mol Ecol Resour 2024; 24:e13902. [PMID: 38069533 DOI: 10.1111/1755-0998.13902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023]
Abstract
The accessibility to CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein) genetic tools has given rise to applications beyond site-directed genome editing for the detection of DNA and RNA. These tools include precise diagnostic detection of human disease pathogens, such as SARS-CoV-2 and Zika virus. Despite the technology being rapid and cost-effective, the use of CRISPR/Cas tools in the surveillance of the causative agents of wildlife diseases has not been prominent. This study presents the development of a minimally invasive, field-applicable and user-friendly CRISPR/Cas-based biosensor for the detection of Pseudogymnoascus destructans (Pd), the causative fungal agent of white-nose syndrome (WNS), an infectious disease that has killed more than five million bats in North America since its discovery in 2006. The biosensor assay combines a recombinase polymerase amplification (RPA) step followed by CRISPR/Cas12a nuclease cleavage to detect Pd DNA from bat dermal swab and guano samples. The biosensor had similar detection results when compared to quantitative PCR in distinguishing Pd-positive versus negative field samples. Although bat dermal swabs could be analysed with the biosensor without nucleic acid extraction, DNA extraction was needed when screening guano samples to overcome inhibitors. This assay can be applied to help with more rapid delineation of Pd-positive sites in the field to inform management decisions. With further optimization, this technology has broad translation potential to wildlife disease-associated pathogen detection and monitoring applications.
Collapse
Affiliation(s)
- Adam A Pérez
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, Florida, USA
| | - Abigail Tobin
- Washington Department of Fish and Wildlife, Olympia, Washington, USA
| | - John V Stechly
- Cherokee Nation System Solutions, Contractor to the U.S. Geological Survey, Gainesville, Florida, USA
| | - Jason A Ferrante
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, Florida, USA
| | - Margaret E Hunter
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, Florida, USA
| |
Collapse
|
5
|
Hicks AC, Darling SR, Flewelling JE, von Linden R, Meteyer CU, Redell DN, White JP, Redell J, Smith R, Blehert DS, Rayman-Metcalf NL, Hoyt JR, Okoniewski JC, Langwig KE. Environmental transmission of Pseudogymnoascus destructans to hibernating little brown bats. Sci Rep 2023; 13:4615. [PMID: 36944682 PMCID: PMC10030556 DOI: 10.1038/s41598-023-31515-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/13/2023] [Indexed: 03/23/2023] Open
Abstract
Pathogens with persistent environmental stages can have devastating effects on wildlife communities. White-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans, has caused widespread declines in bat populations of North America. In 2009, during the early stages of the WNS investigation and before molecular techniques had been developed to readily detect P. destructans in environmental samples, we initiated this study to assess whether P. destructans can persist in the hibernaculum environment in the absence of its conclusive bat host and cause infections in naive bats. We transferred little brown bats (Myotis lucifugus) from an unaffected winter colony in northwest Wisconsin to two P. destructans contaminated hibernacula in Vermont where native bats had been excluded. Infection with P. destructans was apparent on some bats within 8 weeks following the introduction of unexposed bats to these environments, and mortality from WNS was confirmed by histopathology at both sites 14 weeks following introduction. These results indicate that environmental exposure to P. destructans is sufficient to cause the infection and mortality associated with WNS in naive bats, which increases the probability of winter colony extirpation and complicates conservation efforts.
Collapse
Affiliation(s)
- Alan C Hicks
- New York State Department of Environmental Conservation, 625 Broadway, Albany, NY, 12233-4754, USA
| | - Scott R Darling
- Vermont Fish and Wildlife Department, 271 North Main Street, Suite 215, Rutland, VT, 05701, USA
| | - Joel E Flewelling
- Vermont Fish and Wildlife Department, 271 North Main Street, Suite 215, Rutland, VT, 05701, USA
| | - Ryan von Linden
- New York State Department of Environmental Conservation, 625 Broadway, Albany, NY, 12233-4754, USA
| | - Carol U Meteyer
- U.S. Geological Survey, National Wildlife Health Center, 6006 Schroeder Rd., Madison, WI, 53711, USA
| | - David N Redell
- Wisconsin Department of Natural Resources, Madison, WI, USA
| | - J Paul White
- Wisconsin Department of Natural Resources, Madison, WI, USA
| | | | - Ryan Smith
- Vermont Fish and Wildlife Department, 271 North Main Street, Suite 215, Rutland, VT, 05701, USA
| | - David S Blehert
- U.S. Geological Survey, National Wildlife Health Center, 6006 Schroeder Rd., Madison, WI, 53711, USA
| | | | - Joseph R Hoyt
- New York State Department of Environmental Conservation, 625 Broadway, Albany, NY, 12233-4754, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Joseph C Okoniewski
- New York State Department of Environmental Conservation, 625 Broadway, Albany, NY, 12233-4754, USA
| | - Kate E Langwig
- New York State Department of Environmental Conservation, 625 Broadway, Albany, NY, 12233-4754, USA.
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
6
|
Fungal Diversity in Korean Caves and Cave-Inhabiting Bats with Attention to Pseudogymnoascus Species. DIVERSITY 2023. [DOI: 10.3390/d15020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pseudogymnoascus is a psychrophilic fungus, which is a genus widely distributed in cold regions around the world. Recently, the presence of Pseudogymnoascus destructans (Pd), the causative agent of white-nose syndrome (WNS) belonging to Pseudogymnoascus, has been reported in neighboring countries of Korea. However, no investigation on Pd has been reported in Korea. In this study, cave-inhabiting bats and their habitats were investigated in terms of the diversity of cave fungi, and we tried to confirm the presence of Pd. Three caves suspected of hosting Pd were selected, and 83 environmental and 53 bat samples were collected. A total of 154 fungal strains belonging to 31 different genera were isolated, and 20 of 154 were confirmed to belong to Pseudogymnoascus. Pd-diagnostic PCR was performed to check whether Pd was present in the isolated Pseudogymnoascus, and seven positives were confirmed. However, phylogenetic analyses revealed that no isolates belonged or were closely related to the clade with Pd. Although samples were collected from limited areas, undescribed Pseudogymnoascus species were isolated, and it was confirmed that Korean isolates were distributed in various clades. In conclusion, it is hypothesized that Korean Pseudogymnoascus presents high diversity.
Collapse
|
7
|
Niessen L, Fritze M, Wibbelt G, Puechmaille SJ. Development and Application of Loop-Mediated Isothermal Amplification (LAMP) Assays for Rapid Diagnosis of the Bat White-Nose Disease Fungus Pseudogymnoascus destructans. Mycopathologia 2022; 187:547-565. [PMID: 35931867 DOI: 10.1007/s11046-022-00650-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
Pseudogymnoascus destructans (= Geomyces destructans) is a psychrophilic filamentous fungus that causes White-Nose Disease (WND; the disease associated with White-Nose Syndrome, WNS) in hibernating bats. The disease has caused considerable reductions in bat populations in the USA and Canada since 2006. Identification and detection of the pathogen in pure cultures and environmental samples is routinely based on qPCR or PCR after DNA isolation and purification. Rapid and specific direct detection of the fungus in the field would strongly improve prompt surveillance, and support control measures. Based on the genes coding for ATP citrate lyase1 (acl1) and the 28S-18S ribosomal RNA intergenic spacer (IGS) in P. destructans, two independent LAMP assays were developed for the rapid and sensitive diagnosis of the fungus. Both assays could discriminate P. destructans from 159 tested species of filamentous fungi and yeasts. Sensitivity of the assays was 2.1 picogram per reaction (pg/rxn) and 21 femtogram per reaction (fg/rxn) for the acl1 and IGS based assays, respectively. Moreover, both assays also work with spores and mycelia of P. destructans that are directly added to the master mix without prior DNA extraction. For field-diagnostics, we developed and tested a field-applicable version of the IGS-based LAMP assay. Lastly, we also developed a protocol for preparation of fungal spores and mycelia from swabs and tape liftings of contaminated surfaces or infected bats. This protocol in combination with the highly sensitive IGS-based LAMP-assay enabled sensitive detection of P. destructans from various sources.
Collapse
Affiliation(s)
- Ludwig Niessen
- TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 4, 85354, Freising, Germany.
| | - Marcus Fritze
- Applied Zoology and Nature Conservation, University of Greifswald, Loitzer Str. 26, 17489, Greifswald, Germany.,German Bat Observatory, Am Juliusturm 64, 13599, Berlin, Germany
| | - Gudrun Wibbelt
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| | - Sebastien J Puechmaille
- Applied Zoology and Nature Conservation, University of Greifswald, Loitzer Str. 26, 17489, Greifswald, Germany.,ISEM, CNRS, EPHE, IRD, University of Montpellier, Montpellier, France.,Institut Universitaire de France, 75005, Paris, France
| |
Collapse
|
8
|
Towards a more healthy conservation paradigm: integrating disease and molecular ecology to aid biological conservation †. J Genet 2021. [PMID: 33622992 PMCID: PMC7371965 DOI: 10.1007/s12041-020-01225-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parasites, and the diseases they cause, are important from an ecological and evolutionary perspective because they can negatively affect host fitness and can regulate host populations. Consequently, conservation biology has long recognized the vital role that parasites can play in the process of species endangerment and recovery. However, we are only beginning to understand how deeply parasites are embedded in ecological systems, and there is a growing recognition of the important ways in which parasites affect ecosystem structure and function. Thus, there is an urgent need to revisit how parasites are viewed from a conservation perspective and broaden the role that disease ecology plays in conservation-related research and outcomes. This review broadly focusses on the role that disease ecology can play in biological conservation. Our review specifically emphasizes on how the integration of tools and analytical approaches associated with both disease and molecular ecology can be leveraged to aid conservation biology. Our review first concentrates on disease-mediated extinctions and wildlife epidemics. We then focus on elucidating how host–parasite interactions has improved our understanding of the eco-evolutionary dynamics affecting hosts at the individual, population, community and ecosystem scales. We believe that the role of parasites as drivers and indicators of ecosystem health is especially an exciting area of research that has the potential to fundamentally alter our view of parasites and their role in biological conservation. The review concludes with a broad overview of the current and potential applications of modern genomic tools in disease ecology to aid biological conservation.
Collapse
|
9
|
Analysis of Archival Specimens Confirms White-Nose Syndrome in Little Brown Bats (Myotis lucifugus) from New York, USA, in Spring 2007. J Wildl Dis 2021; 57:457-460. [PMID: 33600575 DOI: 10.7589/jwd-d-20-00137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/29/2020] [Indexed: 11/20/2022]
Abstract
White-nose syndrome (WNS), an emerging fungal disease of North American bats, was first diagnosed in January 2008, although mortality and photodocumentation suggest the disease might have been present earlier. Using archived samples, we describe a definitive case of WNS in little brown bats (Myotis lucifugus) from New York, US, in spring 2007.
Collapse
|
10
|
Blehert DS, Lorch JM. Laboratory Maintenance and Culture of Pseudogymnoascus destructans, the Fungus That Causes Bat White-Nose Syndrome. Curr Protoc 2021; 1:e23. [PMID: 33497534 DOI: 10.1002/cpz1.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pseudogymnoascus destructans is a fungal pathogen that causes white-nose syndrome, an emerging and fatal disease of North American bats that has led to unprecedented population declines. As a psychrophile, P. destructans is adapted to infect bats during winter hibernation, when host metabolic activity and core body temperature are greatly reduced. The ability to maintain and cultivate isolates of P. destructans in the laboratory is necessary for conducting research with this fungus. This article describes protocols for culturing P. destructans from bat wing skin and soil, for cryopreserving the fungus, and for preparing liquid suspensions for laboratory experimentation. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Isolating Pseudogymnoascus destructans from bat wing skin Basic Protocol 2: Isolating Pseudogymnoascus destructans from soil Basic Protocol 3: Cryopreservation of Pseudogymnoascus destructans Basic Protocol 4: Preparing liquid conidial suspension of Pseudogymnoascus destructans.
Collapse
Affiliation(s)
- David S Blehert
- U.S. Geological Survey National Wildlife Health Center, Madison, Wisconsin
| | - Jeffrey M Lorch
- U.S. Geological Survey National Wildlife Health Center, Madison, Wisconsin
| |
Collapse
|
11
|
Krishnan A. Lessons Across Scales: Molecular Ecology and Wildlife Conservation. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-021-00232-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Jia B, Colling A, Stallknecht DE, Blehert D, Bingham J, Crossley B, Eagles D, Gardner IA. Validation of laboratory tests for infectious diseases in wild mammals: review and recommendations. J Vet Diagn Invest 2020; 32:776-792. [PMID: 32468923 DOI: 10.1177/1040638720920346] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Evaluation of the diagnostic sensitivity (DSe) and specificity (DSp) of tests for infectious diseases in wild animals is challenging, and some of the limitations may affect compliance with the OIE-recommended test validation pathway. We conducted a methodologic review of test validation studies for OIE-listed diseases in wild mammals published between 2008 and 2017 and focused on study design, statistical analysis, and reporting of results. Most published papers addressed Mycobacterium bovis infection in one or more wildlife species. Our review revealed limitations or missing information about sampled animals, identification criteria for positive and negative samples (case definition), representativeness of source and target populations, and species in the study, as well as information identifying animals sampled for calculations of DSe and DSp as naturally infected captive, free-ranging, or experimentally challenged animals. The deficiencies may have reflected omissions in reporting rather than design flaws, although lack of random sampling might have induced bias in estimates of DSe and DSp. We used case studies of validation of tests for hemorrhagic diseases in deer and white-nose syndrome in hibernating bats to demonstrate approaches for validation when new pathogen serotypes or genotypes are detected and diagnostic algorithms are changed, and how purposes of tests evolve together with the evolution of the pathogen after identification. We describe potential benefits of experimental challenge studies for obtaining DSe and DSp estimates, methods to maintain sample integrity, and Bayesian latent class models for statistical analysis. We make recommendations for improvements in future studies of detection test accuracy in wild mammals.
Collapse
Affiliation(s)
- Beibei Jia
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada (Jia, Gardner).,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (Colling, Bingham, Eagles).,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA (Stallknecht).,U.S. Geological Survey, National Wildlife Health Center, Madison, WI (Blehert).,California Animal Health and Food Safety Laboratory, University of California-Davis, Davis, CA (Crossley)
| | - Axel Colling
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada (Jia, Gardner).,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (Colling, Bingham, Eagles).,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA (Stallknecht).,U.S. Geological Survey, National Wildlife Health Center, Madison, WI (Blehert).,California Animal Health and Food Safety Laboratory, University of California-Davis, Davis, CA (Crossley)
| | - David E Stallknecht
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada (Jia, Gardner).,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (Colling, Bingham, Eagles).,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA (Stallknecht).,U.S. Geological Survey, National Wildlife Health Center, Madison, WI (Blehert).,California Animal Health and Food Safety Laboratory, University of California-Davis, Davis, CA (Crossley)
| | - David Blehert
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada (Jia, Gardner).,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (Colling, Bingham, Eagles).,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA (Stallknecht).,U.S. Geological Survey, National Wildlife Health Center, Madison, WI (Blehert).,California Animal Health and Food Safety Laboratory, University of California-Davis, Davis, CA (Crossley)
| | - John Bingham
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada (Jia, Gardner).,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (Colling, Bingham, Eagles).,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA (Stallknecht).,U.S. Geological Survey, National Wildlife Health Center, Madison, WI (Blehert).,California Animal Health and Food Safety Laboratory, University of California-Davis, Davis, CA (Crossley)
| | - Beate Crossley
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada (Jia, Gardner).,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (Colling, Bingham, Eagles).,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA (Stallknecht).,U.S. Geological Survey, National Wildlife Health Center, Madison, WI (Blehert).,California Animal Health and Food Safety Laboratory, University of California-Davis, Davis, CA (Crossley)
| | - Debbie Eagles
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada (Jia, Gardner).,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (Colling, Bingham, Eagles).,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA (Stallknecht).,U.S. Geological Survey, National Wildlife Health Center, Madison, WI (Blehert).,California Animal Health and Food Safety Laboratory, University of California-Davis, Davis, CA (Crossley)
| | - Ian A Gardner
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada (Jia, Gardner).,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (Colling, Bingham, Eagles).,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA (Stallknecht).,U.S. Geological Survey, National Wildlife Health Center, Madison, WI (Blehert).,California Animal Health and Food Safety Laboratory, University of California-Davis, Davis, CA (Crossley)
| |
Collapse
|
13
|
Doty AC, Wilson AD, Forse LB, Risch TS. Assessment of the Portable C-320 Electronic Nose for Discrimination of Nine Insectivorous Bat Species: Implications for Monitoring White-Nose Syndrome. BIOSENSORS-BASEL 2020; 10:bios10020012. [PMID: 32069963 PMCID: PMC7168176 DOI: 10.3390/bios10020012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 12/29/2022]
Abstract
The development of new C-320 electronic-nose (e-nose) methods for pre-symptomatic detection of White-Nose Syndrome (WNS) in bats has required efficacy studies of instrument capabilities to discriminate between major sources of volatile organic compounds (VOCs) derived from clinical samples. In this phase-2 study, we further tested this e-nose for capabilities to distinguish between bat species based on differences in whole-body VOC emissions. Live healthy individuals of nine bat species were temporarily captured outside of caves in Arkansas and Louisiana. VOC emissions from bats were collected using newly developed portable air collection and sampling-chamber devices in tandem. Sensor-array output responses to bat VOC emissions were compared to those of 22 pure VOC analytical standards from five chemical classes. Distinct smellprint signatures were produced from e-nose analyses of VOC metabolites derived from individual bat species. Smellprint patterns were analyzed using 2-dimensional and 3-dimensional Principal Component Analysis (PCA) to produce aroma map plots showing effective discrimination between bat species with high statistical significance. These results demonstrate potential instrument efficacy for distinguishing between species-specific, bat-derived VOC metabolite emissions as major components of clinical samples collected from bats in caves for disease detection prior to symptom development. This study provided additional information required to fully test the efficacy of a portable e-nose instrument for diagnostic applications in subsequent phase-3 testing of noninvasive, early WNS disease detection in intra-cave hibernating bats.
Collapse
Affiliation(s)
- Anna C. Doty
- Department of Biology, California State University Bakersfield, Bakersfield, CA 93311, USA
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72467, USA;
- Correspondence: (A.C.D.); Tel.: +1-870-530-2955
| | - A. Dan Wilson
- Pathology Department, Southern Hardwoods Laboratory, Southern Research Station, USDA Forest Service, Stoneville, MS 38776, USA; (A.D.W.); (L.B.F.)
| | - Lisa B. Forse
- Pathology Department, Southern Hardwoods Laboratory, Southern Research Station, USDA Forest Service, Stoneville, MS 38776, USA; (A.D.W.); (L.B.F.)
| | - Thomas S. Risch
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72467, USA;
| |
Collapse
|
14
|
Can Ectoparasites Be Implicated in the Spread of Pseudogymnoascus destructans? J Wildl Dis 2019; 55:704-706. [PMID: 30628854 DOI: 10.7589/2017-12-297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Real-time PCR detected Pseudogymnoascus destructans associated with ectoparasites collected from three mist-netted free-flying bats (two gray bats, Myotis grisescens; one Indiana bat, Myotis sodalis) in late August to early September 2016 from Kentucky, US, a state impacted by white-nose syndrome. Presence of viable conidia could implicate ectoparasites as possible vectors of white-nose syndrome.
Collapse
|
15
|
Holz PH, Lumsden LF, Marenda MS, Browning GF, Hufschmid J. Two subspecies of bent-winged bats (Miniopterus orianae bassanii and oceanensis) in southern Australia have diverse fungal skin flora but not Pseudogymnoascus destructans. PLoS One 2018; 13:e0204282. [PMID: 30303979 PMCID: PMC6179213 DOI: 10.1371/journal.pone.0204282] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022] Open
Abstract
Fungi are increasingly being documented as causing disease in a wide range of faunal species, including Pseudogymnoascus destructans, the fungus responsible for white nose syndrome which is having a devastating impact on bats in North America. The population size of the Australian southern bent-winged bat (Miniopterus orianae bassanii), a critically endangered subspecies, has declined over the past 50 years. As part of a larger study to determine whether disease could be a contributing factor to this decline, southern bent-winged bats were tested for the presence of a range of potentially pathogenic fungi: P. destructans, dermatophytes and Histoplasma capsulatum (a potential human pathogen commonly associated with caves inhabited by bats). Results were compared with those obtained for the more common eastern bent-winged bat (M. orianae oceanensis). All bats and their environment were negative for P. destructans. A large number of fungi were found on the skin and fur of bats, most of which were environmental or plant associated, and none of which were likely to be of significant pathogenicity for bats. A 0–19% prevalence of H. capsulatum was detected in the bat populations sampled, but not in the environment, indicative of a low zoonotic risk. Based on the results of this study, fungi are unlikely to be contributing significantly to the population decline of the southern bent-winged bat.
Collapse
Affiliation(s)
- Peter H. Holz
- Department of Veterinary Biosciences, Melbourne Veterinary School, The Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| | - Linda F. Lumsden
- Arthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning, Heidelberg, Victoria, Australia
| | - Marc S. Marenda
- Department of Veterinary Biosciences, Melbourne Veterinary School, The Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | - Glenn F. Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jasmin Hufschmid
- Department of Veterinary Biosciences, Melbourne Veterinary School, The Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
16
|
PREVALENCE AND DISTRIBUTION OF PSEUDOGYMNOASCUS DESTRUCTANS IN MICHIGAN BATS SUBMITTED FOR RABIES SURVEILLANCE. J Wildl Dis 2017; 53:482-490. [PMID: 28318379 DOI: 10.7589/2016-08-175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Since 2006, bat populations in North America have suffered devastating mortality from an emerging disease known as white-nose syndrome (WNS). The causal agent of WNS is the fungus Pseudogymnoascus destructans. In April 2014, WNS was discovered in little brown bats ( Myotis lucifugus ) in Michigan, US, and has since been documented in 12 counties. Because current surveillance for WNS focuses primarily on mine-hibernating species in winter, it is subject to geographic, species, and seasonal bias. To investigate species affected and potential associations of gender, seasonal life cycle, and region with P. destructans prevalence, 1,040 rabies-negative bats were sampled from May 2014 to May 2015 from animals submitted as part of statewide rabies surveillance. The vast majority (96%) of the sample population consisted of big brown bats ( Eptesicus fuscus ), a noncavernicolous species. Two methods were used to detect P. destructans: fluorescence of the muzzle, wing, and tail membranes under ultraviolet light and PCR targeting genomic DNA on wing samples. Only five bats (0.5%), all M. lucifugus , were confirmed positive after nucleic acid sequencing of PCR amplicons. No other species were infected. All infected bats were collected from April to May, coinciding with their emergence from hibernation. As P. destructans and WNS spread westward, novel surveillance streams may provide a useful tool for wildlife management agencies seeking to detect the fungus where winter hibernacula such as caves and mines are absent or otherwise inaccessible.
Collapse
|
17
|
DIVERSITY OF THE TYPE 1 INTRON-ITS REGION OF THE 18S rRNA GENE IN PSEUDOGYMNOASCUS SPECIES FROM THE RED HILLS OF KANSAS. J Zoo Wildl Med 2017; 47:883-885. [PMID: 27691955 DOI: 10.1638/2015-0089.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gypsum caves found throughout the Red Hills of Kansas have the state's most diverse and largest population of cave-roosting bats. White-nose syndrome (WNS), a disease caused by the fungus Pseudogymnoascus destructans, which threatens all temperate bat species, has not been previously detected in the gypsum caves as this disease moves westward from the eastern United States. Cave soil was obtained from the gypsum caves, and using the polymerase chain reaction, a 624-nucleotide DNA fragment specific to the Type 1 intron-internal transcribed spacer region of the 18S rRNA gene from Pseudogymnoascus species was amplified. Subsequent cloning and DNA sequencing indicated P. destructans DNA was present, along with 26 uncharacterized Pseudogymnoascus DNA variants. However, no evidence of WNS was observed in bat populations residing in these caves.
Collapse
|
18
|
Avena CV, Parfrey LW, Leff JW, Archer HM, Frick WF, Langwig KE, Kilpatrick AM, Powers KE, Foster JT, McKenzie VJ. Deconstructing the Bat Skin Microbiome: Influences of the Host and the Environment. Front Microbiol 2016; 7:1753. [PMID: 27909426 PMCID: PMC5112243 DOI: 10.3389/fmicb.2016.01753] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/19/2016] [Indexed: 02/01/2023] Open
Abstract
Bats are geographically widespread and play an important role in many ecosystems, but relatively little is known about the ecology of their associated microbial communities and the role microbial taxa play in bat health, development, and evolution. Moreover, few vertebrate animal skin microbiomes have been comprehensively assessed, and thus characterizing the bat skin microbiome will yield valuable insight into the variability of vertebrate skin microbiomes as a whole. The recent emergence of the skin fungal disease white-nose syndrome highlights the potentially important role bat skin microbial communities could play in bat health. Understanding the determinant of bat skin microbial communities could provide insight into important factors allowing individuals to persist with disease. We collected skin swabs from a total of 11 bat species from the eastern United States (n = 45) and Colorado (n = 119), as well as environmental samples (n = 38) from a subset of sites, and used 16S rRNA marker gene sequencing to observe bacterial communities. In addition, we conducted a literature survey to compare the skin microbiome across vertebrate groups, including the bats presented in this study. Host species, region, and site were all significant predictors of the variability across bat skin bacterial communities. Many bacterial taxa were found both on bats and in the environment. However, some bacterial taxa had consistently greater relative abundances on bat skin relative to their environments. Bats shared many of their abundant taxa with other vertebrates, but also hosted unique bacterial lineages such as the class Thermoleophilia (Actinobacteria). A strong effect of site on the bat skin microbiome indicates that the environment very strongly influences what bacteria are present on bat skin. Bat skin microbiomes are largely composed of site-specific microbiota, but there do appear to be important host-specific taxa. How this translates to differences in host-microbial interactions and bat health remains an important knowledge gap, but this work suggests that habitat variability is very important. We identify some bacterial groups that are more consistent on bats despite site differences, and these may be important ones to study in terms of their function as potential core microbiome members.
Collapse
Affiliation(s)
- Christine V Avena
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder Boulder, CO, USA
| | - Laura Wegener Parfrey
- Departments of Botany and Zoology, University of British Columbia Vancouver, BC, Canada
| | - Jonathan W Leff
- Department of Ecology and Evolutionary Biology, University of Colorado BoulderBoulder, CO, USA; Cooperative Institute for Research in Environmental Sciences, University of Colorado BoulderBoulder, CO, USA
| | - Holly M Archer
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder Boulder, CO, USA
| | - Winifred F Frick
- Department of Ecology and Evolutionary Biology, University of California, Santa CruzSanta Cruz, CA, USA; Bat Conservation InternationalAustin, TX, USA
| | - Kate E Langwig
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz Santa Cruz, CA, USA
| | - A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz Santa Cruz, CA, USA
| | | | - Jeffrey T Foster
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire Durham, NH, USA
| | - Valerie J McKenzie
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder Boulder, CO, USA
| |
Collapse
|
19
|
Blanchong JA, Robinson SJ, Samuel MD, Foster JT. Application of genetics and genomics to wildlife epidemiology. J Wildl Manage 2016. [DOI: 10.1002/jwmg.1064] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Julie A. Blanchong
- Department of Natural Resource Ecology and Management; Iowa State University; 339 Science II Ames IA 50011 USA
| | | | - Michael D. Samuel
- U.S. Geological Survey, Wisconsin Cooperative Wildlife Research Unit; University of Wisconsin; 204 Russell Labs, 1630 Linden Dr. Madison WI 53706 USA
| | - Jeffrey T. Foster
- Department of Molecular, Cellular and Biomedical Sciences; University of New Hampshire; 291 Rudman Hall Durham NH 03824 USA
| |
Collapse
|
20
|
Wilcox A, Willis CKR. Energetic benefits of enhanced summer roosting habitat for little brown bats (Myotis lucifugus) recovering from white-nose syndrome. CONSERVATION PHYSIOLOGY 2016; 4:cov070. [PMID: 27293749 PMCID: PMC4771111 DOI: 10.1093/conphys/cov070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 12/01/2015] [Accepted: 12/12/2015] [Indexed: 06/01/2023]
Abstract
Habitat modification can improve outcomes for imperilled wildlife. Insectivorous bats in North America face a range of conservation threats, including habitat loss and white-nose syndrome (WNS). Even healthy bats face energetic constraints during spring, but enhancement of roosting habitat could reduce energetic costs, increase survival and enhance recovery from WNS. We tested the potential of artificial heating of bat roosts as a management tool for threatened bat populations. We predicted that: (i) after hibernation, captive bats would be more likely to select a roost maintained at a temperature near their thermoneutral zone; (ii) bats recovering from WNS at the end of hibernation would show a stronger preference for heated roosts compared with healthy bats; and (iii) heated roosts would result in biologically significant energy savings. We housed two groups of bats (WNS-positive and control) in separate flight cages following hibernation. Over 7.5 weeks, we quantified the presence of individuals in heated vs. unheated bat houses within each cage. We then used a series of bioenergetic models to quantify thermoregulatory costs in each type of roost under a number of scenarios. Bats preferentially selected heated bat houses, but WNS-affected bats were much more likely to use the heated bat house compared with control animals. Our model predicted energy savings of up to 81.2% for bats in artificially heated roosts if roost temperature was allowed to cool at night to facilitate short bouts of torpor. Our results are consistent with research highlighting the importance of roost microclimate and suggest that protection and enhancement of high-quality, natural roosting environments should be a priority response to a range of threats, including WNS. Our findings also suggest the potential of artificially heated bat houses to help populations recover from WNS, but more work is needed before these might be implemented on a large scale.
Collapse
Affiliation(s)
| | - Craig K. R. Willis
- Corresponding author: Department of Biology, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB, Canada R3B 2E9. Tel: +1 204 786 9433.
| |
Collapse
|
21
|
The fungus Trichophyton redellii sp. Nov. Causes skin infections that resemble white-nose syndrome of hibernating bats. J Wildl Dis 2015; 51:36-47. [PMID: 25375940 DOI: 10.7589/2014-05-134] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Before the discovery of white-nose syndrome (WNS), a fungal disease caused by Pseudogymnoascus destructans, there were no reports of fungal skin infections in bats during hibernation. In 2011, bats with grossly visible fungal skin infections similar in appearance to WNS were reported from multiple sites in Wisconsin, US, a state outside the known range of P. destructans and WNS at that time. Tape impressions or swab samples were collected from affected areas of skin from bats with these fungal infections in 2012 and analyzed by microscopy, culture, or direct DNA amplification and sequencing of the fungal internal transcribed spacer region (ITS). A psychrophilic species of Trichophyton was isolated in culture, detected by direct DNA amplification and sequencing, and observed on tape impressions. Deoxyribonucleic acid indicative of the same fungus was also detected on three of five bat carcasses collected in 2011 and 2012 from Wisconsin, Indiana, and Texas, US. Superficial fungal skin infections caused by Trichophyton sp. were observed in histopathology for all three bats. Sequencing of the ITS of Trichophyton sp., along with its inability to grow at 25 C, indicated that it represented a previously unknown species, described herein as Trichophyton redellii sp. nov. Genetic diversity present within T. redellii suggests it is native to North America but that it had been overlooked before enhanced efforts to study fungi associated with bats in response to the emergence of WNS.
Collapse
|
22
|
Abstract
In winter 2006, the bat population in Howe Cave, in central New York State, USA, contained a number of bats displaying an unusual white substance on their muzzles. The following year, numerous bats in four surrounding caves displayed unusual winter hibernation behavior, including day flying and entrance roosting. A number of bats were found dead and dying, and all demonstrated a white, powdery substance on their muzzles, ears, and wing membranes, which was later identified as the conidia of a previously undescribed fungal pathogen, Geomyces destructans. The growth of the conidia gave infected bats the appearance of having dunked their faces into powdered sugar. The disease was named white-nose syndrome and represents an emerging zoonotic mycosis, likely introduced through human activities, which has led to a precipitous decline in North American bat species.
Collapse
|
23
|
Creecy JP, Caire W, Gilcrest KA. Examination of several Oklahoma bat hibernacula cave soils for Pseudogymnoascus destructans,the causative agent of White-Nose Syndrome. SOUTHWEST NAT 2015. [DOI: 10.1894/jkf-53.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Bohuski E, Lorch JM, Griffin KM, Blehert DS. TaqMan real-time polymerase chain reaction for detection of Ophidiomyces ophiodiicola, the fungus associated with snake fungal disease. BMC Vet Res 2015; 11:95. [PMID: 25889462 PMCID: PMC4404600 DOI: 10.1186/s12917-015-0407-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 04/02/2015] [Indexed: 11/16/2022] Open
Abstract
Background Fungal skin infections associated with Ophidiomyces ophiodiicola, a member of the Chrysosporium anamorph of Nannizziopsis vriesii (CANV) complex, have been linked to an increasing number of cases of snake fungal disease (SFD) in captive snakes around the world and in wild snake populations in eastern North America. The emergence of SFD in both captive and wild situations has led to an increased need for tools to better diagnose and study the disease. Results We developed two TaqMan real-time polymerase chain reaction (PCR) assays to rapidly detect O. ophiodiicola in clinical samples. One assay targets the internal transcribed spacer region (ITS) of the fungal genome while the other targets the more variable intergenic spacer region (IGS). The PCR assays were qualified using skin samples collected from 50 snakes for which O. ophiodiicola had been previously detected by culture, 20 snakes with gross skin lesions suggestive of SFD but which were culture-negative for O. ophiodiicola, and 16 snakes with no clinical signs of infection. Both assays performed equivalently and proved to be more sensitive than traditional culture methods, detecting O. ophiodiicola in 98% of the culture-positive samples and in 40% of the culture-negative snakes that had clinical signs of SFD. In addition, the assays did not cross-react with a panel of 28 fungal species that are closely related to O. ophiodiicola or that commonly occur on the skin of snakes. The assays did, however, indicate that some asymptomatic snakes (~6%) may harbor low levels of the fungus, and that PCR should be paired with histology when a definitive diagnosis is required. Conclusions These assays represent the first published methods to detect O. ophiodiicola by real-time PCR. The ITS assay has great utility for assisting with SFD diagnoses whereas the IGS assay offers a valuable tool for research-based applications.
Collapse
Affiliation(s)
- Elizabeth Bohuski
- United States Geological Survey, National Wildlife Health Center, Madison, WI, USA.
| | - Jeffrey M Lorch
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| | - Kathryn M Griffin
- United States Geological Survey, National Wildlife Health Center, Madison, WI, USA.
| | - David S Blehert
- United States Geological Survey, National Wildlife Health Center, Madison, WI, USA.
| |
Collapse
|
25
|
|
26
|
Nonlethal screening of bat-wing skin with the use of ultraviolet fluorescence to detect lesions indicative of white-nose syndrome. J Wildl Dis 2014; 50:566-73. [PMID: 24854396 DOI: 10.7589/2014-03-058] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Definitive diagnosis of the bat disease white-nose syndrome (WNS) requires histologic analysis to identify the cutaneous erosions caused by the fungal pathogen Pseudogymnoascus [formerly Geomyces] destructans (Pd). Gross visual inspection does not distinguish bats with or without WNS, and no nonlethal, on-site, preliminary screening methods are available for WNS in bats. We demonstrate that long-wave ultraviolet (UV) light (wavelength 366-385 nm) elicits a distinct orange-yellow fluorescence in bat-wing membranes (skin) that corresponds directly with the fungal cupping erosions in histologic sections of skin that are the current gold standard for diagnosis of WNS. Between March 2009 and April 2012, wing membranes from 168 North American bat carcasses submitted to the US Geological Survey National Wildlife Health Center were examined with the use of both UV light and histology. Comparison of these techniques showed that 98.8% of the bats with foci of orange-yellow wing fluorescence (n=80) were WNS-positive based on histologic diagnosis; bat wings that did not fluoresce under UV light (n=88) were all histologically negative for WNS lesions. Punch biopsy samples as small as 3 mm taken from areas of wing with UV fluorescence were effective for identifying lesions diagnostic for WNS by histopathology. In a nonlethal biopsy-based study of 62 bats sampled (4-mm diameter) in hibernacula of the Czech Republic during 2012, 95.5% of fluorescent (n=22) and 100% of nonfluorescent (n=40) wing samples were confirmed by histopathology to be WNS positive and negative, respectively. This evidence supports use of long-wave UV light as a nonlethal and field-applicable method to screen bats for lesions indicative of WNS. Further, UV fluorescence can be used to guide targeted, nonlethal biopsy sampling for follow-up molecular testing, fungal culture analysis, and histologic confirmation of WNS.
Collapse
|
27
|
White-nose syndrome fungus: a generalist pathogen of hibernating bats. PLoS One 2014; 9:e97224. [PMID: 24820101 PMCID: PMC4018256 DOI: 10.1371/journal.pone.0097224] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 04/16/2014] [Indexed: 01/28/2023] Open
Abstract
Host traits and phylogeny can determine infection risk by driving pathogen transmission and its ability to infect new hosts. Predicting such risks is critical when designing disease mitigation strategies, and especially as regards wildlife, where intensive management is often advocated or prevented by economic and/or practical reasons. We investigated Pseudogymnoascus [Geomyces] destructans infection, the cause of white-nose syndrome (WNS), in relation to chiropteran ecology, behaviour and phylogenetics. While this fungus has caused devastating declines in North American bat populations, there have been no apparent population changes attributable to the disease in Europe. We screened 276 bats of 15 species from hibernacula in the Czech Republic over 2012 and 2013, and provided histopathological evidence for 11 European species positive for WNS. With the exception of Myotis myotis, the other ten species are all new reports for WNS in Europe. Of these, M. emarginatus, Eptesicus nilssonii, Rhinolophus hipposideros, Barbastella barbastellus and Plecotus auritus are new to the list of P. destructans-infected bat species. While the infected species are all statistically phylogenetically related, WNS affects bats from two suborders. These are ecologically diverse and adopt a wide range of hibernating strategies. Occurrence of WNS in distantly related bat species with diverse ecology suggests that the pathogen may be a generalist and that all bats hibernating within the distribution range of P. destructans may be at risk of infection.
Collapse
|
28
|
|
29
|
Mascarelli PE, Keel MK, Yabsley M, Last LA, Breitschwerdt EB, Maggi RG. Hemotropic mycoplasmas in little brown bats (Myotis lucifugus). Parasit Vectors 2014; 7:117. [PMID: 24655520 PMCID: PMC3994326 DOI: 10.1186/1756-3305-7-117] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/18/2014] [Indexed: 11/10/2022] Open
Abstract
Background Hemotropic mycoplasmas are epicellular erythrocytic bacteria that can cause infectious anemia in some mammalian species. Worldwide, hemotropic mycoplasmas are emerging or re-emerging zoonotic pathogens potentially causing serious and significant health problems in wildlife. The objective of this study was to determine the molecular prevalence of hemotropic Mycoplasma species in little brown bats (Myotis lucifugus) with and without Pseudogymnoascus (Geomyces) destrucans, the causative agent of white nose syndrome (WNS) that causes significant mortality events in bats. Methods In order to establish the prevalence of hemotropic Mycoplasma species in a population of 68 little brown bats (Myotis lucifugus) with (n = 53) and without (n = 15) white-nose syndrome (WNS), PCR was performed targeting the 16S rRNA gene. Results The overall prevalence of hemotropic Mycoplasmas in bats was 47%, with similar (p = 0.5725) prevalence between bats with WNS (49%) and without WNS (40%). 16S rDNA sequence analysis (~1,200 bp) supports the presence of a novel hemotropic Mycoplasma species with 91.75% sequence homology with Mycoplasma haemomuris. No differences were found in gene sequences generated from WNS and non-WNS animals. Conclusions Gene sequences generated from WNS and non-WNS animals suggest that little brown bats could serve as a natural reservoir for this potentially novel Mycoplasma species. Currently, there is minimal information about the prevalence, host-specificity, or the route of transmission of hemotropic Mycoplasma spp. among bats. Finally, the potential role of hemotropic Mycoplasma spp. as co-factors in the development of disease manifestations in bats, including WNS in Myotis lucifugus, remains to be elucidated.
Collapse
Affiliation(s)
| | | | | | | | | | - Ricardo G Maggi
- College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| |
Collapse
|
30
|
Highly sensitive quantitative PCR for the detection and differentiation of Pseudogymnoascus destructans and other Pseudogymnoascus species. Appl Environ Microbiol 2013; 80:1726-31. [PMID: 24375140 DOI: 10.1128/aem.02897-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
White-nose syndrome is a fungal disease that has decimated bat populations across eastern North America. Identification of the etiologic agent, Pseudogymnoascus destructans (formerly Geomyces destructans), in environmental samples is essential to proposed management plans. A major challenge is the presence of closely related species, which are ubiquitous in many soils and cave sediments and often present in high abundance. We present a dual-probe real-time quantitative PCR assay capable of detecting and differentiating P. destructans from closely related fungi in environmental samples from North America. The assay, based on a single nucleotide polymorphism (SNP) specific to P. destructans, is capable of rapid low-level detection from various sampling media, including sediment, fecal samples, wing biopsy specimens, and skin swabs. This method is a highly sensitive, high-throughput method for identifying P. destructans, other Pseudogymnoascus spp., and Geomyces spp. in the environment, providing a fundamental component of research and risk assessment for addressing this disease, as well as other ecological and mycological work on related fungi.
Collapse
|
31
|
Abstract
We report acute fatal pasteurellosis in wild big brown bats (Eptesicus fuscus) in Wisconsin, USA. Mortality of approximately 100 bats was documented over 4 wk, with no evidence for predatory injuries. Pasteurella multocida serotype 1 was isolated from multiple internal organs from four of five bats examined postmortem.
Collapse
|
32
|
Knudsen GR, Dixon RD, Amelon SK. Potential Spread of White-Nose Syndrome of Bats to the Northwest: Epidemiological Considerations. NORTHWEST SCIENCE 2013. [DOI: 10.3955/046.087.0401] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Minnis AM, Lindner DL. Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. nov., in bat hibernacula of eastern North America. Fungal Biol 2013; 117:638-49. [PMID: 24012303 DOI: 10.1016/j.funbio.2013.07.001] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/26/2013] [Accepted: 07/01/2013] [Indexed: 11/16/2022]
Abstract
White-nose syndrome (WNS) of bats, caused by the fungus previously known as Geomyces destructans, has decimated populations of insectivorous bats in eastern North America. Recent work on fungi associated with bat hibernacula uncovered a large number of species of Geomyces and allies, far exceeding the number of described species. Communication about these species has been hindered by the lack of a modern taxonomic evaluation, and a phylogenetic framework of the group is needed to understand the origin of G. destructans and to target closely related species and their genomes for the purposes of understanding mechanisms of pathogenicity. We addressed these issues by generating DNA sequence data for the internal transcribed spacer (ITS) region, nuclear large subunit (LSU) rDNA, MCM7, RPB2, and TEF1 from a diverse array of Geomyces and allies that included isolates recovered from bat hibernacula as well as those that represent important type species. Phylogenetic analyses indicate Geomyces and allies should be classified in the family Pseudeurotiaceae, and the genera Geomyces, Gymnostellatospora, and Pseudogymnoascus should be recognized as distinct. True Geomyces are restricted to a basal lineage based on phylogenetic placement of the type species, Geomyces auratus. Thus, G. destructans is placed in genus Pseudogymnoascus. The closest relatives of Pseudogymnoascus destructans are members of the Pseudogymnoascus roseus species complex, however, the isolated and long branch of P. destructans indicates that none of the species included in this study are closely related, thus providing further support to the hypothesis that this pathogen is non-native and invasive in eastern North America. Several conidia-producing isolates from bat hibernacula previously identified as members of Pseudeurotium are determined to belong to the genus Leuconeurospora, which is widespread, especially in colder regions. Teberdinia hygrophila is transferred to Pseudeurotium as Pseudeurotium hygrophilum, comb. nov., in accordance with the one name per fungus system of classification, and two additional combinations are made in Pseudogymnoascus including Pseudogymnoascus carnis and Pseudogymnoascus pannorum. Additional sampling from other regions of the world is needed to better understand the evolution and biogeography of this important and diverse group of fungi.
Collapse
Affiliation(s)
- Andrew M Minnis
- USDA - U.S. Forest Service, Center for Forest Mycology Research, One Gifford Pinchot Dr., Madison, WI 53726, USA
| | | |
Collapse
|
34
|
Psychrophilic and psychrotolerant fungi on bats and the presence of Geomyces spp. on bat wings prior to the arrival of white nose syndrome. Appl Environ Microbiol 2013; 79:5465-71. [PMID: 23811520 DOI: 10.1128/aem.01429-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since 2006, Geomyces destructans, the causative agent of white nose syndrome (WNS), has killed over 5.7 million bats in North America. The current hypothesis suggests that this novel fungus is an invasive species from Europe, but little is known about the diversity within the genus Geomyces and its distribution on bats in the United States. We documented the psychrophilic and psychrotolerant fungal flora of hibernating bats prior to the arrival of WNS using culture-based techniques. A total of 149 cultures, which were obtained from 30 bats in five bat hibernacula located in four caves and one mine, were sequenced for the entire internal transcribed spacer (ITS) nuclear ribosomal DNA (nrDNA) region. Approximately 53 operational taxonomic units (OTUs) at 97% similarity were recovered from bat wings, with the community dominated by fungi within the genera Cladosporium, Fusarium, Geomyces, Mortierella, Penicillium, and Trichosporon. Eleven Geomyces isolates were obtained and placed in at least seven distinct Geomyces clades based on maximum-likelihood phylogenetic analyses. Temperature experiments revealed that all Geomyces strains isolated are psychrotolerant, unlike G. destructans, which is a true psychrophile. Our results confirm that a large diversity of fungi, including several Geomyces isolates, occurs on bats prior to the arrival of WNS. Most of these isolates were obtained from damaged wings. Additional studies need to be conducted to determine potential ecological roles of these abundant Geomyces strains isolated from bats.
Collapse
|
35
|
Distribution and environmental persistence of the causative agent of white-nose syndrome, Geomyces destructans, in bat hibernacula of the eastern United States. Appl Environ Microbiol 2012; 79:1293-301. [PMID: 23241985 DOI: 10.1128/aem.02939-12] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
White-nose syndrome (WNS) is an emerging disease of hibernating bats caused by the recently described fungus Geomyces destructans. First isolated in 2008, the origins of this fungus in North America and its ability to persist in the environment remain undefined. To investigate the correlation between manifestation of WNS and distribution of G. destructans in the United States, we analyzed sediment samples collected from 55 bat hibernacula (caves and mines) both within and outside the known range of WNS using a newly developed real-time PCR assay. Geomyces destructans was detected in 17 of 21 sites within the known range of WNS at the time when the samples were collected; the fungus was not found in 28 sites beyond the known range of the disease at the time when environmental samples were collected. These data indicate that the distribution of G. destructans is correlated with disease in hibernating bats and support the hypothesis that the fungus is likely an exotic species in North America. Additionally, we examined whether G. destructans persists in infested bat hibernacula when bats are absent. Sediment samples were collected from 14 WNS-positive hibernacula, and the samples were screened for viable fungus by using a culture technique. Viable G. destructans was cultivated from 7 of the 14 sites sampled during late summer, when bats were no longer in hibernation, suggesting that the fungus can persist in the environment in the absence of bat hosts for long periods of time.
Collapse
|
36
|
Lorch JM, Lindner DL, Gargas A, Muller LK, Minnis AM, Blehert DS. A culture-based survey of fungi in soil from bat hibernacula in the eastern United States and its implications for detection of Geomyces destructans, the causal agent of bat white-nose syndrome. Mycologia 2012; 105:237-52. [PMID: 23074174 DOI: 10.3852/12-207] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The recent emergence of white-nose syndrome (WNS), a fungal disease causing unprecedented mortality among hibernating bats of eastern North America, has revealed a knowledge gap regarding fungal communities associated with bats and their hibernacula. We used culture-based techniques to investigate the diversity of fungi in soil samples collected from 24 bat hibernacula in the eastern United States. Ribosomal RNA regions (internal transcribed spacer and partial intergenic spacer) were sequenced to preliminarily characterize isolates. Geomyces species were one of the most abundant and diverse groups cultured, representing approximately 33% of all isolates. Geomyces destructans was isolated from soil samples from three hibernacula in states where WNS is known to occur, and many of the other cultured Geomyces isolates likely represent undescribed taxa. Further characterization of the diversity of fungi that occur in hibernacula both will facilitate an improved understanding of the ecology of G. destructans within this complex fungal community and provide an opportunity to identify characteristics that differentiate G. destructans from non-pathogenic relatives.
Collapse
Affiliation(s)
- Jeffrey M Lorch
- Molecular and Environmental Toxicology Center, University of Wisconsin at Madison, Medical Sciences Center, 1300 University Avenue, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
37
|
Muller LK, Lorch JM, Lindner DL, O'Connor M, Gargas A, Blehert DS. Bat white-nose syndrome: a real-time TaqMan polymerase chain reaction test targeting the intergenic spacer region of Geomyces destructans. Mycologia 2012; 105:253-9. [PMID: 22962349 DOI: 10.3852/12-242] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The fungus Geomyces destructans is the causative agent of white-nose syndrome (WNS), a disease that has killed millions of North American hibernating bats. We describe a real-time TaqMan PCR test that detects DNA from G. destructans by targeting a portion of the multicopy intergenic spacer region of the rRNA gene complex. The test is highly sensitive, consistently detecting as little as 3.3 fg genomic DNA from G. destructans. The real-time PCR test specifically amplified genomic DNA from G. destructans but did not amplify target sequence from 54 closely related fungal isolates (including 43 Geomyces spp. isolates) associated with bats. The test was qualified further by analyzing DNA extracted from 91 bat wing skin samples, and PCR results matched histopathology findings. These data indicate the real-time TaqMan PCR method described herein is a sensitive, specific and rapid test to detect DNA from G. destructans and provides a valuable tool for WNS diagnostics and research.
Collapse
Affiliation(s)
- Laura K Muller
- US Geological Survey, National Wildlife Health Center, 6006 Schroeder Road, Madison, Wisconsin 53711, USA
| | | | | | | | | | | |
Collapse
|
38
|
Frequent arousal from hibernation linked to severity of infection and mortality in bats with white-nose syndrome. PLoS One 2012; 7:e38920. [PMID: 22745688 PMCID: PMC3380050 DOI: 10.1371/journal.pone.0038920] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 05/16/2012] [Indexed: 12/19/2022] Open
Abstract
White-nose syndrome (WNS), an emerging infectious disease that has killed over 5.5 million hibernating bats, is named for the causative agent, a white fungus (Geomyces destructans (Gd)) that invades the skin of torpid bats. During hibernation, arousals to warm (euthermic) body temperatures are normal but deplete fat stores. Temperature-sensitive dataloggers were attached to the backs of 504 free-ranging little brown bats (Myotis lucifugus) in hibernacula located throughout the northeastern USA. Dataloggers were retrieved at the end of the hibernation season and complete profiles of skin temperature data were available from 83 bats, which were categorized as: (1) unaffected, (2) WNS-affected but alive at time of datalogger removal, or (3) WNS-affected but found dead at time of datalogger removal. Histological confirmation of WNS severity (as indexed by degree of fungal infection) as well as confirmation of presence/absence of DNA from Gd by PCR was determined for 26 animals. We demonstrated that WNS-affected bats aroused to euthermic body temperatures more frequently than unaffected bats, likely contributing to subsequent mortality. Within the subset of WNS-affected bats that were found dead at the time of datalogger removal, the number of arousal bouts since datalogger attachment significantly predicted date of death. Additionally, the severity of cutaneous Gd infection correlated with the number of arousal episodes from torpor during hibernation. Thus, increased frequency of arousal from torpor likely contributes to WNS-associated mortality, but the question of how Gd infection induces increased arousals remains unanswered.
Collapse
|
39
|
Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 2011; 480:376-8. [PMID: 22031324 DOI: 10.1038/nature10590] [Citation(s) in RCA: 328] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 09/22/2011] [Indexed: 01/15/2023]
Abstract
White-nose syndrome (WNS) has caused recent catastrophic declines among multiple species of bats in eastern North America. The disease's name derives from a visually apparent white growth of the newly discovered fungus Geomyces destructans on the skin (including the muzzle) of hibernating bats. Colonization of skin by this fungus is associated with characteristic cutaneous lesions that are the only consistent pathological finding related to WNS. However, the role of G. destructans in WNS remains controversial because evidence to implicate the fungus as the primary cause of this disease is lacking. The debate is fuelled, in part, by the assumption that fungal infections in mammals are most commonly associated with immune system dysfunction. Additionally, the recent discovery that G. destructans commonly colonizes the skin of bats of Europe, where no unusual bat mortality events have been reported, has generated further speculation that the fungus is an opportunistic pathogen and that other unidentified factors are the primary cause of WNS. Here we demonstrate that exposure of healthy little brown bats (Myotis lucifugus) to pure cultures of G. destructans causes WNS. Live G. destructans was subsequently cultured from diseased bats, successfully fulfilling established criteria for the determination of G. destructans as a primary pathogen. We also confirmed that WNS can be transmitted from infected bats to healthy bats through direct contact. Our results provide the first direct evidence that G. destructans is the causal agent of WNS and that the recent emergence of WNS in North America may represent translocation of the fungus to a region with a naive population of animals. Demonstration of causality is an instrumental step in elucidating the pathogenesis and epidemiology of WNS and in guiding management actions to preserve bat populations against the novel threat posed by this devastating infectious disease.
Collapse
|
40
|
Chaturvedi S, Rudd RJ, Davis A, Victor TR, Li X, Appler KA, Rajkumar SS, Chaturvedi V. Rapid real-time PCR assay for culture and tissue identification of Geomyces destructans: the etiologic agent of bat geomycosis (white nose syndrome). Mycopathologia 2011; 172:247-56. [PMID: 21706286 DOI: 10.1007/s11046-011-9435-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/29/2011] [Indexed: 01/03/2023]
Abstract
Geomyces destructans is the etiologic agent of bat geomycosis, commonly referred to as white nose syndrome (WNS). This infection has caused severe morbidity and mortality in little brown bats (Myotis lucifugus) and has also spread to other bat species with significant decline in the populations. Currently, G. destructans infection is identified by culture, ITS-PCR, and histopathology. We hypothesized that a real-time PCR assay would considerably improve detection of G. destructans in bats. The 100 bp sequence of the Alpha-L-Rhamnosidase gene was validated as a target for real-time PCR. The assay sensitivity was determined from serial dilution of DNA extracted from G. destructans conidia (5 × 10(-1)-5 × 10(7)), and the specificity was tested using DNA from 30 closely and distantly related fungi and 5 common bacterial pathogens. The real-time PCR assay was highly sensitive with detection limit of two G. destructans conidia per reaction at 40 PCR cycles. The assay was also highly specific as none of the other fungal or bacterial DNA cross-reacted in the real-time PCR assay. One hundred and forty-seven bat tissue samples, suspected of infection with G. destructans, were used to compare the real-time PCR assay to other methods employed for the detection of G. destructans. Real-time PCR was highly sensitive with 80 of 147 (55%) samples testing positive for G. destructans DNA. In comparison, histopathology examination revealed 64/147 (44%) positive samples. The internal transcribed spacer (ITS)-PCR yielded positive amplicon for G. destructans from 37 tissue samples (25%). The least sensitive assay was the fungal culture with only 17 tissue samples (12%) yielding G. destructans in culture. The data suggested that the real-time PCR assay is highly promising for rapid, sensitive, and specific identification of G. destructans. Further trials and inter-laboratory comparisons of this novel assay are recommended to improve the diagnosis of bat geomycosis.
Collapse
Affiliation(s)
- Sudha Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY 12208, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Foley J, Clifford D, Castle K, Cryan P, Ostfeld RS. Investigating and managing the rapid emergence of white-nose syndrome, a novel, fatal, infectious disease of hibernating bats. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2011; 25:223-231. [PMID: 21284732 DOI: 10.1111/j.1523-1739.2010.01638.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
White-nose syndrome (WNS) is a fatal disease of bats that hibernate. The etiologic agent of WNS is the fungus Geomyces destructans, which infects the skin and wing membranes. Over 1 million bats in six species in eastern North America have died from WNS since 2006, and as a result several species of bats may become endangered or extinct. Information is lacking on the pathogenesis of G. destructans and WNS, WNS transmission and maintenance, individual and site factors that contribute to the probability of an outbreak of WNS, and spatial dynamics of WNS spread in North America. We considered how descriptive and analytical epidemiology could be used to fill these information gaps, including a four-step (modified) outbreak investigation, application of a set of criteria (Hill's) for assessing causation, compartment models of disease dynamics, and spatial modeling. We cataloged and critiqued adaptive-management options that have been either previously proposed for WNS or were helpful in addressing other emerging diseases of wild animals. These include an ongoing program of prospective surveillance of bats and hibernacula for WNS, treatment of individual bats, increasing population resistance to WNS (through vaccines, immunomodulators, or other methods), improving probability of survival from starvation and dehydration associated with WNS, modifying hibernacula environments to eliminate G. destructans, culling individuals or populations, controlling anthropogenic spread of WNS, conserving genetic diversity of bats, and educating the public about bats and bat conservation issues associated with WNS.
Collapse
Affiliation(s)
- Janet Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
42
|
Chaturvedi V, Chaturvedi S. Editorial: What is in a name? A proposal to use geomycosis instead of White Nose Syndrome (WNS) to describe bat infection caused by Geomyces destructans. Mycopathologia 2011; 171:231-3. [PMID: 21207150 DOI: 10.1007/s11046-010-9385-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 11/30/2010] [Indexed: 10/18/2022]
|
43
|
Wibbelt G, Kurth A, Hellmann D, Weishaar M, Barlow A, Veith M, Prüger J, Görföl T, Grosche L, Bontadina F, Zöphel U, Seidl HP, Seidl HP, Blehert DS. White-nose syndrome fungus (Geomyces destructans) in bats, Europe. Emerg Infect Dis 2010; 16:1237-43. [PMID: 20678317 PMCID: PMC3298319 DOI: 10.3201/eid1608.100002] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Unlike bats in North America, bats in Europe are not killed by this fungus. White-nose syndrome is an emerging disease in North America that has caused substantial declines in hibernating bats. A recently identified fungus (Geomyces destructans) causes skin lesions that are characteristic of this disease. Typical signs of this infection were not observed in bats in North America before white-nose syndrome was detected. However, unconfirmed reports from Europe indicated white fungal growth on hibernating bats without associated deaths. To investigate these differences, hibernating bats were sampled in Germany, Switzerland, and Hungary to determine whether G. destructans is present in Europe. Microscopic observations, fungal culture, and genetic analyses of 43 samples from 23 bats indicated that 21 bats of 5 species in 3 countries were colonized by G. destructans. We hypothesize that G. destructans is present throughout Europe and that bats in Europe may be more immunologically or behaviorally resistant to G. destructans than their congeners in North America because they potentially coevolved with the fungus.
Collapse
Affiliation(s)
- Gudrun Wibbelt
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Increasing incidence of Geomyces destructans fungus in bats from the Czech Republic and Slovakia. PLoS One 2010; 5:e13853. [PMID: 21079781 PMCID: PMC2974652 DOI: 10.1371/journal.pone.0013853] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 10/17/2010] [Indexed: 11/19/2022] Open
Abstract
Background White-nose syndrome is a disease of hibernating insectivorous bats associated with the fungus Geomyces destructans. It first appeared in North America in 2006, where over a million bats died since then. In Europe, G. destructans was first identified in France in 2009. Its distribution, infection dynamics, and effects on hibernating bats in Europe are largely unknown. Methodology/Principal Findings We screened hibernacula in the Czech Republic and Slovakia for the presence of the fungus during the winter seasons of 2008/2009 and 2009/2010. In winter 2009/2010, we found infected bats in 76 out of 98 surveyed sites, in which the majority had been previously negative. A photographic record of over 6000 hibernating bats, taken since 1994, revealed bats with fungal growths since 1995; however, the incidence of such bats increased in Myotis myotis from 2% in 2007 to 14% by 2010. Microscopic, cultivation and molecular genetic evaluations confirmed the identity of the recently sampled fungus as G. destructans, and demonstrated its continuous distribution in the studied area. At the end of the hibernation season we recorded pathologic changes in the skin of the affected bats, from which the fungus was isolated. We registered no mass mortality caused by the fungus, and the recorded population decline in the last two years of the most affected species, M. myotis, is within the population trend prediction interval. Conclusions/Significance G. destructans was found to be widespread in the Czech Republic and Slovakia, with an epizootic incidence in bats during the most recent years. Further development of the situation urgently requires a detailed pan-European monitoring scheme.
Collapse
|
45
|
Lindner DL, Gargas A, Lorch JM, Banik MT, Glaeser J, Kunz TH, Blehert DS. DNA-based detection of the fungal pathogen Geomyces destructans in soils from bat hibernacula. Mycologia 2010; 103:241-6. [PMID: 20952799 DOI: 10.3852/10-262] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
White-nose syndrome (WNS) is an emerging disease causing unprecedented morbidity and mortality among bats in eastern North America. The disease is characterized by cutaneous infection of hibernating bats by the psychrophilic fungus Geomyces destructans. Detection of G. destructans in environments occupied by bats will be critical for WNS surveillance, management and characterization of the fungal lifecycle. We initiated an rRNA gene region-based molecular survey to characterize the distribution of G. destructans in soil samples collected from bat hibernacula in the eastern United States with an existing PCR test. Although this test did not specifically detect G. destructans in soil samples based on a presence/absence metric, it did favor amplification of DNA from putative Geomyces species. Cloning and sequencing of PCR products amplified from 24 soil samples revealed 74 unique sequence variants representing 12 clades. Clones with exact sequence matches to G. destructans were identified in three of 19 soil samples from hibernacula in states where WNS is known to occur. Geomyces destructans was not identified in an additional five samples collected outside the region where WNS has been documented. This study highlights the diversity of putative Geomyces spp. in soil from bat hibernacula and indicates that further research is needed to better define the taxonomy of this genus and to develop enhanced diagnostic tests for rapid and specific detection of G. destructans in environmental samples.
Collapse
Affiliation(s)
- Daniel L Lindner
- US Forest Service, Northern Research Station, Center for Forest Mycology Research, One Gifford Pinchot Drive, Madison, Wisconsin 53726, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Wibbelt G, Moore MS, Schountz T, Voigt CC. Emerging diseases in Chiroptera: why bats? Biol Lett 2010; 6:438-40. [PMID: 20427329 DOI: 10.1098/rsbl.2010.0267] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A conference entitled '2nd International Berlin Bat Meeting: Bat Biology and Infectious Diseases' was held between the 19 and 21 of February 2010 in Berlin, Germany. Researchers from two major disciplines, bat biologists and disease specialists, met for the first time in an interdisciplinary event to share their knowledge about bat-associated diseases. The focus of the meeting was to understand why in particular bats are the hosts of so many of the most virulent diseases globally. During several sessions, key note speakers and participants discussed infectious diseases associated with bats, including viral diseases caused by Henipa-, Filo-, Corona- and Lyssaviruses, the spread of white-nose syndrome in North American bats, bat immunology/immunogenetics, bat parasites, and finally, conservation and human health issues.
Collapse
Affiliation(s)
- Gudrun Wibbelt
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | | | | | | |
Collapse
|