1
|
Chen K, Kong M, Liu J, Jiao J, Zeng Z, Shi L, Bu X, Yan Y, Chen Y, Gao R, Liu X, Wang X, Hu J, Hu S, Jiao X, Liu X, Gu M. Rapid differential detection of subtype H1 and H3 swine influenza viruses using a TaqMan-MGB-based duplex one-step real-time RT-PCR assay. Arch Virol 2021; 166:2217-2224. [PMID: 34091783 DOI: 10.1007/s00705-021-05127-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/17/2021] [Indexed: 10/21/2022]
Abstract
Swine influenza is an economically important respiratory disease in swine, but it also constantly poses a threat to human health. Therefore, developing rapid, sensitive, and efficient detection methods for swine influenza virus (SIV) is important. By aligning the haemagglutinin (HA) gene sequences of SIVs circulating in China over a 10-year period, an H1 primer-probe set targeting both Eurasian avian-like H1N1 (EA H1N1) and pandemic 2009 H1N1 ((H1N1)pdm09) lineages plus a H3 primer-probe set targeting the prevalent human-like H3N2 (HL H3N2) subtype were designed. Subsequently, a TaqMan-MGB-based duplex one-step real-time RT-PCR (RT-qPCR) assay was established and evaluated. The duplex RT-qPCR has a detection limit of 5 copies/μL of HA plasmid for EA H1N1, (H1N1)pdm09, and HL H3N2 subtype SIVs, and its overall detection sensitivity of 100% and specificity of 91.67% matches that of traditional virus isolation through chicken embryo inoculation using experimentally infected mouse lung samples. The method showed high repeatability both within run and between runs, and there was no cross-reactivity against several other porcine viruses that are commonly circulating in China. Furthermore, the duplex RT-qPCR method revealed a higher prevalence of subtype H1 than subtype H3 in 166 nasal swabs from pigs collected from one slaughterhouse between October and December 2019. This assay could be very helpful in the rapid differential detection and routine surveillance of EA H1N1, (H1N1)pdm09, and HL H3N2 SIVs in China.
Collapse
Affiliation(s)
- Kaibiao Chen
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Ming Kong
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Jiao Liu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Jun Jiao
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Zixiong Zeng
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Liwei Shi
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Xinxin Bu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Yayao Yan
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Yu Chen
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Ruyi Gao
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Xiaowen Liu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China. .,Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China.
| |
Collapse
|
2
|
Haach V, Gava D, Cantão ME, Schaefer R. Evaluation of two multiplex RT-PCR assays for detection and subtype differentiation of Brazilian swine influenza viruses. Braz J Microbiol 2020; 51:1447-1451. [PMID: 32125678 DOI: 10.1007/s42770-020-00250-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/20/2020] [Indexed: 11/27/2022] Open
Abstract
Influenza A virus (IAV) subtypes H1N1, H1N2, and H3N2 are endemic in swine herds in most pork producing countries; however, the viruses circulating in different geographic regions are antigenically and genetically distinct. In this sense, the availability of a rapid diagnostic assay to detect locally adapted IAVs and discriminate the virus subtype in clinical samples from swine is extremely important for monitoring and control of the disease. This study describes the development and validation of a multiplex RT-PCR assay for detection and subtyping of IAV from pigs. The analytical and diagnostic specificity of the assays was 100% (94.3-100.0, CI 95%), and the limit of detection was 10-3 TCID50/mL. A total of 100 samples (IAV isolates and clinical specimens) were tested, and the virus subtype was determined for 80 samples (80%; 71.1-86.7, CI 95%). From these, 50% were H1N1, 22.5% were H1N2, and 7.5% were H3N2. Partial subtyping was determined for 8.75% samples (H1pdmNx and HxN2). Additionally, mixed infections with two virus subtypes (H1N2 + H3N2 and H1N1pdm + H1pdmN2; 2.5%) and reassortant viruses (H1pdmN2, 6.25%; and H1N1hu, 2.5%) were detected by the assay. A rapid detection of the most prevalent IAV subtypes and lineages in swine is provided by the assays developed here, improving the IAV diagnosis in Brazilian laboratories, and contributing to the IAV monitoring.
Collapse
Affiliation(s)
- Vanessa Haach
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| | - Danielle Gava
- Embrapa Suínos e Aves, BR-153, Km 110, Distrito de Tamanduá, Concórdia, Santa Catarina, CEP 89715-899, Brazil
| | - Maurício Egídio Cantão
- Embrapa Suínos e Aves, BR-153, Km 110, Distrito de Tamanduá, Concórdia, Santa Catarina, CEP 89715-899, Brazil
| | - Rejane Schaefer
- Embrapa Suínos e Aves, BR-153, Km 110, Distrito de Tamanduá, Concórdia, Santa Catarina, CEP 89715-899, Brazil.
| |
Collapse
|
3
|
Haach V, Gava D, Mauricio EC, Franco AC, Schaefer R. One-step multiplex RT-qPCR for the detection and subtyping of influenza A virus in swine in Brazil. J Virol Methods 2019; 269:43-48. [PMID: 30959063 DOI: 10.1016/j.jviromet.2019.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 11/19/2022]
Abstract
Pandemic H1N1, human-like H1N2 and H3N2 influenza A (IAV) viruses are co-circulating in swine herds in Brazil. The genetic analysis of the Brazilian IAVs has shown that they are genetically distinct from viruses found in swine in other countries; therefore, an update of the diagnostic assays for IAV detection and subtyping is needed. This study describes the development and validation of a TaqMan based - one-step multiplex RT-qPCR to discriminate the hemagglutinin and neuraminidase genes of the three major IAV subtypes circulating in pigs in Brazil. The RT-qPCR assays presented 100% (95.7-100, CI 95%) of diagnostic sensitivity in the analysis of 85 IAVs, previously characterized by sequencing. The limits of detection ranged from 5.09 × 101 to 5.09 × 103 viral RNA copies/μL. For the analytical specificity, 73 pig samples collected during 2017 and 2018 were analyzed, resulting in the identification of the subtype in 74.0% (62.9-82.7, CI 95%) of samples. From these, 46.3% were H3N2, 33.3% were H1N1, 11.1% were H1N2 and 3.7% were HxN1. Mixed viral infections (3.7%) and reassortant viruses (1.9%) were also detected by the test. This multiplex RT-qPCR assay provides a fast and specific diagnostic tool for identification of different subtypes and lineages of IAV in pigs, contributing to the monitoring of influenza in swine.
Collapse
Affiliation(s)
- Vanessa Haach
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, CEP 90050-170, Rio Grande do Sul, Brazil
| | - Danielle Gava
- Embrapa Suínos e Aves, BR-153, Km 110, Distrito de Tamanduá, Concórdia, CEP 89715-899, Santa Catarina, Brazil
| | - Egídio Cantão Mauricio
- Embrapa Suínos e Aves, BR-153, Km 110, Distrito de Tamanduá, Concórdia, CEP 89715-899, Santa Catarina, Brazil
| | - Ana Cláudia Franco
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, CEP 90050-170, Rio Grande do Sul, Brazil
| | - Rejane Schaefer
- Embrapa Suínos e Aves, BR-153, Km 110, Distrito de Tamanduá, Concórdia, CEP 89715-899, Santa Catarina, Brazil.
| |
Collapse
|
5
|
Shi X, Liu X, Wang Q, Das A, Ma G, Xu L, Sun Q, Peddireddi L, Jia W, Liu Y, Anderson G, Bai J, Shi J. A multiplex real-time PCR panel assay for simultaneous detection and differentiation of 12 common swine viruses. J Virol Methods 2016; 236:258-265. [PMID: 27506582 PMCID: PMC7119729 DOI: 10.1016/j.jviromet.2016.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 11/17/2022]
Abstract
A multiplex real-time PCR panel assay was developed for the detection of 12 major swine pathogens including VSV-IN, VSV-NJ, SVDV, CSFV, ASFV, FMDV, PCV2, PPV, PRV, PRRSV-NA, PRRSV-EU;. The panel assay was 100% specific against common swine pathogens;. Limits of detection of the assay were ranged 1–16 copies per reaction;. Detection sensitivity was not reduced by multiplexing three targets into one PCR reaction.
Mixed infection with different pathogens is common in swine production systems especially under intensive production conditions. Quick and accurate detection and differentiation of different pathogens are necessary for epidemiological surveillance, disease management and import and export controls. In this study, we developed and validated a panel of multiplex real-time PCR/RT-PCR assays composed of four subpanels, each detects three common swine pathogens. The panel detects 12 viruses or viral serotypes, namely, VSV-IN, VSV-NJ, SVDV, CSFV, ASFV, FMDV, PCV2, PPV, PRV, PRRSV-NA, PRRSV-EU and SIV. Correlation coefficients (R2) and PCR amplification efficiencies of all singular and triplex real-time PCR reactions are within the acceptable range. Comparison between singular and triplex real-time PCR assays of each subpanel indicates that there is no significant interference on assay sensitivities caused by multiplexing. Specificity tests on 226 target clinical samples or 4 viral strains and 91 non-target clinical samples revealed that the real-time PCR panel is 100% specific, and there is no cross amplification observed. The limit of detection of each triplex real-time PCR is less than 10 copies per reaction for DNA, and less than 16 copies per reaction for RNA viruses. The newly developed multiplex real-time PCR panel also detected different combinations of co-infections as confirmed by other means of detections.
Collapse
Affiliation(s)
- Xiju Shi
- Beijing Entry-Exit Inspection & Quarantine Bureau, Beijing, China; Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Xuming Liu
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Qin Wang
- China Institute of Veterinary Drug Control, Beijing, China
| | - Amaresh Das
- Foreign Animal Diseases Diagnostic Laboratory, NVSL, APHIS, USDA, Greenport, NY, United States
| | - Guiping Ma
- Beijing Entry-Exit Inspection & Quarantine Bureau, Beijing, China
| | - Lu Xu
- China Institute of Veterinary Drug Control, Beijing, China
| | - Qing Sun
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Lalitha Peddireddi
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Wei Jia
- Foreign Animal Diseases Diagnostic Laboratory, NVSL, APHIS, USDA, Greenport, NY, United States
| | - Yanhua Liu
- Beijing Entry-Exit Inspection & Quarantine Bureau, Beijing, China
| | - Gary Anderson
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.
| | - Jishu Shi
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.
| |
Collapse
|
6
|
Pippig J, Ritzmann M, Büttner M, Neubauer-Juric A. Influenza A Viruses Detected in Swine in Southern Germany after the H1N1 Pandemic in 2009. Zoonoses Public Health 2016; 63:555-568. [PMID: 27334519 DOI: 10.1111/zph.12264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Indexed: 12/01/2022]
Abstract
Infections with influenza A viruses (IAV) are highly prevalent in swine populations, and stable cocirculation of at least three lineages has been well documented in European swine - till 2009. However, since the emergence of the human pandemic pdmH1N1 virus in 2009, which has been (re)introduced into individual swine herds worldwide, the situation has been changing. These variations in the respective IAV pools within pig populations are of major interest, and the zoonotic potential of putative emerging viruses needs to be evaluated. As data on recent IAV in swine from southern Germany were relatively sparse, the purpose of this study was to determine the major IAV subtypes actually present in this region. To this aim, from 2010 to 2013, 1417 nasal swabs or lung tissue samples from pigs with respiratory disease were screened for IAV genomes. Overall, in 130 holdings IAV genomes were detected by real-time RT-PCR targeting the matrix protein gene. For further analyses, several PCR protocols were adapted to quickly subtype between H1, pdmH1, H3, N1 and N2 sequences. Taken together, cocirculation of the three stable European lineages of IAV was confirmed for Bavaria. H1N1 sequences were identified in 59, whereas H1N2 genomes were only diagnosed in 14, and H3N2 in 9 of the holdings analysed. However, pdmH1 in combination with N1 was detected in 2010, 2012 and 2013 confirming a presence, albeit in low prevalence, likewise pdmH1N2 reassortant viruses. Interestingly, individual cases of coinfections with more than one subtype were diagnosed. Partial genome sequences were determined and phylogenetic analyses performed. Clearly other than in the human population classically circulating IAV have not been displaced by pdmH1N1 in Bavarian swine. However, some interesting viruses were detected. Further surveillance of these viruses in the Bavarian pig population will be of major importance, to monitor future developments.
Collapse
Affiliation(s)
- J Pippig
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - M Ritzmann
- Clinic for Swine, Ludwig-Maximilians-University Munich, Oberschleissheim, Germany
| | - M Büttner
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - A Neubauer-Juric
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany.
| |
Collapse
|