1
|
Pérez-Pérez L, Carvajal A, Puente H, Peres Rubio C, Cerón JJ, Rubio P, Argüello H. New insights into swine dysentery: faecal shedding, macro and microscopic lesions and biomarkers in early and acute stages of Brachyspira hyodysenteriae infection. Porcine Health Manag 2024; 10:24. [PMID: 38951921 PMCID: PMC11218200 DOI: 10.1186/s40813-024-00375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Swine dysentery (SD) is a severe mucohaemorrhagic colitis in pigs caused classically by Brachyspira hyodysenteriae. Although several aspects of B. hyodysenteriae infection dynamic are already described, further research in the early stage of this infection is required. In this study, 7-week-old pigs were orally challenged with B. hyodysenteriae to obtain information about faecal shedding, macro and microscopic intestinal lesions and serum acute phase proteins in pigs at the onset of B. hyodysenteriae shedding (early infection group, n = 8), in pigs with mucohaemorrhagic diarrhoea (acute infection group, n = 8) and in non-infected controls (n = 16). RESULTS First B. hyodysenteriae detection by q-PCR and first loose stools with blood and mucus occurred both at 8 days post-inoculation. The lapse between a positive q-PCR and observation of mucohaemorrhagic diarrhoea ranged from 0 to 3 days, except in a single pig in which this period lasted 5 days. Macroscopic lesions were observed in the large intestine from both infected groups although more frequent and severe in acute infection group. Microscopic observation of the apex mucosa revealed that in early infection only higher ulceration values were observed compared to healthy controls. In contrast, the acute infection group exhibited higher ulceration, neutrophils infiltration and increased mucosal thickness compared to the other two groups. Among the serum biomarkers tested, only haptoglobin, C-reactive protein, and creatine kinase showed a significant increase in pigs in the acute infection period compared to controls, whereas haptoglobin was the only factor with a significant increase at the early infection compared to non-infected animals. CONCLUSIONS This study provides new insights about SD and remarks the complex and limited options to perform an early detection of infected animals beyond PCR diagnosis.
Collapse
Affiliation(s)
- Lucía Pérez-Pérez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Ana Carvajal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain.
- INDEGSAL, Universidad de León, León, Spain.
| | - Héctor Puente
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Camila Peres Rubio
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Campus de Excelencia Internacional Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Jose Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Campus de Excelencia Internacional Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Pedro Rubio
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- INDEGSAL, Universidad de León, León, Spain
| | - Héctor Argüello
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- INDEGSAL, Universidad de León, León, Spain
| |
Collapse
|
2
|
Arnold M, Echtermann T, Nathues H. Infectious Enteric Diseasses in Pigs. PRODUCTION DISEASES IN FARM ANIMALS 2024:223-269. [DOI: 10.1007/978-3-031-51788-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Hakimi M, Ye F, Stinman CC, Sahin O, Burrough ER. Antimicrobial susceptibility of U.S. porcine Brachyspira isolates and genetic diversity of B. hyodysenteriae by multilocus sequence typing. J Vet Diagn Invest 2024; 36:62-69. [PMID: 37968893 PMCID: PMC10734594 DOI: 10.1177/10406387231212189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023] Open
Abstract
Swine dysentery, caused by Brachyspira hyodysenteriae and the newly recognized Brachyspira hampsonii in grower-finisher pigs, is a substantial economic burden in many swine-rearing countries. Antimicrobial therapy is the only commercially available measure to control and prevent Brachyspira-related colitis. However, data on antimicrobial susceptibility trends and genetic diversity of Brachyspira species from North America is limited. We evaluated the antimicrobial susceptibility profiles of U.S. Brachyspira isolates recovered between 2013 and 2022 to tiamulin, tylvalosin, lincomycin, doxycycline, bacitracin, and tylosin. In addition, we performed multilocus sequence typing (MLST) on 64 B. hyodysenteriae isolates. Overall, no distinct alterations in the susceptibility patterns over time were observed among Brachyspira species. However, resistance to the commonly used antimicrobials was seen sporadically with a higher resistance frequency to tylosin compared to other tested drugs. B. hampsonii was more susceptible to the tested drugs than B. hyodysenteriae and B. pilosicoli. MLST revealed 16 different sequence types (STs) among the 64 B. hyodysenteriae isolates tested, of which 5 STs were previously known, whereas 11 were novel. Most isolates belonged to the known STs: ST93 (n = 32) and ST107 (n = 13). Our findings indicate an overall low prevalence of resistance to clinically important antimicrobials other than tylosin and bacitracin, and high genetic diversity among the clinical Brachyspira isolates from pigs in the United States during the past decade. Further molecular, epidemiologic, and surveillance studies are needed to better understand the infection dynamics of Brachyspira on swine farms and to help develop effective control measures.
Collapse
Affiliation(s)
- Maria Hakimi
- Departments of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Fangshu Ye
- Statistics, Iowa State University, Ames, IA, USA
| | - Chloe C. Stinman
- Veterinary Diagnostic Laboratory, Iowa State University, Ames, IA, USA
| | - Orhan Sahin
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Eric R. Burrough
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
4
|
Parra-Aguirre JC, Nosach R, Fernando C, Hill JE, Harding JCS. Improving the consistency of experimental swine dysentery inoculation strategies. Vet Res 2023; 54:49. [PMID: 37328906 DOI: 10.1186/s13567-023-01180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023] Open
Abstract
Swine dysentery (SD) caused by pathogenic Brachyspira spp. is an economic challenge for the swine industry. In research settings, experimental reproduction of swine dysentery typically relies on intragastric inoculation which has shown variable success. This project aimed to improve the consistency of the experimental inoculation protocol used for swine dysentery in our laboratory. Over six experiments, we evaluated the influence of group housing in inoculated pigs using a frozen-thawed broth culture of strongly hemolytic B. hyodysenteriae strain D19 (Trial A), compared the relative virulence of B. hyodysenteriae strains D19 and G44 (Trial B), compared inoculum volumes (50 mL vs 100 mL) for G44 and B. hampsonii 30446 (Trial C), and performed three independent trials evaluating intragastric inoculation using different oral inoculation methods: oral feed balls (Trial D), and oral syringe bolus of 100 mL (Trial E) or 300 mL (Trial F). Intragastric inoculation with a fresh broth culture of B. hyodysenteriae strain G44 resulted in a shorter incubation period and a higher proportionate duration of mucohemorrhagic diarrhea (MMHD) compared to D19. Intragastric inoculation with either 50 or 100 mL of B. hampsonii 30446 or B. hyodysenteriae (G44) were statistically equivalent. Oral inoculation with 100 mL or 300 mL also yielded similar results to intragastric inoculation but was more expensive due to the additional work and supplies associated with syringe training. Our future research will use intragastric inoculation with 100 mL of a fresh broth culture containing B. hyodysenteriae strain G44 as it yields a high incidence of mucohaemorrhagic diarrhea with a reasonable cost.
Collapse
Affiliation(s)
- Juan C Parra-Aguirre
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr., Saskatoon, SK, S7N 5B4, Canada
| | - Roman Nosach
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr., Saskatoon, SK, S7N 5B4, Canada
| | - Champika Fernando
- Department of Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr., Saskatoon, SK, S7N 5B4, Canada
| | - Janet E Hill
- Department of Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr., Saskatoon, SK, S7N 5B4, Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr., Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
5
|
Diagnostic Approach to Enteric Disorders in Pigs. Animals (Basel) 2023; 13:ani13030338. [PMID: 36766227 PMCID: PMC9913336 DOI: 10.3390/ani13030338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
The diagnosis of enteric disorders in pigs is extremely challenging, at any age. Outbreaks of enteric disease in pigs are frequently multifactorial and multiple microorganisms can co-exist and interact. Furthermore, several pathogens, such as Clostridium perfrigens type A, Rotavirus and Lawsonia intracellularis, may be present in the gut in the absence of clinical signs. Thus, diagnosis must be based on a differential approach in order to develop a tailored control strategy, considering that treatment and control programs for enteric diseases are pathogen-specific. Correct sampling for laboratory analyses is fundamental for the diagnostic work-up of enteric disease in pigs. For example, histology is the diagnostic gold standard for several enteric disorders, and sampling must ensure the collection of representative and optimal intestinal samples. The aim of this paper is to focus on the diagnostic approach, from sampling to the aetiological diagnosis, of enteric disorders in pigs due to different pathogens during the different phases of production.
Collapse
|
6
|
Parra-Aguirre J, Nosach R, Fernando C, Hill JE, Wilson HL, Harding JCS. Experimental natural transmission (seeder pig) models for reproduction of swine dysentery. PLoS One 2022; 17:e0275173. [PMID: 36166423 PMCID: PMC9514633 DOI: 10.1371/journal.pone.0275173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Swine dysentery is causally associated with Brachyspira hampsonii and B. hyodysenteriae infection. Given the importance of transmission models in understanding re-emergent diseases and developing control strategies such as vaccines, the objective of this experiment was to evaluate two experimental natural transmission (seeder pig) models in grower pigs, each with 24 animals. Seeder pigs were intragastrically inoculated using broth cultures of either B. hampsonii strain 30446 (genomovar II) or B. hyodysenteriae strain G44. In trial 1, three seeder pigs were placed into two pens containing nine susceptible contact pigs creating a 1:3 seeder:contact ratio. This was sufficient to achieve natural B. hampsonii infection of 13/18 (72%) contact pigs, however, the incidence of mucoid or mucohemorrhagic diarrhea (MMHD) in contact pigs differed significantly between pens (4/9 versus 9/9; P = 0.03). In trial 2, eight seeder pigs inoculated intragastrically with B. hampsonii did not develop MMHD but when re-inoculated with B. hyodysenteriae 14 days later, all developed mucohemorrhagic diarrhea within 13 days of re-inoculation. Two seeder pigs were placed into each of 4 contact pens each containing 4 pigs. This 1:2 seeder:contact ratio resulted in natural infection of 14/16 (87%) contact pigs with incubation period ranging from 9–15 days. There were no significant differences among pens in incubation period, duration, clinical period or severity of diarrhea. These trials demonstrated that a 1:2 seeder:contact ratio with groups of six grower pigs per pen sustained natural transmission of B. hyodysenteriae G44 with greater consistency in the incidence of MMHD among pens compared to a B. hampsonii 30446 transmission model using 1:3 seeder:contact ratio in pens of 12. Understanding why B. hampsonii intragastric inoculation failed in one experiment warrants additional research.
Collapse
Affiliation(s)
- Juan Parra-Aguirre
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Roman Nosach
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Champika Fernando
- Department of Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Janet E. Hill
- Department of Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Heather L. Wilson
- Department of Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- VIDO/Intervac, University of Saskatchewan, Saskatoon, SK, Canada
| | - John C. S. Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- * E-mail:
| |
Collapse
|
7
|
Experimental Infection of Pigs with a ST 245 Brachyspira hyodysenteriae Isolated from an Asymptomatic Pig in a Herd with No History of Swine Dysentery. Vet Sci 2022; 9:vetsci9060286. [PMID: 35737338 PMCID: PMC9229277 DOI: 10.3390/vetsci9060286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Swine dysentery (SD) is characterized by a severe mucohemorrhagic colitis caused by infection with Brachyspira species. In infected herds the disease causes considerable financial loss due to mortality, slow growth rates, poor feed conversion, and costs of treatment. B. hyodysenteriae is the most common etiological agent of SD and infection is usually associated with disease. However, isolated reports have described low pathogenic strains of B. hyodysenteriae. The aim of this study was to describe an experimental infection trial using a subclinical B. hyodysenteriae isolated from an animal without clinical signs and from a disease-free herd, to evaluate the pathogenicity and clinical pathological characteristics compared to a highly clinical isolate. Forty-eight 5-week-old pigs were divided into three groups: control, clinical and the subclinical isolates. The first detection/isolation of B. hyodysenteriae in samples of the animals challenged with a known clinical B. hyodysenteriae strain (clinical group) occurred 5th day post inoculation. Considering the whole period of the study, 11/16 animals from this group were qPCR positive in fecal samples, and diarrhea was observed in 10/16 pigs. In the subclinical isolate group, one animal had diarrhea. There were SD large intestine lesions in 3 animals at necropsy and positive B. hyodysenteriae isolation in 7/15 samples of the subclinical group. In the control group, no diarrhea, gross/microscopic lesions, or qPCR positivity were observed. Clinical signs, bacterial isolation, macroscopic and histologic lesions were significantly difference among groups, demonstrating low pathogenicity of the subclinical isolate in susceptible pigs.
Collapse
|
8
|
Nielsen SS, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin M, Michel V, Miranda Chueca MÁ, Padalino B, Pasquali P, Roberts HC, Spoolder H, Ståhl K, Velarde A, Viltrop A, Winckler C, Baldinelli F, Broglia A, Kohnle L, Van der Stede Y, Alvarez J. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): antimicrobial-resistant Brachyspira hyodysenteriae in swine. EFSA J 2022; 20:e07124. [PMID: 35317125 PMCID: PMC8922405 DOI: 10.2903/j.efsa.2022.7124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Brachyspira hyodysenteriae (B. hyodysenteriae) was identified among the most relevant antimicrobial-resistant (AMR) bacteria in the EU for swine in a previous scientific opinion. Thus, it has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as in Article 9, and Article 8 for listing animal species related to the bacterium. The assessment has been performed following a methodology previously published. The outcome is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with uncertain outcome. According to the assessment here performed, it is uncertain whether AMR B. hyodysenteriae can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (33-66% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that the bacterium does not meet the criteria in Sections 1, 2 and 3 (Categories A, B and C; 1-10%, 10-33% and 10-33% probability of meeting the criteria, respectively) and the AHAW Panel was uncertain whether it meets the criteria in Sections 4 and 5 (Categories D and E, 50-90% and 33-66% probability of meeting the criteria, respectively). The main animal species to be listed for AMR B. hyodysenteriae according to Article 8 criteria are pigs and some species of birds, such as chickens and ducks.
Collapse
|
9
|
Dual Antimicrobial Effect of Medium-Chain Fatty Acids against an Italian Multidrug Resistant Brachyspira hyodysenteriae Strain. Microorganisms 2022; 10:microorganisms10020301. [PMID: 35208756 PMCID: PMC8875639 DOI: 10.3390/microorganisms10020301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/05/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
The fastidious nature of Brachyspira hyodysenteriae limits an accurate in vitro pre-screening of conventionally used antibiotics and other candidate alternative antimicrobials. This results in a non-judicious use of antibiotics, leading to an exponential increase of the antibiotic resistance issue and a slowdown in the research for new molecules that might stop this serious phenomenon. In this study we tested four antibiotics (tylosin, lincomycin, doxycycline, and tiamulin) and medium-chain fatty acids (MCFA; hexanoic, octanoic, decanoic, and dodecanoic acid) against an Italian field strain of B. hyodysenteriae and the ATCC 27164 strain as reference. We determined the minimal inhibitory concentrations of these substances, underlining the multidrug resistance pattern of the field strain and, on the contrary, a consistent and stable inhibitory effect of the tested MCFA against both strains. Then, sub-inhibitory concentrations of antibiotics and MCFA were examined in modulating a panel of B. hyodysenteriae virulence genes (tlyA, tlyB, bhlp16, bhlp29.7, and bhmp39f). Results of gene expression analysis were variable, with up- and downregulations not properly correlated with particular substances or target genes. Decanoic and dodecanoic acid with their direct and indirect antimicrobial property were the most effective among MCFA, suggesting them as good candidates for subsequent in vivo trials.
Collapse
|
10
|
Helm ET, Lin SJ, Gabler NK, Burrough ER. Brachyspira hyodysenteriae Infection Reduces Digestive Function but Not Intestinal Integrity in Growing Pigs While Disease Onset Can Be Mitigated by Reducing Insoluble Fiber. Front Vet Sci 2020; 7:587926. [PMID: 33195620 PMCID: PMC7649115 DOI: 10.3389/fvets.2020.587926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/11/2020] [Indexed: 01/16/2023] Open
Abstract
Swine dysentery (SD) induced by Brachyspira hyodysenteriae manifests as mucohemorrhagic diarrhea in pigs, but little is known about the changes that occur to the gastrointestinal tract during this disease. It is thought that dietary fibers alter disease pathogenesis, although the mechanisms of action are unclear. Thus, the objectives of this study were to characterize intestinal integrity, metabolism, and function in pigs during SD and determine if replacing insoluble fiber with fermentable fibers mitigates disease. Thirty-six B. hyodysenteriae-negative gilts [24.3 ± 3.6 kg body weight (BW)] were assigned to one of three treatment groups: (1) B. hyodysenteriae negative, control diet (NC); (2) B. hyodysenteriae challenged, control diet (PC); and (3) B. hyodysenteriae challenged, highly fermentable fiber diet (RS). The NC and PC pigs were fed the same control diet, containing 20% corn distillers dried grains with solubles (DDGS). The RS pigs were fed a diet formulated with 5% sugar beet pulp and 5% resistant potato starch. On days post inoculation (dpi) 0 and 1, pigs were inoculated with B. hyodysenteriae or sham. Pigs were euthanized for sample collection after onset of SD. The challenge had high morbidity, with 100% of PC and 75% of RS pigs developing clinical SD. The timing of onset of clinical SD differed due to treatment, with RS pigs having a delayed onset (dpi 9) of clinical SD compared with dpi 7 for PC pigs. Colon transepithelial resistance was increased and macromolecule permeability was reduced in PC pigs compared with NC pigs (P < 0.01). Minimal changes in ileal permeability, mitochondrial function, or volatile fatty acids (VFAs) were observed. Total VFA concentrations were lower in the colon and cecum in both PC and RS pigs compared to NC pigs (both P < 0.05), but iso-acids were higher (both P < 0.05). Total tract digestibility of dry matter (DM), organic matter (OM), nitrogen (N), and gross energy (GE) was lower in PC pigs compared with both NC and RS pigs (both P < 0.001). These data indicate that SD reduces digestive function but does not reduce ex vivo intestinal integrity. Further, replacement of insoluble fiber with highly fermentable fibers mitigated and delayed the onset of SD.
Collapse
Affiliation(s)
- Emma T Helm
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Susanne J Lin
- Department of Veterinary Pathology, Iowa State University, Ames, IA, United States
| | - Nicholas K Gabler
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Eric R Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
11
|
Costa MO, Harding JCS. Swine dysentery disease mechanism: Brachyspira hampsonii impairs the colonic immune and epithelial repair responses to induce lesions. Microb Pathog 2020; 148:104470. [PMID: 32889046 DOI: 10.1016/j.micpath.2020.104470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
Swine dysentery (SD) is a global, production-limiting disease of pigs in commercial farms. It is associated with infection by Brachyspira hyodysenteriae and B. hampsonii, and characterized by mucohaemorrhagic diarrhea and colitis, SD prevention, treatment or control relies heavily on antimicrobials as no commercial vaccines are available. This is linked to our poor understanding of the disease pathogenesis. Our goal was to characterize the host-pathogen interactions during the early stage of infection. We employed dual RNA-seq to profile mRNA and miRNA following 1-h incubation of colonic explants with a pathogenic or a non-pathogenic B. hampsonii strain. Our results suggest that the pathogenic strain more efficiently interfered with the host's ability to activate and build a humoral response (through IL-4/CCR6/KLHL6 interactions), epithelial wound repair mechanisms (associated with LSECtin impairment of macrophages), induced mitochondrial dysfunction (linked to MDR1), and loss of microbiome homeostasis. The pathogenic strain also up-regulated the expression of stress-associated genes, when compared to the non-pathogenic strain. These results shed a light on the pathophysiological mechanisms that lead to SD and will contribute to the development of novel disease control tools.
Collapse
Affiliation(s)
- Matheus O Costa
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK. Canada; Department of Population Health, Faculty of Veterinary Medicine, Utrecht University. Utrecht, the Netherlands.
| | - John C S Harding
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK. Canada
| |
Collapse
|
12
|
Lammers G, van Berkel R, Roijackers D, Vulders C, Brouwer-Middelesch H, van Hout J. Treatment of clinical Brachyspira hyodysenteriae with zinc chelate in pigs: a blinded, randomised controlled trial. Vet Rec 2019; 185:659. [PMID: 31582572 DOI: 10.1136/vr.105523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/08/2019] [Accepted: 08/24/2019] [Indexed: 01/23/2023]
Abstract
BACKGROUND Brachyspira hyodysenteriae infection in pigs ('swine dysentery') leads to decreased feed conversion, growth losses and mortality. Current countermeasures have the downside of antibiotic resistance (antibiotics) and ecotoxicity (zinc oxide). The aim of this study was to evaluate the effect of a novel zinc chelate (Intra Dysovinol (ID)) on clinical signs of swine dysentery and shedding of B hyodysenteriae under field conditions. METHODS In a randomised, double-blinded, controlled trial under Good Clinical Practice on two commercial farms, 58 B hyodysenteriae positive pigs from 16 pens received drinking water containing ID, or placebo, during six consecutive days. Faecal quality (consistency, colour, additions) was scored and faeces were analysed for presence of B hyodysenteriae by PCR. ID treatment positively affected faecal quality (consistency) and daily growth rates. RESULTS At the last treatment day, B hyodysenteriae was not detectable in the faeces of any of the ID-treated animals, while all placebo animals remained B hyodysenteriae positive by PCR. All ID-treated animals recovered, while 5 placebo-treated animals died and 12 placebo pigs required additional treatment before the end of the study (up to 14 days after treatment start). CONCLUSION This non-antibiotic treatment stopped the clinical signs and shedding of B hyodysenteriae in naturally infected pigs.
Collapse
Affiliation(s)
- Gerwen Lammers
- Product Development & Regulatory Affairs, Intracare BV, Veghel, The Netherlands
| | - Robbert van Berkel
- Product Development & Regulatory Affairs, Intracare BV, Veghel, The Netherlands
| | - Daisy Roijackers
- Product Development & Regulatory Affairs, Intracare BV, Veghel, The Netherlands
| | - Carly Vulders
- Product Development & Regulatory Affairs, Intracare BV, Veghel, The Netherlands
| | | | | |
Collapse
|
13
|
Schweer WP, Burrough ER, Patience JF, Kerr BJ, Gabler NK. Impact of Brachyspira hyodysenteriae on intestinal amino acid digestibility and endogenous amino acid losses in pigs. J Anim Sci 2019; 97:257-268. [PMID: 30335136 PMCID: PMC6313137 DOI: 10.1093/jas/sky393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/05/2018] [Indexed: 12/13/2022] Open
Abstract
Brachyspira hyodysenteriae (Bhyo) induces mucohemorrhagic diarrhea in pigs and is an economically significant disease worldwide. Our objectives were to determine the impact of Bhyo on apparent total tract digestibility (ATTD), ileal digestibility (AID), and ileal basal endogenous losses (BEL) in grower pigs. In addition, we assessed the effect of Bhyo on hindgut disappearance of DM, N, and GE. Thirty-two Bhyo negative gilts (38.6 ± 0.70 kg BW) were fitted with a T-cannula in the distal ileum and individually penned. In replicates 1 and 2, pigs were fed a complete diet (7 Bhyo-, 10 Bhyo+ pigs) or nitrogen-free diet (NFD; 4 Bhyo-, 11 Bhyo+ pigs), respectively. Across multiple rooms, the 21 Bhyo+ pigs (62.6 ± 1.39 kg BW) were inoculated with Bhyo on day post inoculation (dpi) 0, and the 11 Bhyo- pigs were sham inoculated. Feces were collected from 9 to 11 dpi and ileal digesta collected from 12 to 13 dpi. All pigs were euthanized at 14 to 15 dpi and intestinal tract pathology assessed. Within the complete diet and NFD treatments, data were analyzed to determine pathogen effects. All Bhyo- pigs remained Bhyo negative, and 5 Bhyo+ pigs in each replicate were confirmed Bhyo positive within 9 dpi. Infection with Bhyo reduced ATTD of DM, N, and GE and increased AID of Gly (P < 0.05). No other AA AID differences were observed. Only BEL of Pro was reduced (P < 0.05) while Arg, Trp, and Gly tended (P < 0.10) to be reduced in Bhyo+ pigs. When calculated from AID and BEL, Bhyo infection reduced standardized ileal digestibility (SID) of N, Arg, Lys, Ala, Gly, Pro, and Ser (P < 0.05) and tended to reduce Thr SID (P = 0.09). In the hindgut of Bhyo+ pigs, there was generally an appearance of nutrients rather than disappearance. In Bhyo+ pigs fed a complete diet, hindgut appearance of N and GE were increased (P < 0.05) by 58 and nine-fold, respectively, and DM tended to be increased two-fold (P = 0.06). Similarly, in NFD fed pigs, hindgut appearance of N and GE was increased by 172% and 162%, respectively, although high variability led to no significance. Altogether, Bhyo infection decreases ATTD but has minimal impact on AID of AA, when corrected for BEL, SID of N, Arg, Lys and some nonessential AA are specifically reduced. Unexpectedly, BEL of several AA involved in mucin production were unaffected by Bhyo infection. This may suggest an increased need for specific AA and energy during a Bhyo challenge.
Collapse
Affiliation(s)
| | - Eric R Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | - John F Patience
- Department of Animal Science, Iowa State University, Ames, IA
| | - Brian J Kerr
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA
| | | |
Collapse
|
14
|
Ek CE, Nosach R, Fernando C, Huang Y, Perez JBDS, Costa MO, Ekanayake S, Hill JE, Harding JCS. An optimized swine dysentery murine model to characterize shedding and clinical disease associated with "Brachyspira hampsonii" infection. BMC Vet Res 2017; 13:261. [PMID: 28830508 PMCID: PMC5568335 DOI: 10.1186/s12917-017-1166-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 08/09/2017] [Indexed: 11/10/2022] Open
Abstract
Background The development of a mouse model as an in vivo pathogenicity screening tool for Brachyspira spp. has advanced the study of these economically important pathogens in recent years. However, none of the murine models published to date have been used to characterize the clinical signs of disease in mice, instead focusing on pathology following oral inoculation with various Brachyspira spp. The experiments described herein explore modifications of published models to characterize faecal consistency, faecal shedding and pathology in mice challenged with “Brachyspira hampsonii” clade II (Bhamp). Methods and results In Experiment 1, 24 CF-1 mice were randomly allocated to one of three inoculation groups: sham (Ctrl), Bhamp, or B. hyodysenteriae (Bhyo; positive control). Half of each group was fed normal mouse chow (RMH) while the other received a low-zinc diet (TD85420). In Experiment 2, eight CF-1 mice and nine C3H/HeN mice were divided into Ctrl or Bhamp inoculation groups, and all fed TD85420. In Experiment 1, mice fed TD85420 demonstrated more severe mucoid faeces (P = 0.001; Kruskal Wallis) and faecal shedding for a significantly greater number of days (P = 0.005; Kruskal Wallis). Mean faecal scores of Bhamp inoculated mice trended higher than Ctrl (P = 0.06; Wilcoxon rank-sum) as did those of Bhyo mice (P = 0.0; Wilcoxon rank-sum). In Experiment 2, mean faecal scores of inoculated CF-1 mice were significantly greater than in C3H mice (P = 0.049; Kruskal Wallis) but no group differences in faecal shedding were observed. In both experiments, mice clustered based on the severity of colonic and caecal histopathology but high lesion scores were not always concurrent with high fecal scores. Conclusion In our laboratory, CF-1 mice and the lower-zinc TD85420 diet provide a superior murine challenge model of “Brachyspira hampsonii” clade II. Electronic supplementary material The online version of this article (doi:10.1186/s12917-017-1166-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Courtney E Ek
- Department of Large Animal Clinical Studies, Saskatoon, SK, Canada
| | - Roman Nosach
- Department of Large Animal Clinical Studies, Saskatoon, SK, Canada
| | | | - Yanyun Huang
- Prairie Diagnostic Services Inc, Saskatoon, SK, Canada
| | | | - Matheus O Costa
- Department of Large Animal Clinical Studies, Saskatoon, SK, Canada.,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Samantha Ekanayake
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Janet E Hill
- Department of Veterinary Microbiology, Saskatoon, SK, Canada
| | - John C S Harding
- Department of Large Animal Clinical Studies, Saskatoon, SK, Canada.
| |
Collapse
|
15
|
Zeeh F, Nathues H, Frey J, Muellner P, Fellström C. A review of methods used for studying the molecular epidemiology of Brachyspira hyodysenteriae. Vet Microbiol 2017; 207:181-194. [PMID: 28757022 DOI: 10.1016/j.vetmic.2017.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 11/28/2022]
Abstract
Brachyspira (B.) spp. are intestinal spirochaetes isolated from pigs, other mammals, birds and humans. In pigs, seven Brachyspira spp. have been described, i.e. B. hyodysenteriae, B. pilosicoli, B. intermedia, B. murdochii, B. innocens, B. suanatina and B. hampsonii. Brachyspira hyodysenteriae is especially relevant in pigs as it causes swine dysentery and hence considerable economic losses to the pig industry. Furthermore, reduced susceptibility of B. hyodysenteriae to antimicrobials is of increasing concern. The epidemiology of B. hyodysenteriae infections is only partially understood, but different methods for detection, identification and typing have supported recent improvements in knowledge and understanding. In the last years, molecular methods have been increasingly used. Molecular epidemiology links molecular biology with epidemiology, offering unique opportunities to advance the study of diseases. This review is based on papers published in the field of epidemiology and molecular epidemiology of B. hyodysenteriae in pigs. Electronic databases were screened for potentially relevant papers using title and abstract and finally, Barcellos et al. papers were systemically selected and assessed. The review summarises briefly the current knowledge on B. hyodysenteriae epidemiology and elaborates on molecular typing techniques available. Results of the studies are compared and gaps in the knowledge are addressed. Finally, potential areas for future research are proposed.
Collapse
Affiliation(s)
- Friederike Zeeh
- Clinic for Swine, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, PB 3350, 3001 Bern, Switzerland.
| | - Heiko Nathues
- Clinic for Swine, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, PB 3350, 3001 Bern, Switzerland.
| | - Joachim Frey
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, PB 3350, CH-3001 Bern 3001 Bern, Switzerland.
| | - Petra Muellner
- Epi-interactive, PO Box 15327, Miramar, Wellington, 6243, New Zealand.
| | - Claes Fellström
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, Box 7054, 750 07 Uppsala, Sweden.
| |
Collapse
|
16
|
Costa MO, Fernando C, Nosach R, Harding JCS, Hill JE. Infection of porcine colon explants with "Brachyspira hampsonii" leads to increased epithelial necrosis and catarrhal exudate. Pathog Dis 2017; 75:3078539. [PMID: 28369531 DOI: 10.1093/femspd/ftx032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/18/2017] [Indexed: 01/12/2023] Open
Abstract
Mucohemorrhagic diarrhea in pigs caused by Brachyspira spp. has a global distribution, and an economic impact on affected farms due to poor performance of animals. Demonstrations that "Brachyspira hampsonii" is pathogenic have been achieved using in vivo animal models, but a critical knowledge gap exists regarding the pathogenic mechanisms employed by Brachyspira. Here, we used in vitro organ culture of porcine colon to investigate interactions between "B. hampsonii" and explants during the first 12 h of contact. Explants were either inoculated with "B. hampsonii" or sterile culture broth. Responses to infection were evaluated by optical microscopy and quantitative PCR. Significantly greater numbers of necrotic crypt cells and thicker catarrhal exudate were observed on infected explants compared to controls. Spirochaetes were observed in the mucus layer, in contact with necrotic exfoliated cells, in crypts and the lamina propria. Statistical differences were observed in mRNA levels between inoculated and control explants for IL-1α, TNF-α and ZO-1 using a Bayesian analysis, but not observed using the ΔΔCq method. These results provide a demonstration of a porcine colon explant model for investigating interactions of Brachyspira with its host and show that initial effects on the host are observed within the first 12 h of contact.
Collapse
Affiliation(s)
- Matheus O Costa
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, SK S7N 5B4, Canada.,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, The Netherlands
| | - Champika Fernando
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, SK S7N 5B4, Canada
| | - Roman Nosach
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, SK S7N 5B4, Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, SK S7N 5B4, Canada
| | - Janet E Hill
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, SK S7N 5B4, Canada
| |
Collapse
|
17
|
Aller-Morán LM, Martínez-Lobo FJ, Rubio P, Carvajal A. Cross-reactions in specific Brachyspira spp. PCR assays caused by "Brachyspira hampsonii" isolates: implications for detection. J Vet Diagn Invest 2016; 28:755-759. [PMID: 27664096 DOI: 10.1177/1040638716667528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
An emerging novel spirochete in swine, provisionally designated "Brachyspira hampsonii," has been detected worldwide. It has been associated with swine dysentery and cannot be differentiated from B. hyodysenteriae, the classical etiologic agent of this disease, using standard phenotypic methods. We evaluated cross-reactions of "B. hampsonii" isolates recovered from avian species in some of the currently available species-specific polymerase chain reaction (PCR) assays for the identification of swine Brachyspira species. Ten avian "B. hampsonii" isolates recovered from wild waterfowl were used. No false-positive results were recorded with a B. pilosicoli-specific PCR based on the amplification of a fragment of the 16S rRNA gene. However, the percentage of false-positive results varied, with a range of 10-80%, in the evaluated B. hyodysenteriae-specific assays based on the amplification of the 23S rRNA, nox, and tlyA genes. Similarly, results of the B. intermedia-specific PCR assays yielded poor specificity, with up to 80% of the "B. hampsonii" isolates tested giving false-positive results. Finally, 2 "B. hampsonii" avian isolates yielded a positive result in a B. innocens- and B. murdochii-specific PCR. This result should be interpreted very cautiously as these 2 isolates could represent a recombinant genotype.
Collapse
Affiliation(s)
- Luis M Aller-Morán
- Department of Infectious Diseases and Epidemiology, Veterinary Faculty, University of León, León, Spain
| | - F Javier Martínez-Lobo
- Department of Infectious Diseases and Epidemiology, Veterinary Faculty, University of León, León, Spain
| | - Pedro Rubio
- Department of Infectious Diseases and Epidemiology, Veterinary Faculty, University of León, León, Spain
| | - Ana Carvajal
- Department of Infectious Diseases and Epidemiology, Veterinary Faculty, University of León, León, Spain
| |
Collapse
|
18
|
Brachyspira hyodysenteriae isolated from apparently healthy pig herds following an evaluation of a prototype commercial serological ELISA. Vet Microbiol 2016; 191:15-9. [DOI: 10.1016/j.vetmic.2016.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 11/17/2022]
|
19
|
Aller-Morán LM, Martínez-Lobo FJ, Rubio P, Carvajal A. Experimental infection of conventional pigs with a ‘Brachyspira hampsonii’ isolate recovered from a migrating waterfowl in Spain. Vet J 2016; 214:10-3. [DOI: 10.1016/j.tvjl.2016.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 01/26/2016] [Accepted: 02/03/2016] [Indexed: 10/22/2022]
|
20
|
Scherrer S, Borgström A, Frei D, Wittenbrink MM. First screening for Brachyspira hampsonii in Swiss pigs applying a new high resolution melting assay. Vet Microbiol 2016; 193:17-21. [PMID: 27599925 DOI: 10.1016/j.vetmic.2016.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/20/2016] [Accepted: 07/24/2016] [Indexed: 10/21/2022]
Abstract
A new High Resolution Melting (HRM) assay was developed for the rapid detection of Brachyspira (B.) hampsonii. B. hampsonii occurs in different European countries, however, until today it has not been encountered in Switzerland. Four B. hampsonii reference strains were used to develop the HRM assay: B. hampsonii clade I ATCC BAA2463 and clade II ATCC BAA2464 strain, as well as two isolated strains P280/1 from the UK and the German isolate 5369-1x/12. A conserved region of the nox gene was used to design B. hampsonii-specific primers. The HRM melting curves for the four reference strains showed reproducible difference graphs with distinct differences between the four strains based on a slight variation between the four amplicon sequences. In addition, DNA from 22 B. hampsonii strains representing four genetic B. hampsonii groups was used to validate the method. Melting temperatures in the interval between 73.1 and 74°C were obtained for all B. hampsonii strains and allow differentiating B. hampsonii from other Brachyspira species. In total 897 Swiss porcine fecal Brachyspira isolates, cultured between 2009 and 2015, were analysed by the HRM protocol. B. hampsonii was not detected among these Swiss Brachyspira isolates. In conclusion, the rapid and low-cost HRM approach allows a sensitive and specific identification of B. hampsonii.
Collapse
Affiliation(s)
- Simone Scherrer
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 270, CH 8057 Zurich, Switzerland.
| | - Anna Borgström
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 270, CH 8057 Zurich, Switzerland
| | - Daniel Frei
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 270, CH 8057 Zurich, Switzerland
| | - Max M Wittenbrink
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 270, CH 8057 Zurich, Switzerland
| |
Collapse
|
21
|
Abstract
Swine dysentery is a severe enteric disease in pigs, which is characterized by bloody to mucoid diarrhea and associated with reduced growth performance and variable mortality. This disease is most often observed in grower–finisher pigs, wherein susceptible pigs develop a significant mucohemorrhagic typhlocolitis following infection with strongly hemolytic spirochetes of the genus Brachyspira. While swine dysentery is endemic in many parts of the world, the disease had essentially disappeared in much of the United States by the mid-1990s as a result of industry consolidation and effective treatment, control, and elimination methods. However, since 2007, there has been a reported increase in laboratory diagnosis of swine dysentery in parts of North America along with the detection of novel pathogenic Brachyspira spp worldwide. Accordingly, there has been a renewed interest in swine dysentery and Brachyspira spp infections in pigs, particularly in areas where the disease was previously eliminated. This review provides an overview of knowledge on the etiology, pathogenesis, and diagnosis of swine dysentery, with insights into risk factors and control.
Collapse
Affiliation(s)
- E. R. Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
22
|
Development of a serological ELISA using a recombinant protein to identify pig herds infected with Brachyspira hyodysenteriae. Vet J 2015; 206:365-70. [DOI: 10.1016/j.tvjl.2015.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/12/2015] [Accepted: 08/15/2015] [Indexed: 11/20/2022]
|
23
|
Molecular Epidemiology of Novel Pathogen "Brachyspira hampsonii" Reveals Relationships between Diverse Genetic Groups, Regions, Host Species, and Other Pathogenic and Commensal Brachyspira Species. J Clin Microbiol 2015; 53:2908-18. [PMID: 26135863 DOI: 10.1128/jcm.01236-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/22/2015] [Indexed: 11/20/2022] Open
Abstract
Outbreaks of bloody diarrhea in swine herds in the late 2000s signaled the reemergence of an economically significant disease, swine dysentery, in the United States. Investigations confirmed the emergence of a novel spirochete in swine, provisionally designated "Brachyspira hampsonii," with two genetically distinct clades. Although it has since been detected in swine and migratory birds in Europe and North America, little is known about its genetic diversity or its relationships with other Brachyspira species. This study characterizes B. hampsonii using a newly developed multilocus sequence typing (MLST) approach and elucidates the diversity, distribution, population structure, and genetic relationships of this pathogen from diverse epidemiological sources globally. Genetic characterization of 81 B. hampsonii isolates, originating from six countries, with our newly established MLST scheme identified a total of 20 sequence types (STs) belonging to three clonal complexes (CCs). B. hampsonii showed a heterogeneous population structure with evidence of microevolution locally in swine production systems, while its clustering patterns showed associations with its epidemiological origins (country, swine production system, and host species). The close genetic relatedness of B. hampsonii isolates from different countries and host species highlights the importance of strict biosecurity control measures. A comparative analysis of 430 isolates representing seven Brachyspira species (pathogens and commensals) from 19 countries and 10 host species depicted clustering by microbial species. It revealed the close genetic relatedness of B. hampsonii with commensal Brachyspira species and also provided support for the two clades of B. hampsonii to be considered a single species.
Collapse
|
24
|
Hampson DJ, La T, Phillips ND. Emergence of Brachyspira species and strains: reinforcing the need for surveillance. Porcine Health Manag 2015; 1:8. [PMID: 28694985 PMCID: PMC5499009 DOI: 10.1186/s40813-015-0002-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/05/2015] [Indexed: 11/24/2022] Open
Abstract
This short review discusses the increasing complexity that has developed around the understanding of Brachyspira species that infect pigs, and their ability to cause disease. It describes the recognition of new weakly haemolytic Brachyspira species, and the growing appreciation that Brachyspira pilosicoli and some other weakly haemolytic species may be pathogenic in pigs. It discusses swine dysentery (SD) caused by the strongly haemolytic Brachyspira hyodysenteriae, particularly the cyclical nature of the disease whereby it can largely disappear as a clinical problem from a farm or region, and re-emerge years later. The review then describes the recent emergence of two newly described strongly haemolytic pathogenic species, “Brachyspira suanatina” and “Brachyspira hampsonii” both of which appear to have reservoirs in migratory waterbirds, and which may be transmitted to and between pigs. “B. suanatina” seems to be confined to Scandinavia, whereas “B. hampsonii” has been reported in North America and Europe, causes a disease indistinguishable from SD, and has required the development of new routine diagnostic tests. Besides the emergence of new species, strains of known Brachyspira species have emerged that vary in important biological properties, including antimicrobial susceptibility and virulence. Strains can be tracked locally and at the national and international levels by identifying them using multilocus sequence typing (MLST) and comparing them against sequence data for strains in the PubMLST databases. Using MLST in conjunction with data on antimicrobial susceptibility can form the basis for surveillance programs to track the movement of resistant clones. In addition some strains of B. hyodysenteriae have low virulence potential, and some of these have been found to lack the B. hyodysenteriae 36 kB plasmid or certain genes on the plasmid whose activity may be associated with colonization. Lack of the plasmid or the genes can be identified using PCR testing, and this information can be added to the MLST and resistance data to undertake detailed surveillance. Strains of low virulence are particularly important where they occur in high health status breeding herds without causing obvious disease: potentially they could be transmitted to production herds where they may colonize more effectively and cause disease under stressful commercial conditions.
Collapse
Affiliation(s)
- David J Hampson
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6112 Australia
| | - Tom La
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6112 Australia
| | - Nyree D Phillips
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6112 Australia
| |
Collapse
|
25
|
Wilberts BL, Warneke HL, Bower LP, Kinyon JM, Burrough ER. Comparison of culture, polymerase chain reaction, and fluorescent in situ hybridization for detection of Brachyspira hyodysenteriae and “Brachyspira hampsonii” in pig feces. J Vet Diagn Invest 2014; 27:41-6. [DOI: 10.1177/1040638714563064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Swine dysentery is characterized by mucohemorrhagic diarrhea and can occur following infection by Brachyspira hyodysenteriae or “ Brachyspira hampsonii ”. A definitive diagnosis is often based on the isolation of strongly beta-hemolytic spirochetes from selective culture or by the application of species-specific polymerase chain reaction (PCR) assays directly to feces. While culture is highly sensitive, it typically requires 6 or more days to complete, and PCR, although rapid, can be limited by fecal inhibition. Fluorescent in situ hybridization (FISH) has been described in formalin-fixed tissues; however, completion requires approximately 2 days. Because of the time constraints of available assays, a same-day FISH assay was developed to detect B. hyodysenteriae and “ B. hampsonii ” in pig feces using previously described oligonucleotide probes Hyo1210 and Hamp1210 for B. hyodysenteriae and “ B. hampsonii”, respectively. In situ hybridization was simultaneously compared with culture and PCR on feces spiked with progressive dilutions of spirochetes to determine the threshold of detection for each assay at 0 and 48 hr. The PCR assay on fresh feces and FISH on formalin-fixed feces had similar levels of detection. Culture was the most sensitive method, detecting the target spirochetes at least 2 log-dilutions less when compared to other assays 48 hr after sample preparation. Fluorescent in situ hybridization also effectively detected both target species in formalin-fixed feces from inoculated pigs as part of a previous experiment. Accordingly, FISH on formalin-fixed feces from clinically affected pigs can provide same-day identification and preliminary speciation of spirochetes associated with swine dysentery in North America.
Collapse
Affiliation(s)
- Bailey L. Wilberts
- Departments of Veterinary Pathology (Wilberts), College of Veterinary Medicine, Iowa State University, Ames, IA
- Veterinary Diagnostic and Production Animal Medicine (Warneke, Bower, Kinyon, Burrough), College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Hallie L. Warneke
- Departments of Veterinary Pathology (Wilberts), College of Veterinary Medicine, Iowa State University, Ames, IA
- Veterinary Diagnostic and Production Animal Medicine (Warneke, Bower, Kinyon, Burrough), College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Leslie P. Bower
- Departments of Veterinary Pathology (Wilberts), College of Veterinary Medicine, Iowa State University, Ames, IA
- Veterinary Diagnostic and Production Animal Medicine (Warneke, Bower, Kinyon, Burrough), College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Joann M. Kinyon
- Departments of Veterinary Pathology (Wilberts), College of Veterinary Medicine, Iowa State University, Ames, IA
- Veterinary Diagnostic and Production Animal Medicine (Warneke, Bower, Kinyon, Burrough), College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Eric R. Burrough
- Departments of Veterinary Pathology (Wilberts), College of Veterinary Medicine, Iowa State University, Ames, IA
- Veterinary Diagnostic and Production Animal Medicine (Warneke, Bower, Kinyon, Burrough), College of Veterinary Medicine, Iowa State University, Ames, IA
| |
Collapse
|
26
|
Investigation of the impact of increased dietary insoluble fiber through the feeding of distillers dried grains with solubles (DDGS) on the incidence and severity of Brachyspira-associated colitis in pigs. PLoS One 2014; 9:e114741. [PMID: 25485776 PMCID: PMC4259391 DOI: 10.1371/journal.pone.0114741] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/13/2014] [Indexed: 01/10/2023] Open
Abstract
Diet has been implicated as a major factor impacting clinical disease expression of swine dysentery and Brachyspira hyodysenteriae colonization. However, the impact of diet on novel pathogenic strongly beta-hemolytic Brachyspira spp. including “B. hampsonii” has yet to be investigated. In recent years, distillers dried grains with solubles (DDGS), a source of insoluble dietary fiber, has been increasingly included in diets of swine. A randomized complete block experiment was used to examine the effect of increased dietary fiber through the feeding of DDGS on the incidence of Brachyspira-associated colitis in pigs. One hundred 4-week-old pigs were divided into five groups based upon inocula (negative control, Brachyspira intermedia, Brachyspira pilosicoli, B. hyodysenteriae or “B. hampsonii”) and fed one of two diets containing no (diet 1) or 30% (diet 2) DDGS. The average days to first positive culture and days post inoculation to the onset of clinical dysentery in the B. hyodysenteriae groups was significantly shorter for diet 2 when compared to diet 1 (P = 0.04 and P = 0.0009, respectively). A similar difference in the average days to first positive culture and days post inoculation to the onset of clinical dysentery was found when comparing the “B. hampsonii” groups. In this study, pigs receiving 30% DDGS shed on average one day prior to and developed swine dysentery nearly twice as fast as pigs receiving 0% DDGS. Accordingly, these data suggest a reduction in insoluble fiber through reducing or eliminating DDGS in swine rations should be considered an integral part of any effective disease elimination strategy for swine dysentery.
Collapse
|
27
|
Wilberts B, Arruda P, Warneke H, Erlandson K, Hammer J, Burrough E. Cessation of clinical disease and spirochete shedding after tiamulin treatment in pigs experimentally infected with “Brachyspira hampsonii”. Res Vet Sci 2014; 97:341-7. [DOI: 10.1016/j.rvsc.2014.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/29/2014] [Accepted: 08/21/2014] [Indexed: 11/25/2022]
|
28
|
Costa MO, Chaban B, Harding JCS, Hill JE. Characterization of the fecal microbiota of pigs before and after inoculation with "Brachyspira hampsonii". PLoS One 2014; 9:e106399. [PMID: 25166307 PMCID: PMC4148400 DOI: 10.1371/journal.pone.0106399] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/04/2014] [Indexed: 12/18/2022] Open
Abstract
“Brachyspira hampsonii” causes disease indistinguishable from swine dysentery, and the structure of the intestinal microbiome likely plays a role in determining susceptibility of individual pigs to infection and development of clinical disease. The objectives of the current study were to determine if the pre-inoculation fecal microbiota differed between inoculated pigs that did (INOC MH) or did not (INOC non-MH) develop mucohaemorrhagic diarrhea following challenge with “B. hampsonii”, and to quantify changes in the structure of the microbiome following development of clinical disease. Fecal microbiota profiles were generated based on amplification and sequencing of the cpn60 universal target sequence from 89 samples from 18 pigs collected at −8, −5, −3 and 0 days post-inoculation, and at termination. No significant differences in richness, diversity or taxonomic composition distinguished the pre-inoculation microbiomes of INOC MH and INOC non-MH pigs. However, the development of bloody diarrhea in inoculated pigs was associated with perturbation of the microbiota relative to INOC non-MH or sham-inoculated control pigs. Specifically, the fecal microbiota of INOC MH pigs was less dense (fewer total 16S rRNA copies per gram of feces), and had a lower Bacteroidetes:Firmicutes ratio. Further investigation of the potential long-term effects of Brachyspira disease on intestinal health and performance is warranted.
Collapse
Affiliation(s)
- Matheus O. Costa
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Bonnie Chaban
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John C S. Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Janet E. Hill
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
29
|
Warneke HL, Kinyon JM, Bower LP, Burrough ER, Frana TS. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for rapid identification of Brachyspira species isolated from swine, including the newly described “Brachyspira hampsonii”. J Vet Diagn Invest 2014; 26:635-9. [DOI: 10.1177/1040638714541114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Brachyspira species traditionally associated with swine dysentery and other diarrheal diseases in pigs are Brachyspira hyodysenteriae, Brachyspira pilosicoli, and, to a lesser extent, Brachyspira murdochii. “ Brachyspira hampsonii” is a recently proposed novel species that causes clinical disease similar to that caused by B. hyodysenteriae. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems are increasingly available in veterinary diagnostic laboratories, are less expensive, and are faster than traditional microbiological and molecular methods for identification. Thirty-three isolates associated with Brachyspira species of importance to swine were added to an existing MALDI-TOF MS database library. In total, species included in the library were: B. hyodysenteriae, “ B. hampsonii” clades I and II, Brachyspira innocens, Brachyspira intermedia, B. murdochii, and B. pilosicoli. A comparison between MALDI-TOF MS and nox sequencing was completed on 176 field isolates. Of the 176 field isolates, 174 (98.9%) matched species identification by both methods. Thirty field isolates were identified by both methods as “ B. hampsonii”. Twenty-seven of the 30 (90%) “ B. hampsonii” field isolates matched clade designation in both assays. The nox sequencing identified 26 as “ B. hampsonii” clade I and 4 as clade II. Comparatively, MALDI-TOF MS identified 25 of the 30 as “ B. hampsonii” clade I and 5 as clade II. The current study indicates MALDI-TOF MS is a reliable tool for the identification of swine Brachyspira species; however, final clade designation for “ B. hampsonii” may still require molecular techniques.
Collapse
Affiliation(s)
- Hallie L. Warneke
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | - Joann M. Kinyon
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | - Leslie P. Bower
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | - Eric R. Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | - Timothy S. Frana
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| |
Collapse
|
30
|
Costa MO, Hill JE, Fernando C, Lemieux HD, Detmer SE, Rubin JE, Harding JCS. Confirmation that "Brachyspira hampsonii" clade I (Canadian strain 30599) causes mucohemorrhagic diarrhea and colitis in experimentally infected pigs. BMC Vet Res 2014; 10:129. [PMID: 24917084 PMCID: PMC4059474 DOI: 10.1186/1746-6148-10-129] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 05/28/2014] [Indexed: 11/30/2022] Open
Abstract
Background “Brachyspira hampsonii”, discovered in North America in 2010 associated with dysentery-like illness, is an economically relevant swine pathogen resulting in decreased feed efficiency and increased morbidity, mortality and medication usage. “B. hampsonii” clade II strain 30446 has been shown to be causally associated with mucohemorrhagic diarrhea and colitis. Our objectives were to determine if “Brachyspira hampsonii” clade I strain 30599 is pathogenic to pigs, and to evaluate the relative diagnostic performance of three ante mortem sampling methodologies (direct PCR on feces, PCR on rectal GenoTube Livestock swabs, Brachyspira culture from rectal swabs). Five-week old pigs were intragastrically inoculated thrice with 108 genomic equivalents "B. hampsonii" (n = 12), or served as sham controls (n = 6). Feces were sampled and consistency assessed daily. Necropsies were performed 24 h after peak clinical signs. Results One pig died due to unrelated illness. Nine of 11 inoculated pigs, but no controls, developed mucoid or mucohemorrhagic diarrhea (MHD). Characteristic lesions of swine dysentery were observed in large intestine. “B. hampsonii” strain 30599 DNA was detected by qPCR in feces of all inoculated pigs for up to 6 days prior to the onset of MHD. The organism was isolated from the feces and colons of pigs demonstrating MHD, but not from controls. B. intermedia was isolated from inoculated pigs without MHD, and from 5 of 6 controls. Conclusions We conclude that “Brachyspira hampsonii” clade I strain 30599 is pathogenic and causes mucohemorrhagic diarrhea and colitis in susceptible pigs. Moreover, the three sampling methodologies performed similarly. GenoTube Livestock, a forensic swab designed to preserve DNA during shipping is a useful tool especially in settings where timely transport of diagnostic samples is challenging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John C S Harding
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
31
|
Hartnack S, Nathues C, Nathues H, Grosse Beilage E, Lewis FI. Estimating diagnostic test accuracies for Brachyspira hyodysenteriae accounting for the complexities of population structure in food animals. PLoS One 2014; 9:e98534. [PMID: 24906140 PMCID: PMC4048188 DOI: 10.1371/journal.pone.0098534] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 05/05/2014] [Indexed: 11/18/2022] Open
Abstract
For swine dysentery, which is caused by Brachyspira hyodysenteriae infection and is an economically important disease in intensive pig production systems worldwide, a perfect or error-free diagnostic test (“gold standard”) is not available. In the absence of a gold standard, Bayesian latent class modelling is a well-established methodology for robust diagnostic test evaluation. In contrast to risk factor studies in food animals, where adjustment for within group correlations is both usual and required for good statistical practice, diagnostic test evaluation studies rarely take such clustering aspects into account, which can result in misleading results. The aim of the present study was to estimate test accuracies of a PCR originally designed for use as a confirmatory test, displaying a high diagnostic specificity, and cultural examination for B. hyodysenteriae. This estimation was conducted based on results of 239 samples from 103 herds originating from routine diagnostic sampling. Using Bayesian latent class modelling comprising of a hierarchical beta-binomial approach (which allowed prevalence across individual herds to vary as herd level random effect), robust estimates for the sensitivities of PCR and culture, as well as for the specificity of PCR, were obtained. The estimated diagnostic sensitivity of PCR (95% CI) and culture were 73.2% (62.3; 82.9) and 88.6% (74.9; 99.3), respectively. The estimated specificity of the PCR was 96.2% (90.9; 99.8). For test evaluation studies, a Bayesian latent class approach is well suited for addressing the considerable complexities of population structure in food animals.
Collapse
Affiliation(s)
- Sonja Hartnack
- Section of Epidemiology, Vetsuisse Faculty, Zurich, Switzerland
- * E-mail:
| | - Christina Nathues
- Veterinary Public Health Institute, Vetsuisse Faculty, Liebefeld, Switzerland
| | - Heiko Nathues
- Department of Production and Population Health, Royal Veterinary College London, London, United Kingdom
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, Zurich, Switzerland
| | - Elisabeth Grosse Beilage
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Bakum, Germany
| | | |
Collapse
|
32
|
Wilberts BL, Arruda PH, Kinyon JM, Madson DM, Frana TS, Burrough ER. Comparison of Lesion Severity, Distribution, and Colonic Mucin Expression in Pigs With Acute Swine Dysentery Following Oral Inoculation With “Brachyspira hampsonii” or Brachyspira hyodysenteriae. Vet Pathol 2014; 51:1096-108. [DOI: 10.1177/0300985813516646] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Swine dysentery is classically associated with infection by Brachyspira hyodysenteriae, the only current officially recognized Brachyspira sp. that consistently imparts strong beta-hemolysis on blood agar. Recently, several strongly beta-hemolytic Brachyspira have been isolated from swine with clinical dysentery that are not identified as B. hyodysenteriae by PCR including the recently proposed species “ Brachyspira hampsonii.” In this study, 6-week-old pigs were inoculated with either a clinical isolate of “ B. hampsonii” (EB107; n = 10) clade II or a classic strain of B. hyodysenteriae (B204; n = 10) to compare gross and microscopic lesions and alterations in colonic mucin expression in pigs with clinical disease versus controls ( n = 6). Gross lesions were similar between infected groups. No histologic difference was observed between infected groups with regard to neutrophilic inflammation, colonic crypt depth, mucosal ulceration, or hemorrhage. Histochemical and immunohistochemical evaluation of the apex of the spiral colon revealed decreased expression of sulphated mucins, decreased expression of MUC4, and increased expression of MUC5AC in diseased pigs compared to controls. No difference was observed between diseased pigs in inoculated groups. This study reveals significant alterations in colonic mucin expression in pigs with acute swine dysentery and further reveals that these and other microscopic changes are similar following infection with “ B. hampsonii” clade II or B. hyodysenteriae.
Collapse
Affiliation(s)
- B. L. Wilberts
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - P. H. Arruda
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - J. M. Kinyon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - D. M. Madson
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - T. S. Frana
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - E. R. Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| |
Collapse
|
33
|
Mahu M, de Jong E, De Pauw N, Vande Maele L, Vandenbroucke V, Vandersmissen T, Miry C, Pasmans F, Haesebrouck F, Martel A, Boyen F. First isolation of “Brachyspira hampsonii”
from pigs in Europe. Vet Rec 2014; 174:47. [DOI: 10.1136/vr.101868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- M. Mahu
- Department of Pathology; Bacteriology and Poultry Diseases; Faculty of Veterinary Medicine; Ghent University; Salisburylaan 133 Merelbeke 9820 Belgium
| | - E. de Jong
- Animal Health Care Flanders; Deinse Horsweg 1 Drongen B-9031 Belgium
| | - N. De Pauw
- Department of Pathology; Bacteriology and Poultry Diseases; Faculty of Veterinary Medicine; Ghent University; Salisburylaan 133 Merelbeke 9820 Belgium
| | - L. Vande Maele
- Department of Pathology; Bacteriology and Poultry Diseases; Faculty of Veterinary Medicine; Ghent University; Salisburylaan 133 Merelbeke 9820 Belgium
- Institute for Agricultural and Fisheries Research (ILVO); Brusselsesteenweg 370 Melle B-9090 Belgium
| | - V. Vandenbroucke
- Animal Health Care Flanders; Deinse Horsweg 1 Drongen B-9031 Belgium
| | - T. Vandersmissen
- Animal Health Care Flanders; Deinse Horsweg 1 Drongen B-9031 Belgium
| | - C. Miry
- Animal Health Care Flanders; Deinse Horsweg 1 Drongen B-9031 Belgium
| | - F. Pasmans
- Department of Pathology; Bacteriology and Poultry Diseases; Faculty of Veterinary Medicine; Ghent University; Salisburylaan 133 Merelbeke 9820 Belgium
| | - F. Haesebrouck
- Department of Pathology; Bacteriology and Poultry Diseases; Faculty of Veterinary Medicine; Ghent University; Salisburylaan 133 Merelbeke 9820 Belgium
| | - A. Martel
- Department of Pathology; Bacteriology and Poultry Diseases; Faculty of Veterinary Medicine; Ghent University; Salisburylaan 133 Merelbeke 9820 Belgium
| | - F. Boyen
- Department of Pathology; Bacteriology and Poultry Diseases; Faculty of Veterinary Medicine; Ghent University; Salisburylaan 133 Merelbeke 9820 Belgium
| |
Collapse
|
34
|
Rohde J, Habighorst-Blome K, Seehusen F. “Brachyspira hampsonii” clade I isolated from Belgian pigs imported to Germany. Vet Microbiol 2014; 168:432-5. [DOI: 10.1016/j.vetmic.2013.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/08/2013] [Accepted: 11/09/2013] [Indexed: 11/17/2022]
|
35
|
Martínez-Lobo FJ, Hidalgo Á, García M, Argüello H, Naharro G, Carvajal A, Rubio P. First identification of "Brachyspira hampsonii" in wild European waterfowl. PLoS One 2013; 8:e82626. [PMID: 24349322 PMCID: PMC3857821 DOI: 10.1371/journal.pone.0082626] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/25/2013] [Indexed: 11/18/2022] Open
Abstract
Anseriformes deserve special attention in the epidemiology of Brachyspira spp. because diverse Anseriformes species have been described to act as highly efficient carriers of several Brachyspira spp. that can also infect livestock. The aim of this study was to investigate the prevalence and diversity of Brachyspira spp. in waterfowl that winter in Spain. Brachyspira spp. were isolated from 51 of the 205 faecal samples collected from graylag geese and mallards in the Villafáfila Lagoons Nature Reserve (Northwestern Spain). The Brachyspira species identified through phenotyping, PCR and sequencing of the nox gene were B. pilosicoli (5.9%), B. alvinipulli (11.8%), "B. hampsonii" (19.6%), B. murdochii (23.5%) and B. innocens (39.2%). The most relevant finding of this study is the description of "B. hampsonii" in specimens from birds for the first time. Phylogenetic analysis of the nox gene sequences grouped all of the obtained "B. hampsonii" isolates into a cluster with Brachyspira strains previously identified by others as "B. hampsonii" and separated from other Brachyspira spp. isolates and reference strains. Additionally, this cluster was related to clades that grouped B. murdochii and B. innocens isolates. The identification of "B. hampsonii" was also achieved in 8 of the 10 isolates by sequencing the16S rRNA gene and tlyA gene. Regardless of the species identified, no antimicrobial resistance was observed in any of the enteropathogenic isolates recovered. This is the first description of "B. hampsonii" in European waterfowl, which might represent hosts that serve as natural reservoirs of this Brachyspira species. This finding indicates that this spirochete is not limited to North America, and its presence in wild birds in Europe poses a risk of transmission to livestock.
Collapse
Affiliation(s)
| | - Álvaro Hidalgo
- Infectious Diseases and Epidemiology Unit, Faculty of Veterinary Medicine, University of León, León, Spain
| | - Marta García
- Infectious Diseases and Epidemiology Unit, Faculty of Veterinary Medicine, University of León, León, Spain
| | - Héctor Argüello
- Infectious Diseases and Epidemiology Unit, Faculty of Veterinary Medicine, University of León, León, Spain
| | - Germán Naharro
- Infectious Diseases and Epidemiology Unit, Faculty of Veterinary Medicine, University of León, León, Spain
| | - Ana Carvajal
- Infectious Diseases and Epidemiology Unit, Faculty of Veterinary Medicine, University of León, León, Spain
| | - Pedro Rubio
- Infectious Diseases and Epidemiology Unit, Faculty of Veterinary Medicine, University of León, León, Spain
| |
Collapse
|
36
|
Mappley LJ, La Ragione RM, Woodward MJ. Brachyspira and its role in avian intestinal spirochaetosis. Vet Microbiol 2013; 168:245-60. [PMID: 24355534 DOI: 10.1016/j.vetmic.2013.11.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
Abstract
The fastidious, anaerobic spirochaete Brachyspira is capable of causing enteric disease in avian, porcine and human hosts, amongst others, with a potential for zoonotic transmission. Avian intestinal spirochaetosis (AIS), the resulting disease from colonisation of the caeca and colon of poultry by Brachyspira leads to production losses, with an estimated annual cost of circa £ 18 million to the commercial layer industry in the United Kingdom. Of seven known and several proposed species of Brachyspira, three are currently considered pathogenic to poultry; B. alvinipulli, B. intermedia and B. pilosicoli. Currently, AIS is primarily prevented by strict biosecurity controls and is treated using antimicrobials, including tiamulin. Other treatment strategies have been explored, including vaccination and probiotics, but such developments have been hindered by a limited understanding of the pathobiology of Brachyspira. A lack of knowledge of the metabolic capabilities and little genomic information for Brachyspira has resulted in a limited understanding of the pathobiology. In addition to an emergence of antibiotic resistance amongst Brachyspira, bans on the prophylactic use of antimicrobials in livestock are driving an urgent requirement for alternative treatment strategies for Brachyspira-related diseases, such as AIS. Advances in the molecular biology and genomics of Brachyspira heralds the potential for the development of tools for genetic manipulation to gain an improved understanding of the pathogenesis of Brachyspira.
Collapse
Affiliation(s)
- Luke J Mappley
- Department of Bacteriology, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK; Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire RG6 6AP, UK.
| | - Roberto M La Ragione
- Department of Bacteriology, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK; School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Martin J Woodward
- Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire RG6 6AP, UK
| |
Collapse
|
37
|
Rubin JE, Harms NJ, Fernando C, Soos C, Detmer SE, Harding JCS, Hill JE. Isolation and characterization of Brachyspira spp. including "Brachyspira hampsonii" from lesser snow geese (Chen caerulescens caerulescens) in the Canadian Arctic. MICROBIAL ECOLOGY 2013; 66:813-822. [PMID: 23933825 DOI: 10.1007/s00248-013-0273-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/24/2013] [Indexed: 06/02/2023]
Abstract
Brachyspira is associated with diarrhea and colitis in pigs, and control of these pathogens is complicated by their complex ecology. Identification of wildlife reservoirs of Brachyspira requires the discrimination of colonized animals and those simply contaminated through environmental exposure. Lesser snow geese (Chen caerulescens caerulescens) were sampled in the Canadian arctic during the summer of 2011, and cloacal swabs were cultured on selective media. Brachyspira isolates were obtained from 15/170 (8.8 %) samples, and 12/15 isolates were similar to isolates previously recovered from pigs, including "Brachyspira hampsonii", a recently characterized species associated with dysentery-like disease in pigs in North America. A pilot inoculation study with one strongly β-hemolytic B. hampsonii isolate resulted in fecal shedding of the isolate by inoculated pigs for up to 14 days post-inoculation, but no severe clinical disease. Results of this study indicate that lesser snow geese can be colonized by Brachyspira strains that can also colonize pigs. Millions of lesser snow geese (C. caerulescens caerulescens) travel through the major pork-producing areas of Canada and the USA during their annual migration, making them a potential factor in the continental distribution of these bacteria.
Collapse
Affiliation(s)
- Joseph E Rubin
- Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Osorio J, Carvajal A, Naharro G, Rubio P, La T, Phillips ND, Hampson DJ. Identification of weakly haemolytic Brachyspira isolates recovered from pigs with diarrhoea in Spain and Portugal and comparison with results from other countries. Res Vet Sci 2013; 95:861-9. [PMID: 23928181 DOI: 10.1016/j.rvsc.2013.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/02/2013] [Accepted: 07/13/2013] [Indexed: 10/26/2022]
Abstract
Weakly haemolytic anaerobic intestinal spirochaetes of the genus Brachyspira are commonly identified based on species-specific gene sequences. Apart from the pathogenic Brachyspira pilosicoli, the distribution and disease associations of the other weakly haemolytic Brachyspira species in pigs have not been comprehensively investigated. In this study weakly haemolytic Brachyspira isolates (n=67) from Spanish and Portuguese pigs with diarrhoea, negative in a routine diagnostic PCR for B. pilosicoli, were identified by sequencing their NADH oxidase genes (nox). Nearly half the isolates were identified as Brachyspira murdochii (n=31; 46.3%). The others were Brachyspira innocens (n=26; 38.8%), Brachyspira intermedia (n=7; 10.4%), "Brachyspira pulli" (n=1; 1.5%) and a potentially novel Brachyspira species (n=2; 3%). Multilocus sequence typing (MLST) on a subset of 18 isolates confirmed their species designations, including the potential new species, and identified similarities to strains from other countries.
Collapse
Affiliation(s)
- J Osorio
- Animal Health Department, Faculty of Veterinary Sciences, University of León, León 24071, Spain
| | | | | | | | | | | | | |
Collapse
|
39
|
Patterson AH, Rubin JE, Fernando C, Costa MO, Harding JCS, Hill JE. Fecal shedding of Brachyspira spp. on a farrow-to-finish swine farm with a clinical history of "Brachyspira hampsonii"-associated colitis. BMC Vet Res 2013; 9:137. [PMID: 23844564 PMCID: PMC3716975 DOI: 10.1186/1746-6148-9-137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/10/2013] [Indexed: 12/02/2022] Open
Abstract
Background Brachyspira associated diarrhea is a re-emerging concern for Canadian swine producers. To identify critical control points for reducing the impact of Brachyspira on production, improved diagnostic tools and a better understanding of the on-farm epidemiology of these pathogens are required. A cross-sectional study was conducted for the detection of Brachyspira on a commercial, two-site, farrow-to-finish pork production unit in Saskatchewan, Canada with a clinical history of mucohaemorrhagic colitis associated with “B. hampsonii”. Results Rectal swabs from pigs at all production stages were collected over 13 weeks (n = 866). Two swabs were collected per pig for culture and Gram stain, and for PCR. Ninety-one culture positive samples were detected, with the highest prevalence of Brachyspira shedding in grower pigs (21%). No Brachyspira were detected in pre-weaned piglets. PCR and Gram stain of rectal swabs detected fewer positive samples than culture. The most prevalent species detected was B. murdochii; other species detected included B. pilosicoli, B. innocens, and “Brachyspira hampsonii”. Phylogenetic analysis revealed that several of the isolates, including some strongly beta-haemolytic isolates, might represent novel taxa. Conclusions Our results indicate that apparently healthy pigs can be colonized with diverse Brachyspira species, including some potential pathogens, and that frequency of shedding peaks in the grower stage. Difference in the detection rates of Brachyspira amongst culture, Gram stain or PCR on rectal swabs have implications for choice of detection methods and surveillance approaches that may be most effective in Brachyspira control strategies.
Collapse
Affiliation(s)
- Amy H Patterson
- Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Burrough E, Terhorst S, Sahin O, Zhang Q. Prevalence of Campylobacter spp. relative to other enteric pathogens in grow-finish pigs with diarrhea. Anaerobe 2013; 22:111-4. [PMID: 23792232 DOI: 10.1016/j.anaerobe.2013.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/30/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
Abstract
Salmonella spp., Lawsonia intracellularis, and Brachyspira spp. are pathogens commonly associated with diarrhea in growing and finishing pigs. Brachyspira spp. infection has recently reemerged as a significant concern due to an increase in the incidence of swine dysentery; however, the mechanisms underlying this increase in dysentery remain largely unknown. Pigs are also well-recognized as potential carriers of Campylobacter spp., particularly Campylobacter coli, yet enteric disease in swine associated with infection by these bacteria is considered uncommon and diagnosis has historically been based upon exclusion of other causes. Accordingly, Campylobacter culture is often excluded in routine diagnostic testing of cases of porcine enterocolitis and the incidence of infection is therefore largely unknown. In this study, feces from 155 cases of clinical diarrhea in grow-finish pigs submitted to the Iowa State University Veterinary Diagnostic Laboratory were cultured for Campylobacter spp. in addition to other testing as indicated for routine diagnostic investigation. Campylobacter culture was positive from 82.6% (128/155) of samples with C. coli accounting for 75% of isolates and Campylobacter jejuni for the remaining 25%. In 14.8% (23/155) of cases a Campylobacter spp. was the sole infectious agent detected; however, there was no association with any particular Campylobacter spp. Interestingly, for those cases with a laboratory diagnosis of Brachyspira-associated disease, 100% (15/15) were also culture positive for Campylobacter spp. suggesting a possible interrelationship between these bacteria in the pig gut. No association was noted between Campylobacter culture results and infection with either Salmonella spp. or L. intracellularis.
Collapse
Affiliation(s)
- Eric Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | | | | | | |
Collapse
|
41
|
Swine dysentery: aetiology, pathogenicity, determinants of transmission and the fight against the disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:1927-47. [PMID: 23665849 PMCID: PMC3709357 DOI: 10.3390/ijerph10051927] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 11/18/2022]
Abstract
Swine Dysentery (SD) is a severe mucohaemorhagic enteric disease of pigs caused by Brachyspira hyodysenteriae, which has a large impact on pig production and causes important losses due to mortality and sub-optimal performance. Although B. hyodysenteriae has been traditionally considered a pathogen mainly transmitted by direct contact, through the introduction of subclinically infected animals into a previously uninfected herd, recent findings position B. hyodysenteriae as a potential threat for indirect transmission between farms. This article summarizes the knowledge available on the etiological agent of SD and its virulence traits, and reviews the determinants of SD transmission. The between-herds and within-herd transmission routes are addressed. The factors affecting disease transmission are thoroughly discussed, i.e., environmental survival of the pathogen, husbandry factors (production system, production stage, farm management), role of vectors, diet influence and interaction of the microorganism with gut microbiota. Finally, prophylactic and therapeutic approaches to fight against the disease are briefly described.
Collapse
|
42
|
Burrough ER, Wilberts BL, Bower LP, Jergens AE, Schwartz KJ. Fluorescent in situ hybridization for detection of "Brachyspira hampsonii" in porcine colonic tissues. J Vet Diagn Invest 2013; 25:407-12. [PMID: 23572452 DOI: 10.1177/1040638713485228] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Swine dysentery is classically associated with infection by the strongly beta-hemolytic Brachyspira hyodysenteriae; however, the proposed novel species "Brachyspira hampsonii" has also been isolated from clinical cases of dysentery in the United States and Canada. Microbial culture is highly sensitive for detecting Brachyspira in clinical samples but requires several days for completion and is often followed by molecular testing for speciation. Alternatively, in situ hybridization using molecular probes applied to sections of formalin-fixed tissue can provide rapid, culture-independent identification of agents observed histologically. Accordingly, a fluorescent in situ hybridization assay was developed for confirmation of a clinical diagnosis of swine dysentery associated with infection by "B. hampsonii." An oligonucleotide probe (Hamp1210) targeting a specific 23S ribosomal RNA sequence of "B. hampsonii" was developed following sequence analysis and comparison of numerous Brachyspira spp. clinical isolates with reference sequences available in GenBank. The application of Hamp1210 and a previously published probe for B. hyodysenteriae (Hyo1210) to diseased colonic tissues successfully detected the target species in both experimentally infected pigs and naturally infected pigs from field cases, and the Hamp1210 probe consistently detected both clade I and clade II isolates of "B. hampsonii"; however, a strong positive signal was also observed in a single case where the Hamp1210 probe was applied to tissues infected with Brachyspira intermedia. In situ hybridization incorporating the Hamp1210 probe can reduce the delay from sample submission to pathogen identification in cases of swine dysentery associated with "B. hampsonii" infection where formalin-fixed tissues are available.
Collapse
Affiliation(s)
- Eric R Burrough
- 1655 Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | |
Collapse
|
43
|
Reproduction of mucohaemorrhagic diarrhea and colitis indistinguishable from swine dysentery following experimental inoculation with "Brachyspira hampsonii" strain 30446. PLoS One 2013; 8:e57146. [PMID: 23460829 PMCID: PMC3584117 DOI: 10.1371/journal.pone.0057146] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 01/17/2013] [Indexed: 11/19/2022] Open
Abstract
Background Mucohaemorrhagic diarrhea caused by Brachyspira hyodysenteriae, swine dysentery, is a severe production limiting disease of swine. Recently, pigs in western Canada with clinical signs indistinguishable from swine dysentery were observed. Despite the presence of spirochetes on fecal smears, recognized Brachyspira spp. including B. hyodysenteriae could not be identified. A phylogenetically distinct Brachyspira, called “B. hampsonii” strain 30446, however was isolated. The purpose of this study was to experimentally reproduce mucohaemorrhagic colitis and characterize strain 30446 shedding following inoculation. Methods and Findings Eighteen 13-week-old pigs were randomly assigned to inoculation (n = 12) or control (n = 6) groups in each of two trials. In trial 1, pigs were inoculated with a tissue homogenate collected from clinically affected field cases. In trial 2, pigs were inoculated with a pure broth culture of strain 30446. In both trials, mucohaemorrhagic diarrhea was significantly more common in inoculated pigs than controls, all of which remained healthy. In animals with mucohaemorrhagic diarrhea, significantly more spirochetes were observed on Gram stained fecal smears, and higher numbers of strain 30446 genome equivalents were detected by quantitative PCR (qPCR). Strain 30446 was cultured from colon and/or feces of all affected but no control animals at necropsy. Conclusions “Brachyspira hampsonii” strain 30446 causes mucohaemorrhagic diarrhea in pigs following a 4–9 day incubation period. Fecal shedding was detectable by day 4 post inoculation, and rarely preceded the onset of mucoid or haemorrhagic diarrhea by more than 2 days. Culture and 30446-specific qPCR are reliable methods of detection of this organism in feces and tissues of diarrheic pigs. The emergence of a novel Brachyspira spp., such as “B. hampsonii”, creates diagnostic challenges including higher risk of false negative diagnostic tests. We therefore recommend diagnostic laboratories routinely use Brachyspira culture, nox-based and species-specific PCR, and DNA sequencing to diagnose Brachyspira-associated colitis in pigs.
Collapse
|