1
|
Cottingham SL, Cheng AC, de Oliveira Viadanna PH, Subramaniam K, Craft WF, Iredale ME, Wisely SM, Campos Krauer JM. Mycobacterium kansasii Infection in a Farmed White-Tailed Deer ( Odocoileus virginianus) in Florida, USA. Animals (Basel) 2024; 14:1511. [PMID: 38791728 PMCID: PMC11117294 DOI: 10.3390/ani14101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
A 7-year-old farmed white-tailed deer doe was transported to a Levy County, Florida property and began to decline in health, exhibiting weight loss and pelvic limb weakness. The doe prematurely delivered live twin fawns, both of which later died. The doe was treated with corticosteroids, antibiotics, gastric cytoprotectants, and B vitamins but showed no improvement. The doe was euthanized, and a post mortem examination was performed under the University of Florida's Cervidae Health Research Initiative. We collected lung tissue after the animal was euthanized and performed histological evaluation, using H&E and Ziehl-Neelsen (ZN) staining, and molecular evaluation, using conventional PCR, followed by Sanger sequencing. The microscopic observations of the H&E-stained lung showed multifocal granuloma, while the ZN-stained tissue revealed low numbers of beaded, magenta-staining rod bacteria inside the granuloma formation. Molecular analysis identified the presence of Mycobacterium kansasii. This isolation of a non-tuberculous Mycobacterium in a white-tailed deer emphasizes the importance of specific pathogen identification in cases of tuberculosis-like disease in farmed and free-ranging cervids. We report the first case of M. kansasii infection in a farmed white-tailed deer (Odocoileus virginianus) in Florida. Although M. kansasii cases are sporadic in white-tailed deer, it is important to maintain farm biosecurity and prevent farmed cervids from contacting wildlife to prevent disease transmission.
Collapse
Affiliation(s)
- Sydney L. Cottingham
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (S.L.C.); (A.-C.C.)
| | - An-Chi Cheng
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (S.L.C.); (A.-C.C.)
| | - Pedro H. de Oliveira Viadanna
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (P.H.d.O.V.); (K.S.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA;
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (P.H.d.O.V.); (K.S.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA;
| | - William F. Craft
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (W.F.C.); (M.E.I.)
| | - Marley E. Iredale
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (W.F.C.); (M.E.I.)
| | - Samantha M. Wisely
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA;
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - Juan M. Campos Krauer
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (S.L.C.); (A.-C.C.)
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Radulski Ł, Krajewska-Wędzina M, Lipiec M, Szulowski K. Infection of a Free-Living Wild Boar (Sus scrofa) with a Bacterium from the Mycobacterium kansasii Complex. Animals (Basel) 2022; 12:ani12080964. [PMID: 35454211 PMCID: PMC9024954 DOI: 10.3390/ani12080964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Mycobacteriosis is a collective term for diseases caused by nontuberculous mycobacteria. Wild animals are a frequent source of mycobacteria infection in farm animals and humans; therefore, it is important to monitor the presence of these pathogens in free-living mammals. We isolated bacterium belonging to Mycobacterium kansasii complex from a submandibular lymph node obtained from a wild boar. This mycobacterium is a common cause of severe human lung diseases and is rarely responsible for animal diseases; therefore, its presence in the wild animal population is of great concern. The animal was apparently healthy, and we did not find any internal organ lesions despite the abundant growth of tissue-isolated bacteria on media. Thanks to our research, the specificity of wild boar mycobacteriosis caused by MKC will be better known. Abstract The most numerous group of bacteria in the genus Mycobacterium is the nontuberculous mycobacteria. Currently, over 200 species of bacteria have been classified as belonging to this group, of which approximately 30 are pathogenic to humans and animals. Mycobacterium kansasii complex numbers among these pathogenic species. The submandibular lymph nodes of a wild boar shot by a hunter were examined in order to confirm or exclude infection with bacteria of the genus Mycobacterium. In culture, a bacterial isolate was obtained after 12 days of incubation on Petragnani and Stonebrink media. A multiplex PCR clearly indicated that the isolate was a nontuberculous mycobacterium. The results of species identification attempts via both molecular biology methods and mass spectrometry confirmed that the isolated strain belonged to MKC. The described case of a wild boar infection with MKC is the first documented case in Poland and only the second in Europe, and in confirming the presence of this pathogen among free-living animals, this report implies that MKC is of great concern. Our research elucidates some specifics of wild boar mycobacteriosis and may be used to instill awareness in the public of the dangers of dressing hunt prey or consuming its meat in ignorance of safe procedures, which can contribute to the transmission of the pathogen to humans.
Collapse
|
3
|
Smith K, Kleynhans L, Warren RM, Goosen WJ, Miller MA. Cell-Mediated Immunological Biomarkers and Their Diagnostic Application in Livestock and Wildlife Infected With Mycobacterium bovis. Front Immunol 2021; 12:639605. [PMID: 33746980 PMCID: PMC7969648 DOI: 10.3389/fimmu.2021.639605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium bovis has the largest host range of the Mycobacterium tuberculosis complex and infects domestic animal species, wildlife, and humans. The presence of global wildlife maintenance hosts complicates bovine tuberculosis (bTB) control efforts and further threatens livestock and wildlife-related industries. Thus, it is imperative that early and accurate detection of M. bovis in all affected animal species is achieved. Further, an improved understanding of the complex species-specific host immune responses to M. bovis could enable the development of diagnostic tests that not only identify infected animals but distinguish between infection and active disease. The primary bTB screening standard worldwide remains the tuberculin skin test (TST) that presents several test performance and logistical limitations. Hence additional tests are used, most commonly an interferon-gamma (IFN-γ) release assay (IGRA) that, similar to the TST, measures a cell-mediated immune (CMI) response to M. bovis. There are various cytokines and chemokines, in addition to IFN-γ, involved in the CMI component of host adaptive immunity. Due to the dominance of CMI-based responses to mycobacterial infection, cytokine and chemokine biomarkers have become a focus for diagnostic tests in livestock and wildlife. Therefore, this review describes the current understanding of host immune responses to M. bovis as it pertains to the development of diagnostic tools using CMI-based biomarkers in both gene expression and protein release assays, and their limitations. Although the study of CMI biomarkers has advanced fundamental understanding of the complex host-M. bovis interplay and bTB progression, resulting in development of several promising diagnostic assays, most of this research remains limited to cattle. Considering differences in host susceptibility, transmission and immune responses, and the wide variety of M. bovis-affected animal species, knowledge gaps continue to pose some of the biggest challenges to the improvement of M. bovis and bTB diagnosis.
Collapse
Affiliation(s)
- Katrin Smith
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Léanie Kleynhans
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Robin M Warren
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Wynand J Goosen
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Michele A Miller
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|