1
|
Jindanil T, Xu L, Fontenele RC, Perula MCDL, Jacobs R. Smartphone applications for facial scanning: A technical and scoping review. Orthod Craniofac Res 2024. [PMID: 38842250 DOI: 10.1111/ocr.12821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION Facial scanning through smartphone scanning applications (SSA) is increasingly being used for medical applications as cost-effective, chairside method. However, clinical validation is lacking. This review aims to address: (1) Which SSA could perform facial scanning? (2) Which SSA can be clinically used? (3) Which SSA have been reported and scientifically validated for medical applications? METHODS Technical search for SSA designed for face or object scanning was conducted on Google, Apple App Store, and Google Play Store from August 2022 to December 2023. Literature search was performed on PubMed, Cochrane, EMBASE, MEDLINE, Scopus, IEEE Xplore, ACM Digital Library, Clinicaltrials.gov, ICTRP (WHO) and preprints up to 2023. Eligibility criteria included English-written scientific articles incorporating at least one SSA for clinical purposes. SSA selection and data extraction were executed by one reviewer, validated by second, with third reviewer being consulted for discordances. RESULTS Sixty-three applications designed for three-dimensional object scanning were retrieved, with 52 currently offering facial scanning capabilities. Fifty-six scientific articles, comprising two case reports, 16 proof-of-concepts and 38 experimental studies were analysed. Thirteen applications (123D Catch, 3D Creator, Bellus 3D Dental Pro, Bellus 3D Face app, Bellus 3D Face Maker, Capture, Heges, Metascan, Polycam, Scandy Pro, Scaniverse, Tap tap tap and Trnio) were reported in literature for digital workflow integration, comparison or proof-of-concept studies. CONCLUSION Fifty-two SSA can perform facial scanning currently and can be used clinically, offering cost-effectiveness, portability and user-friendliness. Although clinical validation is crucial, only 13 SSA were scientifically validated, underlying awareness of potential pitfalls and limitations.
Collapse
Affiliation(s)
- Thanatchaporn Jindanil
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Lianyi Xu
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Maria Cadenas de Llano Perula
- Department of Oral Health Sciences - Orthodontics, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Reinhilde Jacobs
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
2
|
H AK, Batra P, Juneja A, Talwar A, Mohan S, Sood SC. 3-Dimensional Evaluation of Two PNAM Techniques (Modified Grayson & AlignerNAM) on Facial Soft Tissue Morphology: A Randomised Clinical Trial. Cleft Palate Craniofac J 2024:10556656241246923. [PMID: 38644766 DOI: 10.1177/10556656241246923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024] Open
Abstract
OBJECTIVE Evaluate facial changes after Presurgical Naso-Alveolar Molding (PNAM) in unilateral cleft lip and palate (UCLP) patients treated with Modified Grayson Technique and AlignerNAM (with DynaCleft nasal elevator) using a 3D facial scan. DESIGN Randomised clinical trial. SETTING Institutional study. Participants: 20 UCLP patients allocated to two groups (10 patients each). INTERVENTIONS Group A patients underwent PNAM with Modified Grayson Technique and Group B patients underwent AlignerNAM (with DynaCleft nasal elevator). Their 3D facial scans were obtained by using an iOSbased application (Bellus3D FaceApp) mounted on a novel frame. These .stl files were analysed using 3D software (GOM INSPECT) at three-time intervals; before intervention (T0), after intervention (T1) and one month after lip repair surgery (T2). MAIN OUTCOME MEASURE(S) Changes in facial and nasolabial morphology. RESULTS Both techniques brought significant improvement in the columellar length, nasal tip projection, columella angle, nasal tip angle and a significant reduction in cleft width. At T1, a statistically significant difference in angular and linear measurements was present in both groups. At T2, no statistically significant difference in linear parameters was observed between the two groups except for the outer lateral height of the non-cleft side, basal lateral height of the non-cleft side, and philtrum width. Similar pattern was observed in angular measurements with no statistically significant difference between the two groups except in nasolabial angle, anterior nasal base triangle III, and anterior nasal root triangle. CONCLUSIONS Aligner NAM and Modified Grayson technique are equally effective PNAM methods with similar clinical results in nasolabial morphology after lip repair surgery.
Collapse
Affiliation(s)
- Alisha K H
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Dental Studies and Technologies, Modinagar, Uttar Pradesh, India
| | - Puneet Batra
- Department of Orthodontics & Dentofacial Orthopaedics, Manav Rachna Dental College, Faridabad, Haryana, India
| | - Achint Juneja
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Dental Studies and Technologies, Modinagar, Uttar Pradesh, India
| | - Aditya Talwar
- Department of Orthodontics & Dentofacial Orthopaedics, Manav Rachna Dental College, Faridabad, Haryana, India
| | - Stuti Mohan
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Dental Studies and Technologies, Modinagar, Uttar Pradesh, India
| | - S C Sood
- Smile Train Centre, Sant Paramanand Hospital, Delhi, Delhi, India
| |
Collapse
|
3
|
Ritschl LM, Classen C, Kilbertus P, Eufinger J, Storck K, Fichter AM, Wolff KD, Grill FD. Comparison of three-dimensional imaging of the nose using three different 3D-photography systems: an observational study. Head Face Med 2024; 20:7. [PMID: 38267982 PMCID: PMC10807178 DOI: 10.1186/s13005-024-00406-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND New 3D technologies for superficial soft tissue changes, especially in plastic and reconstructive surgical procedures, can improve the planning and documentation of facial surgeries. The purpose of this study was to compare and determine the applicability and feasibility of three different 3D-photography systems in clinical practice imaging the nose. METHODS A total of 16 healthy non-operated noses were included in this prospective study. A plaster model of each nose was produced, digitized, and converted to a .stl mesh (= ground truth model). Three-dimensional images of each nose were then taken using Artec Space Spider (gold standard), Planmeca ProFace®, and the Bellus3D Dental Pro application. All resulting .stl files were aligned to the ground truth model using MeshLab software, and the root mean square error (RMSE), mean surface distance (MSD), and Hausdorff distance (HD) were calculated. RESULTS The Artec Space Spider 3D-photography system showed significantly better results compared to the two other systems in regard to RMSE, MSD, and HD (each p < 0.001). There was no significant difference between Planmeca ProFace® and Bellus3D Dental Pro in terms of RMSE, MSD, and HD. Overall, all three camera systems showed a clinically acceptable deviation to the reference model (range: -1.23-1.57 mm). CONCLUSIONS The three evaluated 3D-photography systems were suitable for nose imaging in the clinical routine. While Artec Space Spider showed the highest accuracy, the Bellus3D Dental Pro app may be the most feasible option for everyday clinical use due to its portability, ease of use, and low cost. This study presents three different systems, allowing readers to extrapolate to other systems when planning to introduce 3D photography in the clinical routine.
Collapse
Affiliation(s)
- Lucas M Ritschl
- Department of Oral and Maxillofacial Surgery, School of Medicine and Health, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Carolina Classen
- Department of Oral and Maxillofacial Surgery, School of Medicine and Health, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Strasse 22, D-81675, Munich, Germany.
- Department of Oral and Maxillofacial Surgery, Saarland University Medical Centre, 66421, Homburg, Germany.
| | - Paul Kilbertus
- Department of Oral and Maxillofacial Surgery, School of Medicine and Health, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Julia Eufinger
- Department of Oral and Maxillofacial Surgery, School of Medicine and Health, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Katharina Storck
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Andreas M Fichter
- Department of Oral and Maxillofacial Surgery, School of Medicine and Health, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Klaus-Dietrich Wolff
- Department of Oral and Maxillofacial Surgery, School of Medicine and Health, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Florian D Grill
- Department of Oral and Maxillofacial Surgery, School of Medicine and Health, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Strasse 22, D-81675, Munich, Germany
- Private Practice Oral and Maxillofacial Surgery, Wolfratshausen, Germany
| |
Collapse
|
4
|
Thurzo A, Strunga M, Havlínová R, Reháková K, Urban R, Surovková J, Kurilová V. Smartphone-Based Facial Scanning as a Viable Tool for Facially Driven Orthodontics? SENSORS (BASEL, SWITZERLAND) 2022; 22:s22207752. [PMID: 36298103 PMCID: PMC9607180 DOI: 10.3390/s22207752] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 05/28/2023]
Abstract
The current paradigm shift in orthodontic treatment planning is based on facially driven diagnostics. This requires an affordable, convenient, and non-invasive solution for face scanning. Therefore, utilization of smartphones' TrueDepth sensors is very tempting. TrueDepth refers to front-facing cameras with a dot projector in Apple devices that provide real-time depth data in addition to visual information. There are several applications that tout themselves as accurate solutions for 3D scanning of the face in dentistry. Their clinical accuracy has been uncertain. This study focuses on evaluating the accuracy of the Bellus3D Dental Pro app, which uses Apple's TrueDepth sensor. The app reconstructs a virtual, high-resolution version of the face, which is available for download as a 3D object. In this paper, sixty TrueDepth scans of the face were compared to sixty corresponding facial surfaces segmented from CBCT. Difference maps were created for each pair and evaluated in specific facial regions. The results confirmed statistically significant differences in some facial regions with amplitudes greater than 3 mm, suggesting that current technology has limited applicability for clinical use. The clinical utilization of facial scanning for orthodontic evaluation, which does not require accuracy in the lip region below 3 mm, can be considered.
Collapse
Affiliation(s)
- Andrej Thurzo
- Department of Stomatology and Maxillofacial Surgery, Faculty of Medicine, Comenius University in Bratislava, 81250 Bratislava, Slovakia
| | - Martin Strunga
- Department of Stomatology and Maxillofacial Surgery, Faculty of Medicine, Comenius University in Bratislava, 81250 Bratislava, Slovakia
| | - Romana Havlínová
- Department of Stomatology and Maxillofacial Surgery, Faculty of Medicine, Comenius University in Bratislava, 81250 Bratislava, Slovakia
| | - Katarína Reháková
- Department of Stomatology and Maxillofacial Surgery, Faculty of Medicine, Comenius University in Bratislava, 81250 Bratislava, Slovakia
| | - Renata Urban
- Department of Stomatology and Maxillofacial Surgery, Faculty of Medicine, Comenius University in Bratislava, 81250 Bratislava, Slovakia
| | - Jana Surovková
- Department of Stomatology and Maxillofacial Surgery, Faculty of Medicine, Comenius University in Bratislava, 81250 Bratislava, Slovakia
| | - Veronika Kurilová
- Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovičova 3, 81219 Bratislava, Slovakia
| |
Collapse
|