1
|
Yamaguchi K, Yamamoto H, Izutsu K, Yuasa M, Kaji D, Nishida A, Ishiwata K, Takagi S, Yamamoto G, Asano-Mori Y, Uchida N, Taniguchi S. Fatal outcome of BK virus encephalitis in an allogeneic stem cell transplantation recipient. J Infect Chemother 2024; 30:1166-1169. [PMID: 38514025 DOI: 10.1016/j.jiac.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
BK virus (BKV) encephalitis is a rare complication after hematopoietic stem cell transplantation (HSCT). A 43-year-old woman with recurrent follicular lymphoma after autologous HSCT received allogeneic bone marrow transplantation from a human leukocyte antigen-matched related donor. Neutrophil engraftment was achieved on post-transplant day 13. Memory loss and noncooperative attitude toward the medical staff were observed on day 16, and her mental status worsened progressively. Magnetic resonance imaging (MRI) showed nonspecific findings on day 19; however, cerebrospinal fluid (CSF) analysis including real-time polymerase chain reaction on day 20 revealed elevated levels of BKV 4.67 × 104 copy/mL. BKV encephalitis was diagnosed based on CSF findings, intravenous administration of immunoglobulin and cidofovir was started, and the immunosuppressive agent dose was reduced. Diffusion-weighted MRI on day 28 showed signal abnormalities in the bilateral periventricular white matter. Although the follow-up CSF analysis on day 35 was negative for BKV, her mental status and MRI findings did not improve, and she died on day 55 because of respiratory failure. This case emphasizes the importance of considering BKV encephalitis as a differential diagnosis of post-transplant encephalitis, considering the central nervous system-associated immune reconstitution inflammatory syndrome in patients with worsening central nervous system findings after eradication of BKV in the CSF.
Collapse
Affiliation(s)
| | | | - Koji Izutsu
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | | | - Daisuke Kaji
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Aya Nishida
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | | | | | - Go Yamamoto
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | | | - Naoyuki Uchida
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | | |
Collapse
|
2
|
Riggsbee DL, Alali M, Kussin ML. Cidofovir for Viral Infections in Immunocompromised Children: Guidance on Dosing, Safety, Efficacy, and a Review of the Literature. Ann Pharmacother 2024; 58:286-304. [PMID: 37272472 DOI: 10.1177/10600280231176135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
OBJECTIVE To describe the use of cidofovir (CDV) for viral infections in immunocompromised children (IC) and provide guidance on dosing and supportive care. DATA SOURCES A PubMed search was conducted for literature published between 1997 and January 2022 using the following terms: cidofovir, plus children or pediatrics. STUDY SELECTION AND DATA EXTRACTION Limits were set to include human subjects less than 24 years of age receiving intravenous (IV) or intrabladder CDV for treatment of infections due to adenovirus, polyomavirus-BK (BKV), herpesviruses, or cytomegalovirus. DATA SYNTHESIS Data were heterogeneous, with largely uncontrolled studies. Conventional dosing (CDV 5 mg/kg/dose weekly) was commonly used in 60% (31/52) of studies and modified dosing (CDV 1 mg/kg/dose 3 times/week) was used in 17% (9/52) of studies, despite being off-label. Nephrotoxicity reported across studies totaled 16% (65/403 patients), which was higher for conventional dosing 29 of 196 patients (15%) than modified dosing 1 of 27 patients (4%). Saline hyperhydration and concomitant probenecid remain the cornerstones of supportive care, while some regimens omitting probenecid are emerging to target BKV. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE To our knowledge, this is the first comprehensive review of CDV use (indications, dosing, supportive care, response, and nephrotoxicity) in pediatric IC. CONCLUSIONS Effective utilization of CDV in IC remains challenging. Further prospective studies are needed to determine the optimal CDV dosing; however, less aggressive dosing regimens such as modified thrice weekly dosing or low dosing once weekly omitting probenecid to enhance urinary penetration may be reasonable alternatives to conventional dosing in some IC.
Collapse
Affiliation(s)
- Daniel L Riggsbee
- Department of Pharmacy, C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, MI, USA
| | - Muayad Alali
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University, Indianapolis, IN, USA
| | - Michelle L Kussin
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University, Indianapolis, IN, USA
- Department of Pharmacy, Riley Hospital for Children, Indiana University Health, Indianapolis, IN, USA
| |
Collapse
|
3
|
Thomas SJ, Ouellette CP. Viral meningoencephalitis in pediatric solid organ or hematopoietic cell transplant recipients: a diagnostic and therapeutic approach. Front Pediatr 2024; 12:1259088. [PMID: 38410764 PMCID: PMC10895047 DOI: 10.3389/fped.2024.1259088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024] Open
Abstract
Neurologic complications, both infectious and non-infectious, are frequent among hematopoietic cell transplant (HCT) and solid organ transplant (SOT) recipients. Up to 46% of HCT and 50% of SOT recipients experience a neurological complication, including cerebrovascular accidents, drug toxicities, as well as infections. Defects in innate, adaptive, and humoral immune function among transplant recipients predispose to opportunistic infections, including central nervous system (CNS) disease. CNS infections remain uncommon overall amongst HCT and SOT recipients, compromising approximately 1% of total cases among adult patients. Given the relatively lower number of pediatric transplant recipients, the incidence of CNS disease amongst in this population remains unknown. Although infections comprise a small percentage of the neurological complications that occur post-transplant, the associated morbidity and mortality in an immunosuppressed state makes it imperative to promptly evaluate and aggressively treat a pediatric transplant patient with suspicion for viral meningoencephalitis. This manuscript guides the reader through a broad infectious and non-infectious diagnostic differential in a transplant recipient presenting with altered mentation and fever and thereafter, elaborates on diagnostics and management of viral meningoencephalitis. Hypothetical SOT and HCT patient cases have also been constructed to illustrate the diagnostic and management process in select viral etiologies. Given the unique risk for various opportunistic viral infections resulting in CNS disease among transplant recipients, the manuscript will provide a contemporary review of the epidemiology, risk factors, diagnosis, and management of viral meningoencephalitis in these patients.
Collapse
Affiliation(s)
- Sanya J. Thomas
- Host Defense Program, Section of Infectious Diseases, Nationwide Children’s Hospital, Columbus, OH, United States
- Division of Infectious Diseases, Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, United States
| | - Christopher P. Ouellette
- Host Defense Program, Section of Infectious Diseases, Nationwide Children’s Hospital, Columbus, OH, United States
- Division of Infectious Diseases, Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
4
|
Jakabek D, Chaganti J, Brew BJ. Infectious leukoencephalopathies. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:431-453. [PMID: 39322393 DOI: 10.1016/b978-0-323-99209-1.00016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Leukoencephalopathy from infectious agents may have a rapid course, such as human simplex virus encephalitis; however, in many diseases, it may take months or years before diagnosis, such as in subacute sclerosing panencephalitis or Whipple disease. There are wide geographic distributions and susceptible populations, including both immunocompetent and immunodeficient patients. Many infections have high mortality rates, such as John Cunningham virus and subacute sclerosing panencephalitis, although others have effective treatments if suspected and treated early, such as herpes simplex encephalitis. This chapter will describe viral, bacterial, and protozoal infections, which predominantly cause leukoencephalopathy. We focus on the clinical presentation of these infectious agents briefly covering epidemiology and subtypes of infections. Next, we detail current pathophysiologic mechanisms causing white matter injury. Diagnostic and confirmatory tests are discussed. We cover predominantly MRI imaging features of leukoencephalopathies, and in addition, summarize the common imaging features. Additionally, we detail how imaging features may be used to narrow the differential of a leukoencephalopathy clinical presentation. Lastly, we present an outline of common treatment approaches where available.
Collapse
Affiliation(s)
- David Jakabek
- Department of Neurology, St. Vincent's Hospital, Sydney, NSW, Australia; University of New South Wales, Sydney, NSW, Australia
| | - Joga Chaganti
- Department of Radiology, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Bruce James Brew
- Department of Neurology, St. Vincent's Hospital, Sydney, NSW, Australia; University of New South Wales, Sydney, NSW, Australia; University of Notre Dame, Sydney, NSW, Australia; Department of HIV Medicine and Peter Duncan Neurosciences Unit St Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Jeemon G, Ganesh K, Madavana VV, Abraham MA. A Rare Cause of Encephalopathy Post Renal Transplant: BK Polyoma Virus Encephalitis. Indian J Nephrol 2023; 33:464-467. [PMID: 38174301 PMCID: PMC10752396 DOI: 10.4103/ijn.ijn_150_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/18/2022] [Accepted: 10/04/2022] [Indexed: 01/05/2024] Open
Abstract
BK polyoma virus (BKV) belongs to Polyomaviridae family. It is a double-stranded DNA virus. Only a few cases of BKV-associated neurological disease in renal transplant recipients have been reported. BKV related central nervous system (CNS) infection may often remain unrecognized in immunocompromised patients. Here, we are reporting a case of BKV encephalitis post renal transplantation for the awareness of all physicians regarding this entity.
Collapse
Affiliation(s)
- Gladwin Jeemon
- Department of Nephrology and Renal Transplantation, VPS Lakeshore Hospital and Research Center, Kochi, Kerala, India
| | - Kartik Ganesh
- Department of Nephrology and Renal Transplantation, VPS Lakeshore Hospital and Research Center, Kochi, Kerala, India
| | - V Vidya Madavana
- Department of Neuromedicine, VPS Lakeshore Hospital and Research Center, Kochi, Kerala, India
| | - M. Abi Abraham
- Department of Nephrology and Renal Transplantation, VPS Lakeshore Hospital and Research Center, Kochi, Kerala, India
| |
Collapse
|
6
|
Vishnevetsky A, Anand P. Approach to Neurologic Complications in the Immunocompromised Patient. Semin Neurol 2021; 41:554-571. [PMID: 34619781 DOI: 10.1055/s-0041-1733795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neurologic complications are common in immunocompromised patients, including those with advanced human immunodeficiency virus, transplant recipients, and patients on immunomodulatory medications. In addition to the standard differential diagnosis, specific pathogens and other conditions unique to the immunocompromised state should be considered in the evaluation of neurologic complaints in this patient population. A thorough understanding of these considerations is critical to the inpatient neurologist in contemporary practice, as increasing numbers of patients are exposed to immunomodulatory therapies. In this review, we provide a chief complaint-based approach to the clinical presentations and diagnosis of both infectious and noninfectious complications particular to immunocompromised patients.
Collapse
Affiliation(s)
- Anastasia Vishnevetsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pria Anand
- Department of Neurology, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
7
|
Anand P. Neurologic Infections in Patients on Immunomodulatory and Immunosuppressive Therapies. ACTA ACUST UNITED AC 2021; 27:1066-1104. [PMID: 34623105 DOI: 10.1212/con.0000000000000985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Both broadly immunosuppressive medications and selective immunomodulatory agents that act on particular components of the immune system are increasingly used in the treatment of neurologic and non-neurologic diseases. These therapies predispose patients to particular infections, some of which may affect the nervous system. Therefore, familiarity with the clinical and radiologic features of neurologic infections associated with specific immunomodulatory therapies is of importance for the practicing neurologist. This article reviews these neuroinfectious conditions, as well as other neurologic complications unique to transplant recipients and other patients who are immunocompromised. RECENT FINDINGS Diagnosis of infectious pathogens in patients who are immunocompromised may be particularly challenging because a decreased immune response can lead to atypical imaging or laboratory findings. Next-generation sequencing and other novel diagnostic modalities may improve the rate of early identification of neurologic infections in patients who are immunocompromised and ultimately ameliorate outcomes in this vulnerable population. SUMMARY A broad range of bacterial, viral, fungal, and parasitic infections of the nervous system can complicate solid organ and hematopoietic cell transplantation as well as other forms of immunocompromise. In addition to neurologic infections, such patients are at risk of neurotoxic and neuroinflammatory complications related to immunomodulatory and immunosuppressive therapies. Early recognition of infectious and noninfectious complications of immunocompromise is essential to guide appropriate treatment, which can include antimicrobial therapy and, in some cases, withdrawal of the predisposing medication with a transition to an alternative regimen.
Collapse
|
8
|
Bush R, Johns F, Betty Z, Goldstein S, Horn B, Shoemaker L, Upadhyay K. BK virus encephalitis and end-stage renal disease in a child with hematopoietic stem cell transplantation. Pediatr Transplant 2020; 24:e13739. [PMID: 32412694 DOI: 10.1111/petr.13739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/09/2020] [Accepted: 04/20/2020] [Indexed: 01/07/2023]
Abstract
BK virus encephalitis after HSCT is uncommon. Several reports of native kidney BKVN in patients with HSCT, hematologic malignancies, human immunodeficiency virus infection, and non-renal solid organ transplantation have been described. However, an uncommon combination of BK encephalitis and ESRD of native kidneys secondary to BK virus in a child with HSCT has not been described. We report a 10-year-old boy who presented with a gradually rising serum creatinine during treatment for severe autoimmune hemolytic anemia, which he developed 9 months after receiving an allogeneic HSCT for aplastic anemia. There was no proteinuria or hematuria present. Serum BK virus load was 5 × 106 copies/mL. A renal biopsy showed evidence of BKVN. He developed fever, seizures, and confusion, and the (CSF) showed significant presence of the BK virus (1 × 106 copies/mL) along with biochemical evidence of viral encephalitis. Cerebrospinal fluid cultures were negative. Despite significant clinical symptoms and presence of BK virus in CSF, the magnetic resonance brain imaging findings were minimal. With reduction of immunosuppression, there was resolution of BK encephalitis but BKVN remained resistant to multiple anti-BK virus agents, including leflunomide and cidofovir. He eventually became dialysis-dependent and, 6 years later, received a renal transplant from his mother. This case illustrates that BK virus in severely immunocompromised HSCT recipient may lead to BK encephalitis and BKVN of native kidneys, even without hemorrhagic cystitis, leading to ESRD. Knowledge of such is important for appropriate timely evaluation and management.
Collapse
Affiliation(s)
- Rachel Bush
- Division of Pediatric Nephrology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Felicia Johns
- Division of Pediatric Nephrology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Zachary Betty
- Division of Pediatric Nephrology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Steven Goldstein
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Biljana Horn
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Lawrence Shoemaker
- Division of Pediatric Nephrology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Kiran Upadhyay
- Division of Pediatric Nephrology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Carbo EC, Buddingh EP, Karelioti E, Sidorov IA, Feltkamp MC, Borne PAVD, Verschuuren JJ, Kroes AC, Claas EC, de Vries JJ. Improved diagnosis of viral encephalitis in adult and pediatric hematological patients using viral metagenomics. J Clin Virol 2020; 130:104566. [DOI: 10.1016/j.jcv.2020.104566] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
|
10
|
Human Polyomaviruses in the Cerebrospinal Fluid of Neurological Patients. Microorganisms 2019; 8:microorganisms8010016. [PMID: 31861837 PMCID: PMC7022863 DOI: 10.3390/microorganisms8010016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/06/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Central nervous system (CNS) infections by human polyomaviruses (HPyVs), with the exception of JC (JCPyV), have been poorly studied. METHODS In total, 234 cerebrospinal fluid (CSF) samples were collected from patients affected with neurological disorders. DNA was isolated and subjected to quantitative real-time PCR (Q-PCR) for the detection of six HPyVs: JCPyV, BKPyV, Merkel cell PyV (MCPyV), HPyV6, HPyV7, and HPyV9. Where possible, the molecular characterization of the viral strains was carried out by nested PCR and automated sequencing. RESULTS JCPyV was detected in 3/234 (1.3%), BKPyV in 15/234 (6.4%), MCPyV in 22/234 (9.4%), and HPyV6 in 1/234 (0.4%) CSF samples. JCPyV was detected at the highest (p < 0.05) mean load (3.7 × 107 copies/mL), followed by BKPyV (1.9 × 106 copies/mL), MCPyV (1.9 × 105 copies/mL), and HPyV6 (3.3 × 104 copies/mL). The noncoding control regions (NCCRs) of the sequenced viral strains were rearranged. CONCLUSIONS HPyVs other than JCPyV were found in the CSF of patients affected with different neurological diseases, probably as bystanders, rather than etiological agents of the disease. However, the fact that they can be latent in the CNS should be considered, especially in immunosuppressed patients.
Collapse
|
11
|
Abstract
BK polyomavirus (BKV) causes frequent infections during childhood and establishes persistent infections within renal tubular cells and the uroepithelium, with minimal clinical implications. However, reactivation of BKV in immunocompromised individuals following renal or hematopoietic stem cell transplantation may cause serious complications, including BKV-associated nephropathy (BKVAN), ureteric stenosis, or hemorrhagic cystitis. Implementation of more potent immunosuppression and increased posttransplant surveillance has resulted in a higher incidence of BKVAN. Antiviral immunity plays a crucial role in controlling BKV replication, and our increasing knowledge about host-virus interactions has led to the development of improved diagnostic tools and clinical management strategies. Currently, there are no effective antiviral agents for BKV infection, and the mainstay of managing reactivation is reduction of immunosuppression. Development of immune-based therapies to combat BKV may provide new and exciting opportunities for the successful treatment of BKV-associated complications.
Collapse
|
12
|
Biology, evolution, and medical importance of polyomaviruses: An update. INFECTION GENETICS AND EVOLUTION 2017. [DOI: 10.1016/j.meegid.2017.06.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Abstract
This chapter provides an overview of infectious syndromes, pathogens, and diagnostic testing modalities for central nervous system infections in the immunocompromised host.
Collapse
|
14
|
Bertrand A, Leclercq D, Martinez-Almoyna L, Girard N, Stahl JP, De-Broucker T. MR imaging of adult acute infectious encephalitis. Med Mal Infect 2017; 47:195-205. [PMID: 28268128 DOI: 10.1016/j.medmal.2017.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Imaging is a key tool for the diagnosis of acute encephalitis. Brain CT scan must be urgently performed to rule out a brain lesion with mass effect that would contraindicate lumbar puncture. Brain MRI is less accessible than CT scan, but can provide crucial information with patients presenting with acute encephalitis. METHOD We performed a literature review on PubMed on April 1, 2015 with the search terms "MRI" and "encephalitis". RESULTS We first described the various brain MRI abnormalities associated with each pathogen of acute encephalitis (HSV, VZV, other viral agents targeting immunocompromised patients or travelers; tuberculosis, listeriosis, other less frequent bacterial agents). Then, we identified specific patterns of brain MRI abnomalies that may suggest a particular pathogen. Limbic encephalitis is highly suggestive of HSV; it also occurs less frequently in encephalitis due to HHV6, syphillis, Whipple's disease and HIV primary infection. Rhombencephalitis is suggestive of tuberculosis and listeriosis. Acute ischemic lesions can occur in patients presenting with severe bacterial encephalitis, tuberculosis, VZV encephalitis, syphilis, and fungal infections. CONCLUSION Brain MRI plays a crucial role in the diagnosis of acute encephalitis. It detects brain signal changes that reinforce the clinical suspicion of encephalitis, especially when the causative agent is not identified by lumbar puncture; it can suggest a particular pathogen based on the pattern of brain abnormalities and it rules out important differential diagnosis (vascular, tumoral or inflammatory causes).
Collapse
Affiliation(s)
- A Bertrand
- Service de neuroradiologie diagnostique et fonctionnelle, groupe hospitalier Pitié-Salpêtrière, 47-83 boulevard de l'hôpital, 75651 Paris cedex 13, France; Sorbonne universités, UPMC université Paris 06, Inserm, CNRS, institut du cerveau et la moelle (ICM), Inria Paris, Aramis project-team, 75013 Paris, France
| | - D Leclercq
- Service de neuroradiologie diagnostique et fonctionnelle, groupe hospitalier Pitié-Salpêtrière, 47-83 boulevard de l'hôpital, 75651 Paris cedex 13, France
| | | | - N Girard
- Service de neuroradiologie, CHU La-Timone, AP-HM, 13015 Marseille, France
| | - J-P Stahl
- Service d'infectiologie, CHU de Grenoble, « European study Group for the Infections of the Brain (ESGIB) », 38043 Grenoble, France.
| | - T De-Broucker
- Service de neurologie, CH Saint-Denis, BP 279, 93205, France
| |
Collapse
|
15
|
Bourlon C, Alamoudi S, Kumar D, Viswabandya A, Thyagu S, Michelis FV, Kim DDH, Lipton JH, Messner HA, Deotare U. A short tale of blood, kidney and brain: BK virus encephalitis in an allogeneic stem cell transplant recipient. Bone Marrow Transplant 2017; 52:907-909. [PMID: 28218753 DOI: 10.1038/bmt.2017.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- C Bourlon
- Allogeneic Blood and Marrow Transplant Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - S Alamoudi
- Allogeneic Blood and Marrow Transplant Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - D Kumar
- Transplant Infectious Diseases, University Health Network, Toronto, Canada
| | - A Viswabandya
- Allogeneic Blood and Marrow Transplant Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - S Thyagu
- Allogeneic Blood and Marrow Transplant Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - F V Michelis
- Allogeneic Blood and Marrow Transplant Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - D D-H Kim
- Allogeneic Blood and Marrow Transplant Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - J H Lipton
- Allogeneic Blood and Marrow Transplant Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - H A Messner
- Allogeneic Blood and Marrow Transplant Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - U Deotare
- Allogeneic Blood and Marrow Transplant Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| |
Collapse
|
16
|
Jun JB, Choi Y, Kim H, Lee SH, Jeong J, Jung J. BK polyomavirus encephalitis in a patient with thrombotic microangiopathy after an allogeneic hematopoietic stem cell transplant. Transpl Infect Dis 2016; 18:950-953. [PMID: 27696719 DOI: 10.1111/tid.12620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 11/29/2022]
Abstract
To date, only one case of BK polyomavirus (BKPyV) encephalitis combined with transplant-associated thrombotic microangiopathy has been reported in an hematopoietic stem cell transplantation (HCT) recipient. We report the case of an HCT recipient who developed thrombotic microangiopathy and subsequent BKPyV encephalitis. She died despite treatment with cidofovir, ciprofloxacin, and intravenous immunoglobulin without improvement in mental status. Early suspicion of BKPyV encephalitis in an HCT recipient presenting with altered mental status and hemorrhagic cystitis is important.
Collapse
Affiliation(s)
- Jae-Bum Jun
- Division of Infectious Diseases, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Yunsuk Choi
- Division of Hematology and Cellular Therapy, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Hawk Kim
- Division of Hematology and Cellular Therapy, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Sun Ho Lee
- Department of Laboratory Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Joseph Jeong
- Department of Laboratory Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Jiwon Jung
- Division of Infectious Diseases, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| |
Collapse
|
17
|
Darbinyan A, Major EO, Morgello S, Holland S, Ryschkewitsch C, Monaco MC, Naidich TP, Bederson J, Malaczynska J, Ye F, Gordon R, Cunningham-Rundles C, Fowkes M, Tsankova NM. BK virus encephalopathy and sclerosing vasculopathy in a patient with hypohidrotic ectodermal dysplasia and immunodeficiency. Acta Neuropathol Commun 2016; 4:73. [PMID: 27411570 PMCID: PMC4944483 DOI: 10.1186/s40478-016-0342-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/26/2016] [Indexed: 02/02/2023] Open
Abstract
Human BK polyomavirus (BKV) is reactivated under conditions of immunosuppression leading most commonly to nephropathy or cystitis; its tropism for the brain is rare and poorly understood. We present a unique case of BKV-associated encephalopathy in a man with hypohidrotic ectodermal dysplasia and immunodeficiency (HED-ID) due to IKK-gamma (NEMO) mutation, who developed progressive neurological symptoms. Brain biopsy demonstrated polyomavirus infection of gray and white matter, with predominant involvement of cortex and distinct neuronal tropism, in addition to limited demyelination and oligodendroglial inclusions. Immunohistochemistry demonstrated polyoma T-antigen in neurons and glia, but expression of VP1 capsid protein only in glia. PCR analysis on both brain biopsy tissue and cerebrospinal fluid detected high levels of BKV DNA. Sequencing studies further identified novel BKV variant and disclosed unique rearrangements in the noncoding control region of the viral DNA (BKVN NCCR). Neuropathological analysis also demonstrated an unusual form of obliterative fibrosing vasculopathy in the subcortical white matter with abnormal lysosomal accumulations, possibly related to the patient's underlying ectodermal dysplasia. Our report provides the first neuropathological description of HED-ID due to NEMO mutation, and expands the diversity of neurological presentations of BKV infection in brain, underscoring the importance of its consideration in immunodeficient patients with unexplained encephalopathy. We also document novel BKVN NCCR rearrangements that may be associated with the unique neuronal tropism in this patient.
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW This article describes recent advances in the diagnosis and management of encephalitis in immunocompromised individuals. RECENT FINDINGS Herpes simplex virus (HSV) and varicella zoster virus (VZV) are common causes of encephalitis in immunocompromised individuals, although clinical manifestations may be atypical, and thus challenging to recognize. Recently, an increased incidence of HSV and VZV central nervous system infections has been reported in association with novel immunosuppressive and immunomodulatory treatments. The free-living ameba Balamuthia mandrillaris causes granulomatous encephalitis predominantly in immunocompromised individuals and is associated with nearly uniform fatality. In the setting of organ transplantation, the recipient's immunocompromised state along with the potential for donor-transmitted infections can result in a unique epidemiology of encephalitis, including infection by human herpes virus-6 and BK virus. Recent studies utilizing next-generation sequencing techniques have identified several pathogens, including Leptospira santarosai and a neurotropic astrovirus, as causes of encephalitis in immunocompromised individuals. SUMMARY Diagnosis and management of encephalitis is challenging in immunocompromised individuals, in part because of atypical clinical presentations and the presence of uncommon or novel infectious agents. Unbiased techniques for pathogen discovery are likely to play an increasing role in the diagnosis of central nervous system infections in immunocompromised individuals.
Collapse
|