1
|
Salpadoru T, Pinks KE, Lieberman JA, Cotton K, Wozniak KL, Gerasimchuk N, Patrauchan MA. Novel antimony-based antimicrobial drug targets membranes of Gram-positive and Gram-negative bacterial pathogens. Microbiol Spectr 2024; 12:e0423423. [PMID: 38651882 PMCID: PMC11237720 DOI: 10.1128/spectrum.04234-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant worldwide public health crisis that continues to threaten our ability to successfully treat bacterial infections. With the decline in effectiveness of conventional antimicrobial therapies and the lack of new antibiotic pipelines, there is a renewed interest in exploring the potential of metal-based antimicrobial compounds. Antimony-based compounds with a long history of use in medicine have re-emerged as potential antimicrobial agents. We previously synthesized a series of novel organoantimony(V) compounds complexed with cyanoximates with a strong potential of antimicrobial activity against several AMR bacterial and fungal pathogens. Here, five selected compounds were studied for their antibacterial efficacy against three important bacterial pathogens: Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. Among five tested compounds, SbPh4ACO showed antimicrobial activity against all three bacterial strains with the MIC of 50-100 µg/mL. The minimum bactericidal concentration/MIC values were less than or equal to 4 indicating that the effects of SbPh4ACO are bactericidal. Moreover, ultra-thin electron microscopy revealed that SbPh4ACO treatment caused membrane disruption in all three strains, which was further validated by increased membrane permeability. We also showed that SbPh4ACO acted synergistically with the antibiotics, polymyxin B and cefoxitin used to treat AMR strains of P. aeruginosa and S. aureus, respectively, and that at synergistic MIC concentration 12.5 µg/mL, its cytotoxicity against the cell lines, Hela, McCoy, and A549 dropped below the threshold. Overall, the results highlight the antimicrobial potential of novel antimony-based compound, SbPh4ACO, and its use as a potentiator of other antibiotics against both Gram-positive and Gram-negative bacterial pathogens. IMPORTANCE Antibiotic resistance presents a critical global public health crisis that threatens our ability to combat bacterial infections. In light of the declining efficacy of traditional antibiotics, the use of alternative solutions, such as metal-based antimicrobial compounds, has gained renewed interest. Based on the previously synthesized innovative organoantimony(V) compounds, we selected and further characterized the antibacterial efficacy of five of them against three important Gram-positive and Gram-negative bacterial pathogens. Among these compounds, SbPh4ACO showed broad-spectrum bactericidal activity, with membrane-disrupting effects against all three pathogens. Furthermore, we revealed the synergistic potential of SbPh4ACO when combined with antibiotics, such as cefoxitin, at concentrations that exert no cytotoxic effects tested on three mammalian cell lines. This study offers the first report on the mechanisms of action of novel antimony-based antimicrobial and presents the therapeutic potential of SbPh4ACO in combating both Gram-positive and Gram-negative bacterial pathogens while enhancing the efficacy of existing antibiotics.
Collapse
Affiliation(s)
- Tarosha Salpadoru
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kevin E. Pinks
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, Missouri, USA
| | - Jacob A. Lieberman
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kaitlyn Cotton
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Karen L. Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Nikolay Gerasimchuk
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, Missouri, USA
| | - Marianna A. Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
2
|
Zheng LY, Gu WP, Liang N, Gao LL, Guo WW, Li RR, Wang X, Hao GX, Van Den Anker J, Wu YE, Zhao W. Accuracy of antibiotic concentrations in drug dispensing in neonates: a laboratory-based study. BMJ Paediatr Open 2023; 7:e002299. [PMID: 38114241 DOI: 10.1136/bmjpo-2023-002299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Antibacterial therapy plays a crucial role in neonatal infections. The efficacy of antibacterial agents is closely related to the actual dose given to neonates. So we evaluated factors potentially affecting the actual dose of intravenous antibiotics during dispensing process in neonates. METHODS Meropenem, cefoperazone/sulbactam and piperacillin/tazobactam with two strengths were used to evaluate three methods. Method A (MA) was diluted once and the volumes of 5% glucose for MA were meropenem 4.00 mL, cefoperazone/sulbactam 3.00 mL, piperacillin/tazobactam 9.00 mL. Method B (MB) differed by doubling the volume of 5% glucose. The difference in method C (MC) involved diluting with 5% glucose twice. The concentrations were measured by high-performance liquid chromatography. Relative error (RE) was used to evaluate the preparation accuracy. RESULTS The RE values using MA/MB/MC were: (1) meropenem 0.5 g: 15.1%, 8.0%, 10.4%; 0.25 g: 7.8%, 3.1%, 6.0%; (2) cefoperazone/sulbactam 1.5 g: 13.6%, 4.2%, 3.4%; 0.75 g: 8.8%, 3.5%, 4.0%; (3) piperacillin/tazobactam 4.5 g: 18.2%, 8.7%, 6.3%; 562.5 mg: 8.1%, 2.8%, 6.1%. MB was better than MA in all three drugs. No difference in RE values was found between single and double dilution, except meropenem with 0.25 g. Using MB, meropenem and piperacillin/tazobactam with small drug strength had higher accuracy in preparation. CONCLUSIONS MB was suitable for neonatal drug dispensing because of its high accuracy and simple operation. Drugs with small strength were promoted due to the high accuracy.
Collapse
Affiliation(s)
- Li-Yuan Zheng
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Wei-Ping Gu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Na Liang
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Li-Li Gao
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Wen-Wen Guo
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Rui-Rui Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Xin Wang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Guo-Xiang Hao
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - John Van Den Anker
- Division of Clinical Pharmacology, Children's National Medical Center, Washington, District of Columbia, USA
- Departments of Pediatrics, Pharmacology & Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
- Department of Paediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel, Basel, Switzerland
| | - Yue-E Wu
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wei Zhao
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| |
Collapse
|
3
|
Xiao G, Li J, Sun Z. The Combination of Antibiotic and Non-Antibiotic Compounds Improves Antibiotic Efficacy against Multidrug-Resistant Bacteria. Int J Mol Sci 2023; 24:15493. [PMID: 37895172 PMCID: PMC10607837 DOI: 10.3390/ijms242015493] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Bacterial antibiotic resistance, especially the emergence of multidrug-resistant (MDR) strains, urgently requires the development of effective treatment strategies. It is always of interest to delve into the mechanisms of resistance to current antibiotics and target them to promote the efficacy of existing antibiotics. In recent years, non-antibiotic compounds have played an important auxiliary role in improving the efficacy of antibiotics and promoting the treatment of drug-resistant bacteria. The combination of non-antibiotic compounds with antibiotics is considered a promising strategy against MDR bacteria. In this review, we first briefly summarize the main resistance mechanisms of current antibiotics. In addition, we propose several strategies to enhance antibiotic action based on resistance mechanisms. Then, the research progress of non-antibiotic compounds that can promote antibiotic-resistant bacteria through different mechanisms in recent years is also summarized. Finally, the development prospects and challenges of these non-antibiotic compounds in combination with antibiotics are discussed.
Collapse
Affiliation(s)
| | | | - Zhiliang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (G.X.); (J.L.)
| |
Collapse
|
4
|
Marino A, Campanella E, Stracquadanio S, Calvo M, Migliorisi G, Nicolosi A, Cosentino F, Marletta S, Spampinato S, Prestifilippo P, Stefani S, Cacopardo B, Nunnari G. Ceftazidime/Avibactam and Meropenem/Vaborbactam for the Management of Enterobacterales Infections: A Narrative Review, Clinical Considerations, and Expert Opinion. Antibiotics (Basel) 2023; 12:1521. [PMID: 37887222 PMCID: PMC10603868 DOI: 10.3390/antibiotics12101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
This comprehensive review examines the unique attributes, distinctions, and clinical implications of ceftazidime-avibactam (CAZ-AVI) and meropenem-vaborbactam (MEM-VAB) against difficult-to-treat Enterobacterales infections. Our manuscript explores these antibiotics' pharmacokinetic and pharmacodynamic properties, antimicrobial activities, in vitro susceptibility testing, and clinical data. Moreover, it includes a meticulous examination of comparative clinical and microbiological studies, assessed and presented to provide clarity in making informed treatment choices for clinicians. Finally, we propose an expert opinion from a microbiological and a clinical point of view about their use in appropriate clinical settings. This is the first review aiming to provide healthcare professionals with valuable insights for making informed treatment decisions when combating carbapenem-resistant pathogens.
Collapse
Affiliation(s)
- Andrea Marino
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (B.C.); (G.N.)
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.S.); (A.N.); (S.S.)
| | - Edoardo Campanella
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy; (E.C.); (S.S.)
| | - Stefano Stracquadanio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.S.); (A.N.); (S.S.)
| | - Maddalena Calvo
- U.O.C. Laboratory Analysis Unit, A.O.U. “Policlinico-Vittorio Emanuele”, Via S. Sofia 78, 95123 Catania, Italy; (M.C.); (G.M.)
| | - Giuseppe Migliorisi
- U.O.C. Laboratory Analysis Unit, A.O.U. “Policlinico-Vittorio Emanuele”, Via S. Sofia 78, 95123 Catania, Italy; (M.C.); (G.M.)
| | - Alice Nicolosi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.S.); (A.N.); (S.S.)
| | - Federica Cosentino
- Unit of Infectious Diseases, ARNAS Garibaldi Hospital, University of Catania, 95122 Catania, Italy;
| | - Stefano Marletta
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, 37124 Verona, Italy;
| | - Serena Spampinato
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy; (E.C.); (S.S.)
| | | | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.S.); (A.N.); (S.S.)
| | - Bruno Cacopardo
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (B.C.); (G.N.)
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (B.C.); (G.N.)
| |
Collapse
|
5
|
Comito M, Monguzzi R, Tagliapietra S, Maspero A, Palmisano G, Cravotto G. From Batch to the Semi-Continuous Flow Hydrogenation of pNB, pNZ-Protected Meropenem. Pharmaceutics 2023; 15:pharmaceutics15051322. [PMID: 37242564 DOI: 10.3390/pharmaceutics15051322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Meropenem is currently the most common carbapenem in clinical applications. Industrially, the final synthetic step is characterized by a heterogeneous catalytic hydrogenation in batch mode with hydrogen and Pd/C. The required high-quality standard is very difficult to meet and specific conditions are required to remove both protecting groups [i.e., p-nitrobenzyl (pNB) and p-nitrobenzyloxycarbonyl (pNZ)] simultaneously. The three-phase gas-liquid-solid system makes this step difficult and unsafe. The introduction of new technologies for small-molecule synthesis in recent years has opened up new landscapes in process chemistry. In this context, we have investigated meropenem hydrogenolysis using microwave (MW)-assisted flow chemistry for use as a new technology with industrial prospects. The reaction parameters (catalyst amount, T, P, residence time, flow rate) in the move from the batch process to semi-continuous flow were investigated under mild conditions to determine their influence on the reaction rate. The optimization of the residence time (840 s) and the number of cycles (4) allowed us to develop a novel protocol that halves the reaction time compared to batch production (14 min vs. 30 min) while maintaining the same product quality. The increase in productivity using this semi-continuous flow technique compensates for the slightly lower yield (70% vs. 74%) obtained in batch mode.
Collapse
Affiliation(s)
- Marziale Comito
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
- Research and Development, ACS Dobfar SpA, Via Paullo 9, 20067 Tribiano, Italy
| | - Riccardo Monguzzi
- Research and Development, ACS Dobfar SpA, Via Paullo 9, 20067 Tribiano, Italy
| | - Silvia Tagliapietra
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Angelo Maspero
- Dipartimento di Scienza e Alta Tecnologia, University of Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Giovanni Palmisano
- Dipartimento di Scienza e Alta Tecnologia, University of Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| |
Collapse
|
6
|
Dhiman S, Ramirez D, Li Y, Kumar A, Arthur G, Schweizer F. Chimeric Tobramycin-Based Adjuvant TOB-TOB-CIP Potentiates Fluoroquinolone and β-Lactam Antibiotics against Multidrug-Resistant Pseudomonas aeruginosa. ACS Infect Dis 2023; 9:864-885. [PMID: 36917096 DOI: 10.1021/acsinfecdis.2c00549] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
According to the World Health Organization, antibiotic resistance is a global health threat. Of particular importance are infections caused by multidrug-resistant Gram-negative bacteria including Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa for which limited treatment options exist. Multiple and simultaneously occurring resistance mechanisms including outer membrane impermeability, overexpression of efflux pumps, antibiotic-modifying enzymes, and modification of genes and antibiotic targets have made antibiotic drug development more difficult against these pathogens. One strategy to cope with these challenges is the use of outer membrane permeabilizers that increase the intracellular concentration of antibiotics when used in combination. In some circumstances, this approach can rescue antibiotics from resistance or repurpose currently marketed antibiotics. Tobramycin-based hybrid antibiotic adjuvants that combine two outer membrane-active components have been previously shown to potentiate antibiotics by facilitating transit through the outer membrane, resulting in increased antibiotic accumulation within the cell. Herein, we extended the concept of tobramycin-based hybrid antibiotic adjuvants to tobramycin-based chimeras by engineering up to three different membrane-active antibiotic warheads such as tobramycin, 1-(1-naphthylmethyl)-piperazine, ciprofloxacin, and cyclam into a central 1,3,5-triazine scaffold. Chimera 4 (TOB-TOB-CIP) consistently synergized with ciprofloxacin, levofloxacin, and moxifloxacin against wild-type and fluoroquinolone-resistant P. aeruginosa. Moreover, the susceptibility breakpoints of ceftazidime, aztreonam, and imipenem were reached using the triple combination of chimera 4 with ceftazidime/avibactam, aztreonam/avibactam, and imipenem/relebactam, respectively, against β-lactamase-harboring P. aeruginosa. Our findings demonstrate that tobramycin-based chimeras form a novel class of antibiotic potentiators capable of restoring the activity of antibiotics against P. aeruginosa.
Collapse
Affiliation(s)
- Shiv Dhiman
- Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| | - Danyel Ramirez
- Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| | - Yanqi Li
- Department of Microbiology, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| | - Gilbert Arthur
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg R3E 0J9, Manitoba, Canada
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| |
Collapse
|
7
|
Comito M, Monguzzi R, Tagliapietra S, Palmisano G, Cravotto G. Towards Antibiotic Synthesis in Continuous-Flow Processes. Molecules 2023; 28:molecules28031421. [PMID: 36771086 PMCID: PMC9919330 DOI: 10.3390/molecules28031421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Continuous-flow chemistry has become a mainstream process and a notable trend among emerging technologies for drug synthesis. It is routinely used in academic and industrial laboratories to generate a wide variety of molecules and building blocks. The advantages it provides, in terms of safety, speed, cost efficiency and small-equipment footprint compared to analog batch processes, have been known for some time. What has become even more important in recent years is its compliance with the quality objectives that are required by drug-development protocols that integrate inline analysis and purification tools. There can be no doubt that worldwide government agencies have strongly encouraged the study and implementation of this innovative, sustainable and environmentally friendly technology. In this brief review, we list and evaluate the development and applications of continuous-flow processes for antibiotic synthesis. This work spans the period of 2012-2022 and highlights the main cases in which either active ingredients or their intermediates were produced under continuous flow. We hope that this manuscript will provide an overview of the field and a starting point for a deeper understanding of the impact of flow chemistry on the broad panorama of antibiotic synthesis.
Collapse
Affiliation(s)
- Marziale Comito
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
- Research and Development, ACS Dobfar SpA, Via Paullo 9, 20067 Tribiano, Italy
| | - Riccardo Monguzzi
- Research and Development, ACS Dobfar SpA, Via Paullo 9, 20067 Tribiano, Italy
| | - Silvia Tagliapietra
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Giovanni Palmisano
- Dipartimento di Scienza e Alta Tecnologia, University of Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
- Correspondence: ; Tel.: +39-011-670-7183
| |
Collapse
|
8
|
Ota K, Zhou JR, Yokomizo K, Kozako T, Honda SI, Kashige N, Furutachi M, Sumoto K. Bioactivity of Boronic Acid Derivative Homodimers. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
9
|
Coppola N, Maraolo AE, Onorato L, Scotto R, Calò F, Atripaldi L, Borrelli A, Corcione A, De Cristofaro MG, Durante-Mangoni E, Filippelli A, Franci G, Galdo M, Guglielmi G, Pagliano P, Perrella A, Piazza O, Picardi M, Punzi R, Trama U, Gentile I. Epidemiology, Mechanisms of Resistance and Treatment Algorithm for Infections Due to Carbapenem-Resistant Gram-Negative Bacteria: An Expert Panel Opinion. Antibiotics (Basel) 2022; 11:1263. [PMID: 36140042 PMCID: PMC9495208 DOI: 10.3390/antibiotics11091263] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance represents a serious threat for global health, causing an unacceptable burden in terms of morbidity, mortality and healthcare costs. In particular, in 2017, carbapenem-resistant organisms were listed by the WHO among the group of pathogens for which novel treatment strategies are urgently needed. Fortunately, several drugs and combinations have been introduced in recent years to treat multi-drug-resistant (MDR) bacteria. However, a correct use of these molecules is needed to preserve their efficacy. In the present paper, we will provide an overview on the epidemiology and mechanisms of resistance of the most common MDR Gram-negative bacteria, proposing a treatment algorithm for the management of infections due to carbapenem-resistant bacteria based on the most recent clinical evidence.
Collapse
Affiliation(s)
- Nicola Coppola
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Alberto Enrico Maraolo
- Emerging Infectious Disease with High Contagiousness Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Lorenzo Onorato
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Riccardo Scotto
- Infectious Diseases Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Federica Calò
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Luigi Atripaldi
- Clinical Pathology Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Anna Borrelli
- Direzione Sanitaria, “San Giovanni di Dio e Ruggi d’Aragona” University Hospital, 84125 Salerno, Italy
| | - Antonio Corcione
- Intensive Care Unit, Monaldi Hospital, AORN Dei Colli, 80131 Naples, Italy
| | | | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’ and Unit of Infectious and Transplant Medicine, Monaldi Hospital, AORN Ospedali dei Colli, 80131 Naples, Italy
| | - Amelia Filippelli
- Department of Medicine Surgery and Dentistry, University of Salerno and Clinical Pharmacology and Pharmacogenetics Unit, “San Giovanni di Dio e Ruggi d’Aragona” University Hospital, 84125 Salerno, Italy
| | - Gianluigi Franci
- Department of Medicine Surgery and Dentistry, University of Salerno and Clinical Pathology and Microbiology Unit, “San Giovanni di Dio e Ruggi D’Aragona” University Hospital, 84125 Salerno, Italy
| | - Maria Galdo
- Pharmacy Unit, AORN Dei Colli, 80131 Naples, Italy
| | | | - Pasquale Pagliano
- Department of Medicine Surgery and Dentistry, University of Salerno, Infectious Diseases Unit, 84125 Salerno, Italy
| | - Alessandro Perrella
- Emerging Infectious Disease with High Contagiousness Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Ornella Piazza
- Department of Medicine, Surgery and Dentistry, University of Salerno, Unit of Anesthesiology, 84125 Salerno, Italy
| | - Marco Picardi
- Department of Clinical Medicine and Surgery, Hematology Unit, Federico II University, 80131 Naples, Italy
| | - Rodolfo Punzi
- Hepatic Infectious Disease Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Ugo Trama
- UOSD Politica del Farmaco e Dispositivi, Campania region, 80143 Naples, Italy
| | - Ivan Gentile
- Infectious Diseases Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
10
|
Chen C, Oelschlaeger P, Wang D, Xu H, Wang Q, Wang C, Zhao A, Yang KW. Structure and Mechanism-Guided Design of Dual Serine/Metallo-Carbapenemase Inhibitors. J Med Chem 2022; 65:5954-5974. [PMID: 35420040 DOI: 10.1021/acs.jmedchem.2c00213] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Serine/metallo-carbapenemase-coproducing pathogens, often referred to as "superbugs", are a significant clinical problem. They hydrolyze nearly all available β-lactam antibiotics, especially carbapenems considered as last-resort antibiotics, seriously endangering efficacious antibacterial treatment. Despite the continuous global spread of carbapenem resistance, no dual-action inhibitors are available in therapy. This Perspective is the first systematic investigation of all chemotypes, modes of inhibition, and crystal structures of dual serine/metallo-carbapenemase inhibitors. An overview of the key strategy for designing dual serine/metallo-carbapenemase inhibitors and their mechanism of action is provided, as guiding rules for the development of clinically available dual inhibitors, coadministrated with carbapenems, to overcome the carbapenem resistance issue.
Collapse
Affiliation(s)
- Cheng Chen
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Peter Oelschlaeger
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 East Second Street, Pomona 91766, California, United States
| | - Dongmei Wang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310030, P. R. China
| | - Qian Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Chinese Medicine, Jinshui District 450046, Zhengzhou, P. R. China
| | - Cheng Wang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Aiguo Zhao
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
11
|
Cui X, Lü Y, Yue C. Development and Research Progress of Anti-Drug Resistant Bacteria Drugs. Infect Drug Resist 2022; 14:5575-5593. [PMID: 34992385 PMCID: PMC8711564 DOI: 10.2147/idr.s338987] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/12/2021] [Indexed: 01/10/2023] Open
Abstract
Bacterial resistance has become increasingly serious because of the widespread use and abuse of antibiotics. In particular, the emergence of multidrug-resistant bacteria has posed a serious threat to human public health and attracted the attention of the World Health Organization (WHO) and the governments of various countries. Therefore, the establishment of measures against bacterial resistance and the discovery of new antibacterial drugs are increasingly urgent to better contain the emergence of bacterial resistance and provide a reference for the development of new antibacterial drugs. In this review, we discuss some antibiotic drugs that have been approved for clinical use and a partial summary of the meaningful research results of anti-drug resistant bacterial drugs in different fields, including the antibiotic drugs approved by the FDA from 2015 to 2020, the potential drugs against drug-resistant bacteria, the new molecules synthesized by chemical modification, combination therapy, drug repurposing, immunotherapy and other therapies.
Collapse
Affiliation(s)
- Xiangyi Cui
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan'an, School of Basic Medicine, Yan'an University, Yan'an, 716000, Shaanxi, People's Republic of China
| | - Yuhong Lü
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan'an, School of Basic Medicine, Yan'an University, Yan'an, 716000, Shaanxi, People's Republic of China.,Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yan'an University, Yan'an, 716000, Shaanxi, People's Republic of China
| | - Changwu Yue
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan'an, School of Basic Medicine, Yan'an University, Yan'an, 716000, Shaanxi, People's Republic of China.,Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yan'an University, Yan'an, 716000, Shaanxi, People's Republic of China
| |
Collapse
|
12
|
Kaur R, Rani P, Atanasov AG, Alzahrani Q, Gupta R, Kapoor B, Gulati M, Chawla P. Discovery and Development of Antibacterial Agents: Fortuitous and Designed. Mini Rev Med Chem 2021; 22:984-1029. [PMID: 34939541 DOI: 10.2174/1570193x19666211221150119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022]
Abstract
Today, antibacterial drug resistance has turned into a significant public health issue. Repeated intake, suboptimal and/or unnecessary use of antibiotics, and, additionally, the transfer of resistance genes are the critical elements that make microorganisms resistant to conventional antibiotics. A substantial number of antibacterials that were successfully utilized earlier for prophylaxis and therapeutic purposes have been rendered inadequate due to this phenomenon. Therefore, the exploration of new molecules has become a continuous endeavour. Many such molecules are at various stages of investigation. A surprisingly high number of new molecules are currently in the stage of phase 3 clinical trials. A few new agents have been commercialized in the last decade. These include solithromycin, plazomicin, lefamulin, omadacycline, eravacycline, delafloxacin, zabofloxacin, finafloxacin, nemonoxacin, gepotidacin, zoliflodacin, cefiderocol, BAL30072, avycaz, zerbaxa, vabomere, relebactam, tedizolid, cadazolid, sutezolid, triclosan and afabiacin. This article aims to review the investigational and recently approved antibacterials with a focus on their structure, mechanisms of action/resistance, and spectrum of activity. Delving deep, their success or otherwise in various phases of clinical trials is also discussed while attributing the same to various causal factors.
Collapse
Affiliation(s)
- Ravleen Kaur
- Department of Health Sciences, Cape Breton University, Sydney, Nova Scotia. Canada
| | - Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara. India
| | - Atanas G Atanasov
- Ludwig Boltzmann Institute of Digital Health and Patient Safety, Medical University of Vienna, Vienna. Austria
| | - Qushmua Alzahrani
- Department of Pharmacy/Nursing/Medicine Health and Environment, University of the Region of Joinville (UNIVILLE) volunteer researcher, Joinville. Brazil
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara . India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara . India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara . India
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan Moga, Punjab 142001. India
| |
Collapse
|
13
|
Romanelli F, Stolfa S, Morea A, Ronga L, Prete RD, Chironna M, Santacroce L, Mosca A. Meropenem/vaborbactam activity in vitro: a new option for Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae treatment. Future Microbiol 2021; 16:1261-1266. [PMID: 34674551 DOI: 10.2217/fmb-2021-0007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: Infections by Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae represent a major challenge because of limited treatment strategies. New β-lactam/β-lactamase inhibitor associations may help to deal with this challenge. The aim of this study is to evaluate the in vitro susceptibility of KPC-producing K. pneumoniae for meropenem/vaborbactam in comparison with ceftazidime/avibactam against. Materials and methods: Twenty-eight strains isolated from blood cultures were evaluated. Testing for susceptibility to meropenem/vaborbactam and ceftazidime/avibactam was performed by E-test gradient strip. Results: All the clinical isolates were susceptible to meropenem/vaborbactam, while one strain was resistant to ceftazidime/avibactam with a MIC of 32 μg/ml. The median MIC of ceftazidime/avibactam evaluated after standardization was higher compared with that of meropenem/vaborbactam. Conclusion: Meropenem/vaborbactam could be an important turning point in the treatment of KPC-producing K. pneumoniae infections, especially considering the emergence of ceftazidime/avibactam resistance.
Collapse
Affiliation(s)
- Federica Romanelli
- Section of Microbiology, Interdisciplinary Department of Medicine, University of Bari, Italy
| | - Stefania Stolfa
- Section of Microbiology, Interdisciplinary Department of Medicine, University of Bari, Italy
| | - Anna Morea
- Section of Microbiology, Interdisciplinary Department of Medicine, University of Bari, Italy
| | - Luigi Ronga
- UOC Microbiology & Virology, University Hospital, Piazza Giulio Cesare 70124, Bari, Italy
| | - Raffaele Del Prete
- Section of Microbiology, Interdisciplinary Department of Medicine, University of Bari, Italy.,UOC Microbiology & Virology, University Hospital, Piazza Giulio Cesare 70124, Bari, Italy
| | - Maria Chironna
- Department of Biomedical Sciences & Human Oncology-Hygiene Section, University of Bari, Italy
| | - Luigi Santacroce
- Section of Microbiology, Interdisciplinary Department of Medicine, University of Bari, Italy.,UOC Microbiology & Virology, University Hospital, Piazza Giulio Cesare 70124, Bari, Italy
| | - Adriana Mosca
- Section of Microbiology, Interdisciplinary Department of Medicine, University of Bari, Italy.,UOC Microbiology & Virology, University Hospital, Piazza Giulio Cesare 70124, Bari, Italy
| |
Collapse
|
14
|
Olehnovics E, Yin J, Pérez A, De Fabritiis G, Bonomo RA, Bhowmik D, Haider S. The Role of Hydrophobic Nodes in the Dynamics of Class A β-Lactamases. Front Microbiol 2021; 12:720991. [PMID: 34621251 PMCID: PMC8490755 DOI: 10.3389/fmicb.2021.720991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022] Open
Abstract
Class A β-lactamases are known for being able to rapidly gain broad spectrum catalytic efficiency against most β-lactamase inhibitor combinations as a result of elusively minor point mutations. The evolution in class A β-lactamases occurs through optimisation of their dynamic phenotypes at different timescales. At long-timescales, certain conformations are more catalytically permissive than others while at the short timescales, fine-grained optimisation of free energy barriers can improve efficiency in ligand processing by the active site. Free energy barriers, which define all coordinated movements, depend on the flexibility of the secondary structural elements. The most highly conserved residues in class A β-lactamases are hydrophobic nodes that stabilize the core. To assess how the stable hydrophobic core is linked to the structural dynamics of the active site, we carried out adaptively sampled molecular dynamics (MD) simulations in four representative class A β-lactamases (KPC-2, SME-1, TEM-1, and SHV-1). Using Markov State Models (MSM) and unsupervised deep learning, we show that the dynamics of the hydrophobic nodes is used as a metastable relay of kinetic information within the core and is coupled with the catalytically permissive conformation of the active site environment. Our results collectively demonstrate that the class A enzymes described here, share several important dynamic similarities and the hydrophobic nodes comprise of an informative set of dynamic variables in representative class A β-lactamases.
Collapse
Affiliation(s)
- Edgar Olehnovics
- Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, United Kingdom
| | - Junqi Yin
- Oak Ridge National Laboratory, National Center for Computational Sciences, Oak Ridge, TN, United States
| | - Adrià Pérez
- Computational Science Laboratory, Barcelona Biomedical Research Park, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gianni De Fabritiis
- Computational Science Laboratory, Barcelona Biomedical Research Park, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Robert A. Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, United States
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Department of Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, United States
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, United States
- Veterans Affairs Northeast Ohio Healthcare System, Research Service, Cleveland, OH, United States
| | - Debsindhu Bhowmik
- Computer Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Shozeb Haider
- Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, United Kingdom
| |
Collapse
|
15
|
Discovery of Novel Chemical Series of OXA-48 β-Lactamase Inhibitors by High-Throughput Screening. Pharmaceuticals (Basel) 2021; 14:ph14070612. [PMID: 34202402 PMCID: PMC8308845 DOI: 10.3390/ph14070612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
The major cause of bacterial resistance to β-lactams is the production of hydrolytic β-lactamase enzymes. Nowadays, the combination of β-lactam antibiotics with β-lactamase inhibitors (BLIs) is the main strategy for overcoming such issues. Nevertheless, particularly challenging β-lactamases, such as OXA-48, pose the need for novel and effective treatments. Herein, we describe the screening of a proprietary compound collection against Klebsiella pneumoniae OXA-48, leading to the identification of several chemotypes, like the 4-ideneamino-4H-1,2,4-triazole (SC_2) and pyrazolo[3,4-b]pyridine (SC_7) cores as potential inhibitors. Importantly, the most potent representative of the latter series (ID2, AC50 = 0.99 μM) inhibited OXA-48 via a reversible and competitive mechanism of action, as demonstrated by biochemical and X-ray studies; furthermore, it slightly improved imipenem’s activity in Escherichia coli ATCC BAA-2523 β-lactam resistant strain. Also, ID2 showed good solubility and no sign of toxicity up to the highest tested concentration, resulting in a promising starting point for further optimization programs toward novel and effective non-β-lactam BLIs.
Collapse
|
16
|
Tompkins K, van Duin D. Treatment for carbapenem-resistant Enterobacterales infections: recent advances and future directions. Eur J Clin Microbiol Infect Dis 2021; 40:2053-2068. [PMID: 34169446 DOI: 10.1007/s10096-021-04296-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022]
Abstract
Carbapenem-resistant Enterobacterales (CRE) are a growing threat to human health worldwide. CRE often carry multiple resistance genes that limit treatment options and require longer durations of therapy, are more costly to treat, and necessitate therapies with increased toxicities when compared with carbapenem-susceptible strains. Here, we provide an overview of the mechanisms of resistance in CRE, the epidemiology of CRE infections worldwide, and available treatment options for CRE. We review recentlyapproved agents for the treatment of CRE, including ceftazidime-avibactam, meropenem-vaborbactam, imipenem-relebactam, cefiderocol, and novel aminoglycosides and tetracyclines. We also discuss recent advances in phage therapy and antibiotics that are currently in development targeted to CRE. The potential for the development of resistance to these therapies remains high, and enhanced antimicrobial stewardship is imperative both to reduce the spread of CRE worldwide and to ensure continued access to efficacious treatment options.
Collapse
Affiliation(s)
- Kathleen Tompkins
- Division of Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA.
| | - David van Duin
- Division of Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
17
|
Antimicrobial Resistance Conferred by OXA-48 β-Lactamases: Towards a Detailed Mechanistic Understanding. Antimicrob Agents Chemother 2021; 65:AAC.00184-21. [PMID: 33753332 DOI: 10.1128/aac.00184-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OXA-48-type β-lactamases are now routinely encountered in bacterial infections caused by carbapenem-resistant Enterobacterales These enzymes are of high and growing clinical significance due to the importance of carbapenems in treatment of health care-associated infections by Gram-negative bacteria, the wide and increasing dissemination of OXA-48 enzymes on plasmids, and the challenges posed by their detection. OXA-48 confers resistance to penicillin (which is efficiently hydrolyzed) and carbapenem antibiotics (which is more slowly broken down). In addition to the parent enzyme, a growing array of variants of OXA-48 is now emerging. The spectrum of activity of these variants varies, with some hydrolyzing expanded-spectrum oxyimino-cephalosporins. The growth in importance and diversity of the OXA-48 group has motivated increasing numbers of studies that aim to elucidate the relationship between structure and specificity and establish the mechanistic basis for β-lactam turnover in this enzyme family. In this review, we collate recently published structural, kinetic, and mechanistic information on the interactions between clinically relevant β-lactam antibiotics and inhibitors and OXA-48 β-lactamases. Collectively, these studies are starting to form a detailed picture of the underlying bases for the differences in β-lactam specificity between OXA-48 variants and the consequent differences in resistance phenotype. We focus specifically on aspects of carbapenemase and cephalosporinase activities of OXA-48 β-lactamases and discuss β-lactamase inhibitor development in this context. Throughout the review, we also outline key open research questions for future investigation.
Collapse
|
18
|
Fujiu M, Yokoo K, Sato J, Shibuya S, Komano K, Kusano H, Sato S, Aoki T, Kohira N, Miyagawa S, Kawachi T, Yamawaki K. Introduction of a Thio Functional Group to Diazabicyclooctane: An Effective Modification to Potentiate the Activity of β-Lactams against Gram-Negative Bacteria Producing Class A, C, and D Serine β-Lactamases. ACS Infect Dis 2020; 6:3034-3047. [PMID: 33147950 DOI: 10.1021/acsinfecdis.0c00560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
By the emergence and worldwide spread of multi-drug-resistant Gram-negative bacteria, there have been growing demands for efficacious drugs to cure these resistant infections. The key mechanism for resistance to β-lactam antibiotics is the production of β-lactamases, which hydrolyze and deactivate β-lactams. Diazabicyclooctane (DBO) analogs play an important role as one of the new classes of β-lactamase inhibitors (BLIs), and several compounds such as avibactam (AVI) have been approved by the FDA, along with many derivatives under clinical or preclinical development. Although these compounds have a similar amide substituent at the C2 position, we have recently reported the synthesis of novel DBO analogs which possess a thio functional group. This structural modification enhances the ability to restore the antimicrobial activities of cefixime (CMF) against pathogens producing classes A, C, and D serine β-lactamases compared with AVI and expands the structural tolerance at the six position. Furthermore, some of these analogs showed intrinsic microbial activities based on multipenicillin binding protein (PBP) inhibition. This is the unique feature which has never been observed in DBOs. One of our DBOs had a pharmacokinetic profile comparable to that of other DBOs. These results indicate that the introduction of a thio functional group into DBO is a novel and effective modification to discover a clinically useful new BLI.
Collapse
Affiliation(s)
- Motohiro Fujiu
- Shionogi Pharmaceutical Research Center, Toyonaka-shi, Osaka 561-0825, Japan
| | - Katsuki Yokoo
- Shionogi Pharmaceutical Research Center, Toyonaka-shi, Osaka 561-0825, Japan
| | - Jun Sato
- Shionogi Pharmaceutical Research Center, Toyonaka-shi, Osaka 561-0825, Japan
| | - Satoru Shibuya
- Shionogi Pharmaceutical Research Center, Toyonaka-shi, Osaka 561-0825, Japan
| | - Kazuo Komano
- Shionogi Pharmaceutical Research Center, Toyonaka-shi, Osaka 561-0825, Japan
| | - Hiroki Kusano
- Shionogi Pharmaceutical Research Center, Toyonaka-shi, Osaka 561-0825, Japan
| | - Soichiro Sato
- Shionogi Pharmaceutical Research Center, Toyonaka-shi, Osaka 561-0825, Japan
| | - Toshiaki Aoki
- Shionogi CMC Research Innovation Center, Amagasaki-shi, Hyogo 660-0813, Japan
| | - Naoki Kohira
- Shionogi Pharmaceutical Research Center, Toyonaka-shi, Osaka 561-0825, Japan
| | - Satoshi Miyagawa
- Shionogi Pharmaceutical Research Center, Toyonaka-shi, Osaka 561-0825, Japan
| | - Tomoyuki Kawachi
- Shionogi Pharmaceutical Research Center, Toyonaka-shi, Osaka 561-0825, Japan
| | - Kenji Yamawaki
- Shionogi Pharmaceutical Research Center, Toyonaka-shi, Osaka 561-0825, Japan
| |
Collapse
|
19
|
In Vivo Activity of QPX7728, an Ultrabroad-Spectrum Beta-Lactamase Inhibitor, in Combination with Beta-Lactams against Carbapenem-Resistant Klebsiella pneumoniae. Antimicrob Agents Chemother 2020; 64:AAC.01267-20. [PMID: 32839224 DOI: 10.1128/aac.01267-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/18/2020] [Indexed: 12/26/2022] Open
Abstract
Resistance to beta-lactams has created a major clinical issue. QPX7728 is a novel ultrabroad-spectrum cyclic boronic acid beta-lactamase inhibitor with activity against both serine and metallo-beta-lactamases developed to address this resistance for use in combination with beta-lactam antibiotics. The objective of these studies was to evaluate the activity of QPX7728 in combination with multiple beta-lactams against carbapenem-resistant Klebsiella pneumoniae isolates in a neutropenic mouse thigh infection model. Neutropenic mice were infected with strains with potentiated beta-lactam MICs of ≤2 mg/liter in the presence of 8 mg/liter QPX7728. Two strains of carbapenem-resistant K. pneumoniae were tested with aztreonam, biapenem, cefepime, ceftazidime, ceftolozane, and meropenem alone or in combination with 12.5, 25, or 50 mg/kg of body weight of QPX7728 every 2 hours for 24 hours. Treatment with all beta-lactams alone either was bacteriostatic or allowed for bacterial growth. The combination of QPX7728 plus each of these beta-lactams produced bacterial killing at all QPX7728 doses tested. Overall, these data suggest that QPX7728 administered in combination with different partner beta-lactam antibiotics may have utility in the treatment of bacterial infections due to carbapenem-resistant K. pneumoniae.
Collapse
|
20
|
Abstract
Antimicrobial resistance is developing rapidly and threatens to outstrip the rate at which new antimicrobials are introduced. Genetic recombination allows bacteria to rapidly disseminate genes encoding for antimicrobial resistance within and across species. Antimicrobial use creates a selective evolutionary pressure, which leads to further resistance. Antimicrobial stewardship, best use, and infection prevention are the most effective ways to slow the spread and development of antimicrobial resistance.
Collapse
Affiliation(s)
- Lindsay Morrison
- Division of Infectious Disease, McGaw Medical Center, Northwestern University Feinberg School of Medicine, 645 North Michigan Avenue, Suite 900, Chicago, IL 60611, USA.
| | - Teresa R Zembower
- Division of Infectious Disease, McGaw Medical Center, Northwestern University Feinberg School of Medicine, 645 North Michigan Avenue, Suite 900, Chicago, IL 60611, USA
| |
Collapse
|
21
|
Hecker SJ, Reddy KR, Lomovskaya O, Griffith DC, Rubio-Aparicio D, Nelson K, Tsivkovski R, Sun D, Sabet M, Tarazi Z, Parkinson J, Totrov M, Boyer SH, Glinka TW, Pemberton OA, Chen Y, Dudley MN. Discovery of Cyclic Boronic Acid QPX7728, an Ultrabroad-Spectrum Inhibitor of Serine and Metallo-β-lactamases. J Med Chem 2020; 63:7491-7507. [DOI: 10.1021/acs.jmedchem.9b01976] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Scott J. Hecker
- Qpex Biopharma, Inc., 6275 Nancy Ridge Drive, Suite 100, San Diego, California 92121, United States
| | - K. Raja Reddy
- Qpex Biopharma, Inc., 6275 Nancy Ridge Drive, Suite 100, San Diego, California 92121, United States
| | - Olga Lomovskaya
- Qpex Biopharma, Inc., 6275 Nancy Ridge Drive, Suite 100, San Diego, California 92121, United States
| | - David C. Griffith
- Qpex Biopharma, Inc., 6275 Nancy Ridge Drive, Suite 100, San Diego, California 92121, United States
| | - Debora Rubio-Aparicio
- Qpex Biopharma, Inc., 6275 Nancy Ridge Drive, Suite 100, San Diego, California 92121, United States
| | - Kirk Nelson
- Qpex Biopharma, Inc., 6275 Nancy Ridge Drive, Suite 100, San Diego, California 92121, United States
| | - Ruslan Tsivkovski
- Qpex Biopharma, Inc., 6275 Nancy Ridge Drive, Suite 100, San Diego, California 92121, United States
| | - Dongxu Sun
- Qpex Biopharma, Inc., 6275 Nancy Ridge Drive, Suite 100, San Diego, California 92121, United States
| | - Mojgan Sabet
- Qpex Biopharma, Inc., 6275 Nancy Ridge Drive, Suite 100, San Diego, California 92121, United States
| | - Ziad Tarazi
- Qpex Biopharma, Inc., 6275 Nancy Ridge Drive, Suite 100, San Diego, California 92121, United States
| | - Jonathan Parkinson
- Qpex Biopharma, Inc., 6275 Nancy Ridge Drive, Suite 100, San Diego, California 92121, United States
| | - Maxim Totrov
- Molsoft LLC, 11199 Sorrento Valley Road, San Diego, California 92121, United States
| | - Serge H. Boyer
- Qpex Biopharma, Inc., 6275 Nancy Ridge Drive, Suite 100, San Diego, California 92121, United States
| | - Tomasz W. Glinka
- Qpex Biopharma, Inc., 6275 Nancy Ridge Drive, Suite 100, San Diego, California 92121, United States
| | - Orville A. Pemberton
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| | - Michael N. Dudley
- Qpex Biopharma, Inc., 6275 Nancy Ridge Drive, Suite 100, San Diego, California 92121, United States
| |
Collapse
|
22
|
Papp-Wallace KM. The latest advances in β-lactam/β-lactamase inhibitor combinations for the treatment of Gram-negative bacterial infections. Expert Opin Pharmacother 2019; 20:2169-2184. [PMID: 31500471 PMCID: PMC6834881 DOI: 10.1080/14656566.2019.1660772] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022]
Abstract
Introduction: Antimicrobial resistance in Gram-negative pathogens is a significant threat to global health. β-Lactams (BL) are one of the safest and most-prescribed classes of antibiotics on the market today. The acquisition of β-lactamases, especially those which hydrolyze carbapenems, is eroding the efficacy of BLs for the treatment of serious infections. During the past decade, significant advances were made in the development of novel BL-β-lactamase inhibitor (BLI) combinations to target β-lactamase-mediated resistant Gram-negatives.Areas covered: The latest progress in 20 different approved, developing, and preclinical BL-BLI combinations to target serine β-lactamases produced by Gram-negatives are reviewed based on primary literature, conference abstracts (when available), and US clinical trial searches within the last 5 years. The majority of the compounds that are discussed are being evaluated as part of a BL-BLI combination.Expert opinion: The current trajectory in BLI development is promising; however, a significant challenge resides in the selection of an appropriate BL partner as well as the development of resistance linked to the BL partner. In addition, dosing regimens for these BL-BLI combinations need to be critically evaluated. A revolution in bacterial diagnostics is essential to aid clinicians in the appropriate selection of novel BL-BLI combinations for the treatment of serious infections.
Collapse
Affiliation(s)
- Krisztina M. Papp-Wallace
- Louis Stokes Cleveland Department of Veterans Affairs, Research Service, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
23
|
Therapeutic Efficacy of LN-1-255 in Combination with Imipenem in Severe Infection Caused by Carbapenem-Resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2019; 63:AAC.01092-19. [PMID: 31383666 DOI: 10.1128/aac.01092-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/23/2019] [Indexed: 11/20/2022] Open
Abstract
The carbapenem-hydrolyzing class D β-lactamases (CHDLs) are the main mechanism of carbapenem resistance in Acinetobacter baumannii CHDLs are not effectively inactivated by clinically available β-lactam-type inhibitors. We have previously described the in vitro efficacy of the inhibitor LN-1-255 in combination with carbapenems. The aim of this study was to compare the efficacy of LN-1-255 with that of imipenem in murine pneumonia using A. baumannii strains carrying their most extended carbapenemases, OXA-23 and OXA-24/40. The bla OXA-23 and bla OXA-24/40 genes were cloned into the carbapenem-susceptible A. baumannii ATCC 17978 strain. Clinical isolates Ab1 and JC12/04, producing the enzymes OXA-23 and OXA-24/40, respectively, were used in the study. Pharmacokinetic (PK) parameters were determined. An experimental pneumonia model was used to evaluate the efficacy of the combined imipenem-LN-1-255 therapy. MICs of imipenem decreased between 32- and 128-fold in the presence of LN-1-255. Intramuscular treatment with imipenem-LN-1-255 (30/50 mg/kg) decreased the bacterial burden by (i) 4 and 1.7 log10 CFU/g lung in the infection with the ATCC 17978-OXA-23 and Ab1 strains, respectively, and by (ii) 2.5 and 4.5 log10 CFU/g lung in the infection produced by the ATCC 17978-OXA-24/40 and the JC12/04 strains, respectively. In all assays, combined therapy offered higher protection against pneumonia than that provided by monotherapy. No toxicity was observed in treated mice. Imipenem treatment combined with LN-1-255 treatment significantly reduced the severity of infection by carbapenem-resistant A. baumannii strains carrying CHDLs. Preclinical assays demonstrated the potential of LN-1-255 and imipenem therapy as a new antibacterial treatment.
Collapse
|
24
|
van Groesen E, Lohans CT, Brem J, Aertker KMJ, Claridge TDW, Schofield CJ. 19 F NMR Monitoring of Reversible Protein Post-Translational Modifications: Class D β-Lactamase Carbamylation and Inhibition. Chemistry 2019; 25:11837-11841. [PMID: 31310409 PMCID: PMC6771976 DOI: 10.1002/chem.201902529] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/11/2019] [Indexed: 11/05/2022]
Abstract
Bacterial production of β‐lactamases with carbapenemase activity is a global health threat. The active sites of class D carbapenemases such as OXA‐48, which is of major clinical importance, uniquely contain a carbamylated lysine residue which is essential for catalysis. Although there is significant interest in characterizing this post‐translational modification, and it is a promising inhibition target, protein carbamylation is challenging to monitor in solution. We report the use of 19F NMR spectroscopy to monitor the carbamylation state of 19F‐labelled OXA‐48. This method was used to investigate the interactions of OXA‐48 with clinically used serine β‐lactamase inhibitors, including avibactam and vaborbactam. Crystallographic studies on 19F‐labelled OXA‐48 provide a structural rationale for the sensitivity of the 19F label to active site interactions. The overall results demonstrate the use of 19F NMR to monitor reversible covalent post‐translational modifications.
Collapse
Affiliation(s)
- Emma van Groesen
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Christopher T Lohans
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Jürgen Brem
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | | | | | | |
Collapse
|
25
|
Gould IM, Gunasekera C, Khan A. Antibacterials in the pipeline and perspectives for the near future. Curr Opin Pharmacol 2019; 48:69-75. [PMID: 31200170 DOI: 10.1016/j.coph.2019.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/17/2019] [Accepted: 05/04/2019] [Indexed: 12/26/2022]
Abstract
Antimicrobial resistance is a global threat to the management of infections in our patients. Sound stewardship of antibacterial agents at our disposal must be accompanied by a concerted effort to develop new agents to bolster our armamentarium. This review will cover the latest antibiotics that have come through the pipeline and the role they can play in the management of infections that are increasingly difficult to treat due to resistance mechanisms.
Collapse
Affiliation(s)
- Ian M Gould
- Aberdeen Royal Infirmary, Foresterhill, Aberdeen, AB25 2ZN, United Kingdom; University of Aberdeen, Aberdeen, United Kingdom
| | - Chathuri Gunasekera
- Aberdeen Royal Infirmary, Foresterhill, Aberdeen, AB25 2ZN, United Kingdom; University of Colombo, Colombo, Sri Lanka.
| | - Ali Khan
- Aberdeen Royal Infirmary, Foresterhill, Aberdeen, AB25 2ZN, United Kingdom
| |
Collapse
|
26
|
Sosibo SC, Somboro AM, Amoako DG, Osei Sekyere J, Bester LA, Ngila JC, Sun DD, Kumalo HM. Impact of Pyridyl Moieties on the Inhibitory Properties of Prominent Acyclic Metal Chelators Against Metallo-β-Lactamase-Producing Enterobacteriaceae: Investigating the Molecular Basis of Acyclic Metal Chelators' Activity. Microb Drug Resist 2019; 25:439-449. [DOI: 10.1089/mdr.2018.0272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Sphelele C. Sosibo
- Department of Applied Chemistry, University of Johannesburg, Doornfontein, Johannesburg, South Africa
| | - Anou M. Somboro
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Daniel G. Amoako
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - John Osei Sekyere
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Durban, South Africa
| | - Linda A. Bester
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Jane C. Ngila
- Department of Applied Chemistry, University of Johannesburg, Doornfontein, Johannesburg, South Africa
| | - Darren D. Sun
- Department of Applied Chemistry, University of Johannesburg, Doornfontein, Johannesburg, South Africa
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore
| | - Hezekiel M. Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
27
|
Lee Y, Kim J, Trinh S. Meropenem-Vaborbactam (Vabomere ™): Another Option for Carbapenem-Resistant Enterobacteriaceae. P & T : A PEER-REVIEWED JOURNAL FOR FORMULARY MANAGEMENT 2019; 44:110-113. [PMID: 30828230 PMCID: PMC6385729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Meropenem-Vaborbactam (Vabomere) for carbapenem-resistant Enterobacteriaceae.
Collapse
|
28
|
Phenotypic Methods for Detection of Carbapenemase Production in Carbapenem-Resistant Organisms: What Method Should Your Laboratory Choose? ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.clinmicnews.2019.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Na JH, Lee TH, Park SB, Kim MK, Jeong BG, Chung KM, Cha SS. In vitro and in vivo Inhibitory Activity of NADPH Against the AmpC BER Class C β-Lactamase. Front Cell Infect Microbiol 2018; 8:441. [PMID: 30622934 PMCID: PMC6308799 DOI: 10.3389/fcimb.2018.00441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/11/2018] [Indexed: 12/18/2022] Open
Abstract
β-Lactamase-mediated resistance to β-lactam antibiotics has been significantly threatening the efficacy of these clinically important antibacterial drugs. Although some β-lactamase inhibitors are prescribed in combination with β-lactam antibiotics to overcome this resistance, the emergence of enzymes resistant to current inhibitors necessitates the development of novel β-lactamase inhibitors. In this study, we evaluated the inhibitory effect of dinucleotides on an extended-spectrum class C β-lactamase, AmpC BER. Of the dinucleotides tested, NADPH, a cellular metabolite, decreased the nitrocefin-hydrolyzing activity of the enzyme with a K i value of 103 μM in a non-covalent competitive manner. In addition, the dissociation constant (K D) between AmpC BER and NADPH was measured to be 40 μM. According to our in vitro susceptibility study based on growth curves, NADPH restored the antibacterial activity of ceftazidime against a ceftazidime-resistant Escherichia coli BER strain producing AmpC BER. Remarkably, a single dose of combinatory treatment with NADPH and ceftazidime conferred marked therapeutic efficacy (100% survival rate) in a mouse model infected by the E. coli BER strain although NADPH or ceftazidime alone failed to prevent the lethal bacterial infection. These results may offer the potential of the dinucleotide scaffold for the development of novel β-lactamase inhibitors.
Collapse
Affiliation(s)
- Jung-Hyun Na
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| | - Tae Hee Lee
- Department of Microbiology and Immunology, Chonbuk National University Medical School, Jeonju, South Korea.,Institute for Medical Science, Chonbuk National University Medical School, Jeonju, South Korea
| | - Soo-Bong Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| | - Min-Kyu Kim
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon, South Korea
| | - Bo-Gyeong Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| | - Kyung Min Chung
- Department of Microbiology and Immunology, Chonbuk National University Medical School, Jeonju, South Korea.,Institute for Medical Science, Chonbuk National University Medical School, Jeonju, South Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
30
|
Righi E. Management of bacterial and fungal infections in end stage liver disease and liver transplantation: Current options and future directions. World J Gastroenterol 2018; 24:4311-4329. [PMID: 30344417 PMCID: PMC6189843 DOI: 10.3748/wjg.v24.i38.4311] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/11/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
Patients with liver cirrhosis are susceptible to infections due to various mechanisms, including abnormalities of humoral and cell-mediated immunity and occurrence of bacterial translocation from the intestine. Bacterial infections are common and represent a reason for progression to liver failure and increased mortality. Fungal infections, mainly caused by Candida spp., are often associated to delayed diagnosis and high mortality rates. High level of suspicion along with prompt diagnosis and treatment of infections are warranted. Bacterial and fungal infections negatively affect the outcomes of liver transplant candidates and recipients, causing disease progression among patients on the waiting list and increasing mortality, especially in the early post-transplant period. Abdominal, biliary tract, and bloodstream infections caused by Gram-negative bacteria [e.g., Enterobacteriaceae and Pseudomonas aeruginosa (P. aeruginosa)] and Staphylococcus spp. are commonly encountered in liver transplant recipients. Due to frequent exposure to broad-spectrum antibiotics, invasive procedures, and prolonged hospitalizations, these patients are especially at risk of developing infections caused by multidrug resistant bacteria. The increase in antimicrobial resistance hampers the choice of an adequate empiric therapy and warrants the knowledge of the local microbial epidemiology and the implementation of infection control measures. The main characteristics and the management of bacterial and fungal infections in patients with liver cirrhosis and liver transplant recipients are presented.
Collapse
Affiliation(s)
- Elda Righi
- Department of Infectious Diseases, Santa Maria della Misericordia University Hospital, Udine 33100, Italy
| |
Collapse
|
31
|
Yoo JH. The Infinity War: How to Cope with Carbapenem-resistant Enterobacteriaceae. J Korean Med Sci 2018; 33:e255. [PMID: 30275806 PMCID: PMC6159103 DOI: 10.3346/jkms.2018.33.e255] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 08/28/2018] [Indexed: 01/10/2023] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) are now spread worldwide. In Korea, the number of CRE isolation is rapidly increasing, and impending endemicity is a concern. To cope well with CRE, thorough infection control, such as active surveillance, early detection, strict contact precaution, cleaning the environment, and antibiotic stewardship is very important. Therapeutic options include polymyxin, tigecycline, fosfomycin or the combination of them with carbapenem, which is currently the mainstay of treatment. In addition, various combination regimens with new carbapenemase inhibitors such as avibactam, vaborbactam, or relebactam, and other classes of antimicrobials such as plazomicin and siderophore cephalosporin are in the process of evaluation.
Collapse
Affiliation(s)
- Jin-Hong Yoo
- Division of Infectious Diseases, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Bucheon St. Mary's Hospital, Bucheon, Korea
| |
Collapse
|
32
|
Tehrani KHME, Martin NI. β-lactam/β-lactamase inhibitor combinations: an update. MEDCHEMCOMM 2018; 9:1439-1456. [PMID: 30288219 PMCID: PMC6151480 DOI: 10.1039/c8md00342d] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022]
Abstract
Antibiotic resistance caused by β-lactamase production continues to present a growing challenge to the efficacy of β-lactams and their role as the most important class of clinically used antibiotics. In response to this threat however, only a handful of β-lactamase inhibitors have been introduced to the market over the past thirty years. The first-generation β-lactamase inhibitors (clavulanic acid, sulbactam and tazobactam) are all β-lactam derivatives and work primarily by inactivating class A and some class C serine β-lactamases. The newer generations of β-lactamase inhibitors including avibactam and vaborbactam are based on non-β-lactam structures and their spectrum of inhibition is extended to KPC as an important class A carbapenemase. Despite these advances several class D and virtually all important class B β-lactamases are resistant to existing inhibitors. The present review provides an overview of recent FDA-approved β-lactam/β-lactamase inhibitor combinations as well as an update on research efforts aimed at the discovery and development of novel β-lactamase inhibitors.
Collapse
Affiliation(s)
- Kamaleddin H M E Tehrani
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| | - Nathaniel I Martin
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
- Biological Chemistry Group , Institute of Biology Leiden , Leiden University , Sylvius Laboratories, Sylviusweg 72 , 2333 BE Leiden , The Netherlands . ; Tel: +31 (0)6 1878 5274
| |
Collapse
|
33
|
Abstract
The global threat of the spread of carbapenem resistance in Enterobacteriaceae has led to the search for new antibacterials. Intravenous meropenem/vaborbactam (Vabomere™) is the first carbapenem/β-lactamase inhibitor combination approved in the USA for use in patients with complicated urinary tract infections (cUTIs), including pyelonephritis. Vaborbactam is a potent inhibitor of class A serine carbapenemases, which, when combined with the antibacterial meropenem, restores the activity of meropenem against β-lactamase producing Enterobacteriaceae, particularly Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae. Meropenem/vaborbactam demonstrated excellent in vitro activity against Gram-negative clinical isolates, including KPC- and extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. In the phase 3, noninferiority TANGO I trial in patients with cUTIs, intravenous meropenem/vaborbactam was noninferior to intravenous piperacillin/tazobactam for overall success (composite of clinical cure and microbial eradication; FDA primary endpoint) and microbial eradication (EMA primary endpoint). In subsequent superiority testing, meropenem/vaborbactam was superior to piperacillin/tazobactam for overall success. Meropenem/vaborbactam was generally well tolerated, with a tolerability profile generally similar to that of piperacillin/tazobactam. TANGO I did not assess the efficacy of meropenem/vaborbactam for the treatment of infections caused by carbapenem-resistant Enterobacteriaceae and meropenem/vaborbactam is currently not indicated for these patients. Available evidence indicates that meropenem/vaborbactam is a useful treatment option for patients with cUTIs.
Collapse
Affiliation(s)
- Sohita Dhillon
- Springer, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
34
|
Andrei S, Valeanu L, Chirvasuta R, Stefan MG. New FDA approved antibacterial drugs: 2015-2017. Discoveries (Craiova) 2018; 6:e81. [PMID: 32309599 PMCID: PMC7086068 DOI: 10.15190/d.2018.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Increasing bacterial resistance to antibiotics is a worldwide ongoing issue. Urgent need for new antibacterial agents has resulted in significant research efforts, with new molecules proposed for use in clinical practice. However, as highlighted by many groups this process does not have an optimal rhythm and efficacy, to fully combat highly adaptive germs, particularly in the intensive care units.
This review focuses on the last three years of novel FDA approved antibacterial agents (2015-2017): ceftazidime/avibactam, obiltoxaximab, bezlotoxu-mab, delafloxacin, meropenem/vaborbactam, ozenoxacin. Ceftazidime/avibactam and meropenem/ vaborbactam are new players in the field of resistant bacteria treatment. Ceftazidime/avibactam is validated in selected patients with complicated urinary or intra-abdominal infections, hospital and ventilator-associated pneumonia. Meropenem/ vaborbactam gained approval for the cases of complicated urinary tract infections. Other potential indications are under investigation, widened and validated by future studies. Obiltoxaximab is a monoclonal antibody that can be used in the prevention and treatment of inhalational anthrax. Bezlotoxumab monoclonal antibody is an useful and specific tool for the management of recurrent Clostridium difficile infection. Delafloxacin is approved for patients with acute skin or skin structure infections. Despite recent progress, it is imperative to continue the development of new antibiotic drugs and new strategies to counteract resistance to antibiotics.
Collapse
Affiliation(s)
- Stefan Andrei
- Intensive Care Unit, Centre Hospitalier Lyon Sud, Pierre Benite, France
| | - Liana Valeanu
- Department of Cardiac Anesthesia and Intensive care, Emergency Institute for Cardiovascular Diseases "Prof. C.C. Iliescu" Bucharest, Romania.,Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Mihai-Gabriel Stefan
- Department of Cardiac Anesthesia and Intensive care, Emergency Institute for Cardiovascular Diseases "Prof. C.C. Iliescu" Bucharest, Romania.,Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|