1
|
Pugaev DM, Lyubchenko LN, Ryabov AB, Kaprin AD. Early-onset gasrtric cancer (review). SIBERIAN JOURNAL OF ONCOLOGY 2024; 22:153-171. [DOI: 10.21294/1814-4861-2023-22-6-153-171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Objective. Early-onset gastric cancer (EOGC) constitutes a serious medical and social problem. Early-onset gastric cancer accounts for approximately 6% of all malignant epithelial neoplasms.Material and Methods. We reviewed retrospective and prospective randomized trials using Medline and Elibrary databases.Results. The applied significance of the molecular genetic classifications consist in the formation of groups for evaluating prognosis of the disease using multifactorial analysis. This classification indicates that EOGC diagnosed at a locally advanced stage and primary dissemination is most often caused by GS (TCGA) and MSS/EMT(ACRG) subtypes and is characterized by mutations in CDH1, RhoA, CLDN18-ARHGAP genes. These changes are accompanied by the prevalence of diffuse histological type of gastric cancer according to the Lauren classification and ulcerated or infiltrative type according to the Borrmann classification (type III and IV) with the presence of high-grade adenocarcinoma with a signet ring cell component.Conclusion. Considering the aggressiveness of gastric cancer in young patients, who more frequently present with locally advanced and metastatic disease at the time of diagnosis, there is a need for increased cancer alertness among physicians of other specialties, early endoscopic controls to detect cancer at early stages and benefit from both surgical and multimodal treatment.
Collapse
Affiliation(s)
- D. M. Pugaev
- Kommunarka Moscow Multidisciplinary Clinical Center, Moscow City Health Department
| | - L. N. Lyubchenko
- N.A. Lopatkin Research Institute of Urology and Interventional Radiology – branch National Medical Research Radiological Centre of the Ministry of Health of the Russia;
National Medical Research Radiological Centre of the Ministry of Health of the Russia
| | - A. B. Ryabov
- P.A. Hertsen Moscow Oncology Research Institute – branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russia;
National Medical Research Radiological Centre of the Ministry of Health of the Russia
| | - A. D. Kaprin
- RUDN University;
P.A. Hertsen Moscow Oncology Research Institute – branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russia;
National Medical Research Radiological Centre of the Ministry of Health of the Russia
| |
Collapse
|
2
|
Ampofo-Asiedu J, Tagoe EA, Abrahams DOA, Petershie B, Quaye O. Epstein-Barr virus genotype-1 and Mediterranean + strain in gastric cancer biopsies of Ghanaian patients. Exp Biol Med (Maywood) 2023; 248:1221-1228. [PMID: 37417205 PMCID: PMC10621474 DOI: 10.1177/15353702231181355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/29/2023] [Indexed: 07/08/2023] Open
Abstract
Gastric cancer (GC) prevalence is on the increase in Ghana, and Epstein-Barr virus (EBV) is one of the factors that have been implicated in the etiology of the cancer. It is therefore important to know the contribution of EBV genotype and strains that are associated with GC. In this study, we aimed at genotyping EBV and determining predominant strains in GC biopsies in Ghanaian patients. Genomic DNA was extracted from 55 GC biopsies (cases) and 63 normal gastric tissues (controls) were amplified by polymerase chain reaction (PCR) using specific primers for EBV detection and genotyping followed by PCR fragments sequencing. Epstein-Barr virus positivity were 67.3% and 49.2% in the GC and normal biopsies, respectively. Both cases and controls had the Mediterranean + strain of EBV. The predominant genotype of the virus in the GC cases was genotype-1 (75.7%) compared to 66.7% of genotype-2 among the control group. Infection was associated with GC in the study population (OR = 2.11, P = 0.014, 95% CI: 1.19 - 3.75), and EBV genotype-1 significantly increased the risk of GC (OR = 5.88, P < 0.0001, 95% CI: 3.18-10.88). The mean EBV load in the cases (3.507 ± 0.574) was significantly higher than in the controls (2.256 ± 0.756) (P < 0.0001). We conclude that EBV, especially Mediterranean + genotype-1, was the predominant strain in GC biopsies and GC type or progression is independent of the viral load.
Collapse
Affiliation(s)
- Jeffery Ampofo-Asiedu
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra 00233, Ghana
| | | | - Darkwah Owusua Afua Abrahams
- Department of Pathology, University of Ghana Medical School, University of Ghana and Korle-Bu Teaching Hospital, Accra 00233, Ghana
| | - Bernard Petershie
- Department of Pathology, University of Ghana Medical School, University of Ghana and Korle-Bu Teaching Hospital, Accra 00233, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra 00233, Ghana
| |
Collapse
|
3
|
Kesharwani A, Dighe OR, Lamture Y. Role of Helicobacter pylori in Gastric Carcinoma: A Review. Cureus 2023; 15:e37205. [PMID: 37159779 PMCID: PMC10163845 DOI: 10.7759/cureus.37205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/06/2023] [Indexed: 04/08/2023] Open
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related deaths globally. Gastritis caused by Helicobacter pylori (H. pylori) is a potent cause of gastrointestinal malignancies. The majority of all humans on the planet have H. pylori invasion in their stomachs, yet only a few diseased people develop GC. The human gastrointestinal system contains a broad population of microorganisms in addition to H. pylori. H. pylori heterogeneity has been studied because not all H. pylori diseases result in cancer. Individuals in the adult age group account for the bulk of gastric carcinoma cases. H. pylori has various strains, which is beneficial for its survival in host cell epithelium for a longer duration of time. Along with H. pylori, oral microbes have a major role in the pathogenicity of gastric carcinoma. The complex ecology of oral microbiota helps to defend against infections, preserve homeostasis, and regulate the immune system. In contrast, oral microbiota is involved in various mechanisms like anti-apoptotic activity, suppression of the immune system of the host, and initiation of chronic inflammation. These oral microbes are also responsible for the development of mutations. Interactions between the host immune system and bacteria promote the progression of cancer. For this review, various research articles were studied, and information was collected using databases like PubMed and Google Scholar. This review emphasizes on the role of H. pylori in gastric carcinoma, its pathogenesis, the role of various virulence factors and risk factors related to it, the role of oral microbiota in gastric carcinoma pathogenesis, diagnostic modalities, treatment options, and preventive measures for gastric carcinoma.
Collapse
|
4
|
Thrift AP, Wenker TN, El-Serag HB. Global burden of gastric cancer: epidemiological trends, risk factors, screening and prevention. Nat Rev Clin Oncol 2023; 20:338-349. [PMID: 36959359 DOI: 10.1038/s41571-023-00747-0] [Citation(s) in RCA: 214] [Impact Index Per Article: 107.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/25/2023]
Abstract
Gastric cancer remains a major cause of cancer-related mortality worldwide. The temporal trends for this malignancy, however, are dynamic, and reports from the past decade indicate important declines in some regions and demographic groups, as well as a few notable exceptions in which gastric cancer rates are either stable or increasing. Two main anatomical subtypes of gastric cancer exist, non-cardia and cardia, with different temporal trends and risk factors (such as obesity and reflux for cardia gastric cancer and Helicobacter pylori infection for non-cardia gastric cancer). Shifts in the distribution of anatomical locations have been detected in several high-incidence regions. H. pylori is an important aetiological factor for gastric cancer; importantly, the anticipated long-term findings from studies examining the effect of H. pylori eradication on the risk of (re)developing gastric cancer have emerged in the past few years. In this Review, we highlight the latest trends in incidence and mortality using an evidence-based approach. We make the best possible inferences, including clinical and public health inference, on the basis of the quality of the evidence available, and highlight burning questions as well as gaps in knowledge and public health practice that need to be addressed to reduce gastric cancer burden worldwide.
Collapse
Affiliation(s)
- Aaron P Thrift
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Theresa Nguyen Wenker
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Innovations in Quality, Effectiveness and Safety (IQuESt), Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Hashem B El-Serag
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Center for Innovations in Quality, Effectiveness and Safety (IQuESt), Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.
| |
Collapse
|
5
|
Hereditary Diffuse Gastric Cancer: A 2022 Update. J Pers Med 2022; 12:jpm12122032. [PMID: 36556253 PMCID: PMC9783673 DOI: 10.3390/jpm12122032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer is ranked fifth among the most commonly diagnosed cancers, and is the fourth leading cause of cancer-related deaths worldwide. The majority of gastric cancers are sporadic, while only a small percentage, less than 1%, are hereditary. Hereditary diffuse gastric cancer (HDGC) is a rare malignancy, characterized by early-onset, highly-penetrant autosomal dominant inheritance mainly of the germline alterations in the E-cadherin gene (CDH1) and β-catenin (CTNNA1). In the present study, we provide an overview on the molecular basis of HDGC and outline the essential elements of genetic counseling and surveillance. We further provide a practical summary of current guidelines on clinical management and treatment of individuals at risk and patients with early disease.
Collapse
|
6
|
Koustas E, Trifylli EM, Sarantis P, Kontolatis NI, Damaskos C, Garmpis N, Vallilas C, Garmpi A, Papavassiliou AG, Karamouzis MV. The Implication of Autophagy in Gastric Cancer Progression. Life (Basel) 2021; 11:life11121304. [PMID: 34947835 PMCID: PMC8705750 DOI: 10.3390/life11121304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer is the fifth most common malignancy and the third leading cause of cancer-related death worldwide. The three entirely variable entities have distinct epidemiology, molecular characteristics, prognosis, and strategies for clinical management. However, many gastric tumors appear to be resistant to current chemotherapeutic agents. Moreover, a significant number of gastric cancer patients, with a lack of optimal treatment strategies, have reduced survival. In recent years, multiple research data have highlighted the importance of autophagy, an essential catabolic process of cytoplasmic component digestion, in cancer. The role of autophagy as a tumor suppressor or tumor promoter mechanism remains controversial. The multistep nature of the autophagy process offers a wide array of targetable points for designing novel chemotherapeutic strategies. The purpose of this review is to summarize the current knowledge regarding the interplay between gastric cancer development and the autophagy process and decipher the role of autophagy in this kind of cancer. A plethora of different agents that direct or indirect target autophagy may be a novel therapeutic approach for gastric cancer patients.
Collapse
Affiliation(s)
- Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.-M.T.); (P.S.); (N.I.K.); (C.V.); (A.G.P.); (M.V.K.)
- Correspondence:
| | - Eleni-Myrto Trifylli
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.-M.T.); (P.S.); (N.I.K.); (C.V.); (A.G.P.); (M.V.K.)
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.-M.T.); (P.S.); (N.I.K.); (C.V.); (A.G.P.); (M.V.K.)
| | - Nikolaos I. Kontolatis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.-M.T.); (P.S.); (N.I.K.); (C.V.); (A.G.P.); (M.V.K.)
| | - Christos Damaskos
- Renal Transplantation Unit, ‘Laiko’ General Hospital, 11527 Athens, Greece;
- ‘N.S. Christeas’ Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nikolaos Garmpis
- ‘N.S. Christeas’ Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Second Department of Propedeutic Surgery, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Vallilas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.-M.T.); (P.S.); (N.I.K.); (C.V.); (A.G.P.); (M.V.K.)
| | - Anna Garmpi
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.-M.T.); (P.S.); (N.I.K.); (C.V.); (A.G.P.); (M.V.K.)
| | - Michalis V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.-M.T.); (P.S.); (N.I.K.); (C.V.); (A.G.P.); (M.V.K.)
| |
Collapse
|
7
|
Investigation on the Role of PALB2 Gene in CDH1-Negative Patients With Hereditary Diffuse Gastric Cancer. Clin Transl Gastroenterol 2021; 11:e00280. [PMID: 33512806 PMCID: PMC7721210 DOI: 10.14309/ctg.0000000000000280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Not all patients with hereditary diffuse gastric cancer (HDGC) are found to carry germline pathogenic variants in the associated gene CDH1, which translates into a challenging clinical management and poor cancer prevention. Thus, several studies have searched for other candidate genes, among which stands PALB2. Our work explores the implication of this known cancer gene in HDGC. METHODS We searched for germline PALB2 variants by Sanger sequencing in a series of 58 patients with HDGC who tested negative for CDH1 alterations. RESULTS No clearly pathogenic variants in PALB2 were found in these patients. Only 5 rare genetic variants were identified, 3 of which were classified as variants of uncertain significance. DISCUSSION Despite the promising association between PALB2 and HDGC suggested by certain works in the literature, our findings do not support PALB2 as a high predisposition gene for HDGC. Larger studies are needed to define its role in this disease and therefore improve cancer prevention.
Collapse
|
8
|
Abstract
In the United States, the incidence of gastric cancer has decreased over the past five decades. However, despite overall decreasing trends in incidence rates of gastric cancer, rates of noncardia gastric cancer among adults aged less than 50 years in the United States are increasing, and most cases of gastric cancer still present with advanced disease and poor resultant survival. Epidemiologic studies have identified the main risk factors for gastric cancer, including increasing age, male sex, non-White race, Helicobacter pylori infection, and smoking. This article summarizes the current epidemiologic evidence with implications for primary and secondary prevention of gastric cancer.
Collapse
Affiliation(s)
- Aaron P Thrift
- Section of Epidemiology and Population Sciences, Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Theresa H Nguyen
- Baylor Clinic, 6620 Main Street, MS: BCM620, Room 110D, Houston, TX, 77030, USA
| |
Collapse
|
9
|
Gastric Cancer: Advances in Carcinogenesis Research and New Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms22073418. [PMID: 33810350 PMCID: PMC8037554 DOI: 10.3390/ijms22073418] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer’s bad incidence, prognosis, cellular and molecular heterogeneity amongst others make this disease a major health issue worldwide. Understanding this affliction is a priority for proper patients’ management and for the development of efficient therapeutical strategies. This review gives an overview of major scientific advances, made during the past 5-years, to improve the comprehension of gastric adenocarcinoma. A focus was made on the different actors of gastric carcinogenesis, including, Helicobacter pylori cancer stem cells, tumour microenvironment and microbiota. New and recent potential biomarkers were assessed as well as emerging therapeutical strategies involving cancer stem cells targeting as well as immunotherapy. Finally, recent experimental models to study this highly complex disease were discussed, highlighting the importance of gastric cancer understanding in the hard-fought struggle against cancer relapse, metastasis and bad prognosis.
Collapse
|
10
|
Marwitz T, Hüneburg R, Spier I, Lau JF, Kristiansen G, Lingohr P, Kalff JC, Aretz S, Nattermann J, Strassburg CP. Hereditary Diffuse Gastric Cancer: A Comparative Cohort Study According to Pathogenic Variant Status. Cancers (Basel) 2020; 12:E3726. [PMID: 33322525 PMCID: PMC7763201 DOI: 10.3390/cancers12123726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Hereditary diffuse gastric cancer (HDGC) is an inherited cancer susceptibility syndrome characterized by an elevated risk for diffuse gastric cancer (DGC) and lobular breast cancer (LBC). Some patients fulfilling the clinical testing criteria harbor a pathogenic CDH1 or CTNNA1 germline variant. However, the underlying mechanism for around 80% of the patients with a family or personal history of DGC and LBC has so far not been elucidated. In this cohort study, patients meeting the 2015 HDGC clinical testing criteria were included, and subsequently, CDH1 sequencing was performed. Of the 207 patients (161 families) in this study, we detected 21 pathogenic or likely pathogenic CDH1 variants (PV) in 60 patients (28 families) and one CTNNA1 PV in two patients from one family. Sixty-eight percent (n = 141) of patients were female. The overall PV detection rate was 18% (29/161 families). Criterion 1 and 3 of the 2015 HDGC testing criteria yielded the highest detection rate of CDH1/CTNNA1 PVs (21% and 28%). PV carriers and patients without proven PV were compared. Risk of gastric cancer (GC) (38/62 61% vs. 102/140 73%) and age at diagnosis (40 ± 13 years vs. 44 ± 12 years) were similar between the two groups. However, GC was more advanced in gastrectomy specimens of patients without PV (81% vs. 26%). LBC prevalence in female carriers of a PV was 20% (n = 8/40). Clinical phenotypes differed strongly between families with the same PV. Emphasis should be on detecting more causative genes predisposing for HDGC and improve the management of patients without a proven pathogenic germline variant.
Collapse
Affiliation(s)
- Tim Marwitz
- Department of Internal Medicine I, University Hospital Bonn, 53127 Bonn, Germany; (T.M.); (J.N.); (C.P.S.)
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, 53127 Bonn, Germany; (I.S.); (J.-F.L.); (G.K.); (P.L.); (J.C.K.); (S.A.)
| | - Robert Hüneburg
- Department of Internal Medicine I, University Hospital Bonn, 53127 Bonn, Germany; (T.M.); (J.N.); (C.P.S.)
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, 53127 Bonn, Germany; (I.S.); (J.-F.L.); (G.K.); (P.L.); (J.C.K.); (S.A.)
| | - Isabel Spier
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, 53127 Bonn, Germany; (I.S.); (J.-F.L.); (G.K.); (P.L.); (J.C.K.); (S.A.)
- Institute of Human Genetics, University Hospital Bonn, 53127 Bonn, Germany
| | - Jan-Frederic Lau
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, 53127 Bonn, Germany; (I.S.); (J.-F.L.); (G.K.); (P.L.); (J.C.K.); (S.A.)
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Glen Kristiansen
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, 53127 Bonn, Germany; (I.S.); (J.-F.L.); (G.K.); (P.L.); (J.C.K.); (S.A.)
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Philipp Lingohr
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, 53127 Bonn, Germany; (I.S.); (J.-F.L.); (G.K.); (P.L.); (J.C.K.); (S.A.)
- Department of Surgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Jörg C. Kalff
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, 53127 Bonn, Germany; (I.S.); (J.-F.L.); (G.K.); (P.L.); (J.C.K.); (S.A.)
- Department of Surgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Stefan Aretz
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, 53127 Bonn, Germany; (I.S.); (J.-F.L.); (G.K.); (P.L.); (J.C.K.); (S.A.)
- Institute of Human Genetics, University Hospital Bonn, 53127 Bonn, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital Bonn, 53127 Bonn, Germany; (T.M.); (J.N.); (C.P.S.)
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, 53127 Bonn, Germany; (I.S.); (J.-F.L.); (G.K.); (P.L.); (J.C.K.); (S.A.)
| | - Christian P. Strassburg
- Department of Internal Medicine I, University Hospital Bonn, 53127 Bonn, Germany; (T.M.); (J.N.); (C.P.S.)
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, 53127 Bonn, Germany; (I.S.); (J.-F.L.); (G.K.); (P.L.); (J.C.K.); (S.A.)
| |
Collapse
|
11
|
Histopathologic Analysis of Signet-ring Cell Carcinoma In Situ in Patients With Hereditary Diffuse Gastric Cancer. Am J Surg Pathol 2020; 44:1204-1212. [PMID: 32520759 DOI: 10.1097/pas.0000000000001511] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hereditary diffuse gastric cancer (HDGC) is a rare autosomal dominant syndrome associated with an increased risk of developing Laurén's diffuse-type gastric carcinoma and lobular breast carcinoma. Although signet-ring cell carcinoma (SRCC) in situ (SRCC-pTis) has been reported as a characteristic lesion in HDGC cases with CDH1 germline mutations (CDH1 pathogenic variant), and a precursor of conventional intramucosal SRCC (SRCC-pT1a), its histopathologic features and specificity have not been sufficiently clarified. Here, we examined gastrectomy samples from 6 Japanese HDGC patients with CDH1 germline mutation, belonging to 4 families, and analyzed SRCC lesions histologically and immunohistochemically. Of the 274 foci found in the 6 samples, SRCC-pT1a accounted for 225 lesions (range: 8 to 107, mean 45.7 lesions per patient), while 46 foci were of SRCC-pTis (range: 1 to 15, mean 7.67 foci per patient). All SRCC-pTis foci were observed in the fundic gland area and on the superficial side of the mucosa. Histologically, tumor cells of SRCC-pTis were found between normal foveolar epithelial cells and the basement membrane, following a typical pagetoid spread pattern. Immunohistochemically, E-cadherin expression was lost in SRCC-pTis (27/28, 96.4%) more frequently than in SRCC-pT1a (95/197, 48.2%; P<0.001). To elucidate the specificity of SRCC-pTis for HDGC, 60 samples (range: 0.12 to 1.49 m, total 28.8 m of mucosal length) from gastric cancer cases were analyzed as controls, in which no SRCC-pTis were identified. Our results indicate that SRCC-pTis is a distinct histologic feature with high specificity for HDGC cases with CDH1 germline mutations.
Collapse
|
12
|
Ji K, Ao S, He L, Zhang L, Feng L, Lyu G. Characteristics of cancer susceptibility genes mutations in 282 patients with gastric adenocarcinoma. Chin J Cancer Res 2020; 32:508-515. [PMID: 32963463 PMCID: PMC7491540 DOI: 10.21147/j.issn.1000-9604.2020.04.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective To reveal the distribution signature of cancer susceptibility genes in patients with gastric adenocarcinoma, offering a diagnostic and prognostic surrogate for disease risk management and therapeutic decisions. Methods A total of 282 patients with gastric adenocarcinoma (182 males and 100 females) were enrolled in this study, with peripheral blood genomic DNA extracted. Mutations of 69 canonical cancer susceptibility genes or presumably tumor-related genes were analyzed by targeted capture-based high-throughput sequencing. Candidate mutations were particularly selected for discussion on tumor pathogenesis according to the American College of Medical Genetics and Genomics (ACMG) guidelines. Results In this study, 7.1% (20/282) of patients with gastric adenocarcinoma were found to harbor mutations of canonical or presumable cancer susceptibility genes. The detection rate in male patients (3.8%, 7/182) was significantly lower than that in female patients (13%, 13/100) (P=0.004). The most recurrent mutations were in A-T mutated (ATM) (1.1%, 3/282), followed by BRCA1, BRIP1 and RAD51D, all showed a detection rate of 0.7% (2/282). Mutations in three genes associated with hereditary gastric cancer syndromes were detected, namely, PMS2 and EPCAM associated with Lynch syndrome and CDH1 associated with hereditary diffuse gastric cancer. The detection frequencies were all 0.4% (1/282). Notwithstanding no significant difference observed, the age of patients with pathogenic mutations or likely pathogenic mutations is slightly younger than that of non-carriers (median age: 58.5 vs. 60.5 years old), while the age of patients with ATM mutations was the youngest overall (median age: 49.3 years old).
Conclusions Our study shed more light on the distribution signature and pathogenesis of mutations in gastric cancer susceptibility genes, and found the detection rate of pathogenic and likely pathogenic mutations in male patients was significantly lower than that in female patients. Some known and unidentified mutations were found in gastric cancer, which allowed us to gain more insight into the hereditary gastric cancer syndromes from the molecular perspective.
Collapse
Affiliation(s)
- Ke Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Sheng Ao
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Liu He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Lijiao Zhang
- Cadre Health Department, Shanxi Provincial Cancer Hospital, Taiyuan 030013, China
| | - Li Feng
- Abdominal Surgery Department, Affiliated People's Hospital of Inner Mongolia Medical College, Hohhot 010020, China
| | - Guoqing Lyu
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
13
|
Corso G, Montagna G, Figueiredo J, La Vecchia C, Fumagalli Romario U, Fernandes MS, Seixas S, Roviello F, Trovato C, Guerini-Rocco E, Fusco N, Pravettoni G, Petrocchi S, Rotili A, Massari G, Magnoni F, De Lorenzi F, Bottoni M, Galimberti V, Sanches JM, Calvello M, Seruca R, Bonanni B. Hereditary Gastric and Breast Cancer Syndromes Related to CDH1 Germline Mutation: A Multidisciplinary Clinical Review. Cancers (Basel) 2020; 12:E1598. [PMID: 32560361 PMCID: PMC7352390 DOI: 10.3390/cancers12061598] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
E-cadherin (CDH1 gene) germline mutations are associated with the development of diffuse gastric cancer in the context of the so-called hereditary diffuse gastric syndrome, and with an inherited predisposition of lobular breast carcinoma. In 2019, the international gastric cancer linkage consortium revised the clinical criteria and established guidelines for the genetic screening of CDH1 germline syndromes. Nevertheless, the introduction of multigene panel testing in clinical practice has led to an increased identification of E-cadherin mutations in individuals without a positive family history of gastric or breast cancers. This observation motivated us to review and present a novel multidisciplinary clinical approach (nutritional, surgical, and image screening) for single subjects who present germline CDH1 mutations but do not fulfil the classic clinical criteria, namely those identified as-(1) incidental finding and (2) individuals with lobular breast cancer without family history of gastric cancer (GC).
Collapse
Affiliation(s)
- Giovanni Corso
- Division of Breast Surgery, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy; (G.M.); (F.M.); (V.G.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (E.G.-R.); (N.F.); (G.P.)
| | - Giacomo Montagna
- Breast Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Joana Figueiredo
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (J.F.); (M.S.F.); (S.S.); (R.S.)
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, University of Milan, 20133 Milan, Italy;
| | - Uberto Fumagalli Romario
- Department of Digestive Surgery, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy;
| | - Maria Sofia Fernandes
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (J.F.); (M.S.F.); (S.S.); (R.S.)
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Susana Seixas
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (J.F.); (M.S.F.); (S.S.); (R.S.)
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Franco Roviello
- Departments of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy;
| | - Cristina Trovato
- Division of Endoscopy, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy;
| | - Elena Guerini-Rocco
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (E.G.-R.); (N.F.); (G.P.)
- Division of Pathology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (E.G.-R.); (N.F.); (G.P.)
- Division of Pathology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy
| | - Gabriella Pravettoni
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (E.G.-R.); (N.F.); (G.P.)
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy;
| | - Serena Petrocchi
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy;
| | - Anna Rotili
- Division of Breast Imaging, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy;
| | - Giulia Massari
- Division of Breast Surgery, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy; (G.M.); (F.M.); (V.G.)
| | - Francesca Magnoni
- Division of Breast Surgery, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy; (G.M.); (F.M.); (V.G.)
| | - Francesca De Lorenzi
- Division of Plastic Surgery, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy; (F.D.L.); (M.B.)
| | - Manuela Bottoni
- Division of Plastic Surgery, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy; (F.D.L.); (M.B.)
| | - Viviana Galimberti
- Division of Breast Surgery, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy; (G.M.); (F.M.); (V.G.)
| | - João Miguel Sanches
- Institute for Systems and Robotics, Instituto Superior Técnico, 1049-001 Lisboa, Portugal;
| | - Mariarosaria Calvello
- Division of Cancer Prevention and Genetics, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy; (M.C.); (B.B.)
| | - Raquel Seruca
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (J.F.); (M.S.F.); (S.S.); (R.S.)
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Medical Faculty, University of Porto, 4099-002 Porto, Portugal
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy; (M.C.); (B.B.)
| |
Collapse
|
14
|
Wang SC, Yeu Y, Hammer STG, Xiao S, Zhu M, Hong C, Clemenceau JR, Yoon LY, Nassour I, Shen J, Agarwal D, Reznik SI, Mansour JC, Yopp AC, Zhu H, Hwang TH, Porembka MR. Hispanic/Latino Patients with Gastric Adenocarcinoma Have Distinct Molecular Profiles Including a High Rate of Germline CDH1 Variants. Cancer Res 2020; 80:2114-2124. [PMID: 32269045 PMCID: PMC7489496 DOI: 10.1158/0008-5472.can-19-2918] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/05/2020] [Accepted: 03/30/2020] [Indexed: 01/04/2023]
Abstract
Hispanic/Latino patients have a higher incidence of gastric cancer and worse cancer-related outcomes compared with patients of other backgrounds. Whether there is a molecular basis for these disparities is unknown, as very few Hispanic/Latino patients have been included in previous studies. To determine the genomic landscape of gastric cancer in Hispanic/Latino patients, we performed whole-exome sequencing (WES) and RNA sequencing on tumor samples from 57 patients; germline analysis was conducted on 83 patients. The results were compared with data from Asian and White patients published by The Cancer Genome Atlas. Hispanic/Latino patients had a significantly larger proportion of genomically stable subtype tumors compared with Asian and White patients (65% vs. 21% vs. 20%, P < 0.001). Transcriptomic analysis identified molecular signatures that were prognostic. Of the 43 Hispanic/Latino patients with diffuse-type cancer, 7 (16%) had germline variants in CDH1. Variant carriers were significantly younger than noncarriers (41 vs. 50 years, P < 0.05). In silico algorithms predicted five variants to be deleterious. For two variants that were predicted to be benign, in vitro modeling demonstrated that these mutations conferred increased migratory capability, suggesting pathogenicity. Hispanic/Latino patients with gastric cancer possess unique genomic landscapes, including a high rate of CDH1 germline variants that may partially explain their aggressive clinical phenotypes. Individualized screening, genetic counseling, and treatment protocols based on patient ethnicity and race may be necessary. SIGNIFICANCE: Gastric cancer in Hispanic/Latino patients has unique genomic profiles that may contribute to the aggressive clinical phenotypes seen in these patients.
Collapse
Affiliation(s)
- Sam C Wang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Yunku Yeu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Suntrea T G Hammer
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Shu Xiao
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Min Zhu
- Departments of Pediatrics and Internal Medicine, Children's Research Institute, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Changjin Hong
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jean R Clemenceau
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Lynn Y Yoon
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ibrahim Nassour
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jeanne Shen
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Deepak Agarwal
- Department of Internal Medicine, University of Texas at Austin, Austin, Texas
| | - Scott I Reznik
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John C Mansour
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Adam C Yopp
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hao Zhu
- Departments of Pediatrics and Internal Medicine, Children's Research Institute, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tae Hyun Hwang
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.
| | - Matthew R Porembka
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
15
|
Aronson M, Swallow C, Govindarajan A, Semotiuk K, Cohen Z, Kaurah P, Velsher L, Ambus I, Buckley K, Forster-Gibson C, Meschino WS, Blumenthal A, Kim RH, Brar S. Germline variants and phenotypic spectrum in a Canadian cohort of individuals with diffuse gastric cancer. Curr Oncol 2020; 27:e182-e190. [PMID: 32489267 PMCID: PMC7253747 DOI: 10.3747/co.27.5663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background CDH1 pathogenic variants (pvs) cause most cases of inherited diffuse gastric cancer (dgc), but have low detection rates and vary geographically. In the present study, we examined hereditary causes of dgc in patients in Ontario. Methods CDH1 testing through single-site or multi-gene panels was conducted for patients with dgc meeting the 2015 International Gastric Cancer Linkage Consortium (igclc) criteria, or with isolated dgc at less than 50 years of age, or with a strong family history of cancer identified at the Zane Cohen Centre (zcc). All CDH1-positive patients at zcc, regardless of cancer history, were summarized. Results In 15 of 85 patients with dgc (17.6%), a pv or likely pv was identified through CDH1 single-site (n = 43) or multi-gene panel (n = 42) testing. The detection rate was 9.4% overall (8 of 85) and 11% using igclc criteria (7 of 65). No CDH1 pvs were identified in patients with isolated dgc at less than 40 years of age, but 1 pv was identified in a patient with isolated dgc at less than 50 years of age. Multi-gene panels identified 9 pvs (21.4%), including CDH1, STK11, ATM, BRCA2, MLH1, and MSH2. Review of 81 CDH1 carriers identified 10% with dgc (median age: 48 years; range: 38-59 years); 41% were unaffected (median age: 53 years; range: 26-89 years). Observed malignancies other than dgc or lobular breast cancer (lbc) included colorectal, gynecologic, kidney or bladder, prostate, testicular, and ductal breast cancers. Lobular-breast cancer was seen only in 3 families. Conclusions In Ontario, the detection rate of CDH1 pvs in patients with dgc was low: no pvs were identified in patients with isolated dgc at less than 40 years of age, and 1 was identified in a patient with isolated dgc at less than 50 years of age. Isolated lbc with no dgc was observed in CDH1-positive families, as were pathology-confirmed nondgc or non-lbc malignancies, which had not previously been reported. Given a phenotype that overlaps with other hereditary conditions, multi-gene panels are recommended for all patients with dgc at less than 50 years of age and for those meeting igclc criteria.
Collapse
Affiliation(s)
- M Aronson
- Sinai Health System, Zane Cohen Centre for Digestive Diseases, University of Toronto, Toronto, ON
| | - C Swallow
- Sinai Health System, Department of Surgery, University of Toronto, Toronto, ON
| | - A Govindarajan
- Sinai Health System, Department of Surgery, University of Toronto, Toronto, ON
| | - K Semotiuk
- Sinai Health System, Zane Cohen Centre for Digestive Diseases, University of Toronto, Toronto, ON
| | - Z Cohen
- Sinai Health System, Zane Cohen Centre for Digestive Diseases, University of Toronto, Toronto, ON
| | | | - L Velsher
- North York General Hospital, Toronto, ON
| | - I Ambus
- North York General Hospital, Toronto, ON
| | | | | | | | | | - R H Kim
- Sinai Health System, Department of Medicine, Division of Medical Oncology, University of Toronto, Toronto, ON
| | - S Brar
- Sinai Health System, Department of Surgery, University of Toronto, Toronto, ON
| |
Collapse
|
16
|
Renaud F, Svrcek M. [Hereditary gastric cancer: Challenges for the pathologist in 2020]. Ann Pathol 2020; 40:95-104. [PMID: 32147190 DOI: 10.1016/j.annpat.2020.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/26/2020] [Accepted: 02/05/2020] [Indexed: 12/24/2022]
Abstract
Gastric cancer is the third most common cancer worldwide. The majority of gastric cancers are sporadic but familial clustering is seen in more than 10% of cases. This manuscript is divided into two parts. The first part is dedicated to the non-syndromic hereditary gastric cancer, particularly the hereditary diffuse gastric cancer (HDGC) and other gastric polyposes including the recently described GAPPS (Gastric adenocarcinoma and proximal polyposis of the stomach). The second part concerns the syndromic gastric cancer, namely the HNPCC syndrome (Hereditary Non Polyposis Colorectal Cancer) occurring as part of a genetic predisposition syndrome to cancer. Recent advances in oncogenetics and next generation sequencing technology have enabled the identification of new entities. This enhancement in knowledge regarding inherited syndromes predisposing to gastric cancer has consequently improved the management of patients and their families. In this context, pathologists play a major role in identifying particular morphologic entities prompting genetic investigation. The aim of this manuscript is to provide an update on the current knowledge about hereditary gastric cancer.
Collapse
Affiliation(s)
- Florence Renaud
- Sorbonne université, Inserm, unité Mixte de Recherche Scientifique 938, SIRIC CURAMUS, centre de recherche Saint-Antoine, équipe instabilité des microsatellites et cancer, équipe labellisée par la Ligue Nationale contre le cancer, 75012 Paris, France; Service d'anatomie et cytologie pathologiques, hôpital Saint-Antoine, AP-HP, 184, rue du Faubourg-Saint-Antoine, 75571 Paris cedex 12, France.
| | - Magali Svrcek
- Sorbonne université, Inserm, unité Mixte de Recherche Scientifique 938, SIRIC CURAMUS, centre de recherche Saint-Antoine, équipe instabilité des microsatellites et cancer, équipe labellisée par la Ligue Nationale contre le cancer, 75012 Paris, France; Service d'anatomie et cytologie pathologiques, hôpital Saint-Antoine, AP-HP, 184, rue du Faubourg-Saint-Antoine, 75571 Paris cedex 12, France
| |
Collapse
|
17
|
Moridnia A, Tabatabaiefar MA, Zeinalian M, Minakari M, Kheirollahi M, Moghaddam NA. Novel Variants and Copy Number Variation in CDH1 Gene in Iranian Patients with Sporadic Diffuse Gastric Cancer. J Gastrointest Cancer 2020; 50:420-427. [PMID: 29577179 DOI: 10.1007/s12029-018-0082-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The aim of this study was to survey the nucleotide changes and copy number variations (CNV) in the CDH1 gene in Iranian patients with sporadic diffuse gastric cancer (SDGC). MATERIALS AND METHODS In this study, 28 patients were examined who upon gastrectomy had been diagnosed with SDGC according to the familial history and histopathological criteria which was confirmed by the pathologist. DNA extraction was performed from formalin-fixed paraffin-embedded tissues using a phenol-chloroform method following xylene deparaffinization. Determination of DNA sequence by Sanger was performed using PCR amplification of 16 exons and boundaries of intron/exon of CDH1 gene. Multiplex ligation-dependent probe amplification (MLPA) was performed on patients with pathogenic disorders in the sequence. RESULTS In total, patients included 20 males and 8 females. Of all patients, 12 patients were under 45 years old (early onset gastric cancer, EODC) and 16 patients were older. The tumor was diagnosed in the early TNM stage (I, II) in six patients and in late stages (III, IV) in 19 cases. Altogether, 16 variants (three exonic with one new variant and 13 intronic with nine new variants) were found in DNA sequencing of the CDH1 gene in five samples. Also, using MLPA, a new duplication in exon 9 and one deletion in exon 2 were detected in two other patients. Altogether, CDH1 variants were identified in seven out of 28 patients (25%). CONCLUSION Our study revealed several novel somatic variants in the CDH1 gene in Iranian patients with sporadic diffuse GC. Our data supports the hypothesis that mutations in CDH1 gene, and particularly the mutations we describe, should be considered, even in sporadic cases of gastric cancer. The presence of these mutations in patients raises important issues regarding genetic counseling and diagnostic test in DGC patients.
Collapse
Affiliation(s)
- Abbas Moridnia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, P.O.Box: 81746-73461, Isfahan, Iran
| | - Mohammad Amin Tabatabaiefar
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, P.O.Box: 81746-73461, Isfahan, Iran
| | - Mehrdad Zeinalian
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, P.O.Box: 81746-73461, Isfahan, Iran
| | - Mohammad Minakari
- Internal medicine department, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Kheirollahi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, P.O.Box: 81746-73461, Isfahan, Iran.
| | - Noushin Afshar Moghaddam
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Figueiredo J, Melo S, Carneiro P, Moreira AM, Fernandes MS, Ribeiro AS, Guilford P, Paredes J, Seruca R. Clinical spectrum and pleiotropic nature of CDH1 germline mutations. J Med Genet 2019; 56:199-208. [PMID: 30661051 PMCID: PMC6581119 DOI: 10.1136/jmedgenet-2018-105807] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/05/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
Abstract
CDH1 encodes E-cadherin, a key protein in adherens junctions. Given that E-cadherin is involved in major cellular processes such as embryogenesis and maintenance of tissue architecture, it is no surprise that deleterious effects arise from its loss of function. E-cadherin is recognised as a tumour suppressor gene, and it is well established that CDH1 genetic alterations cause diffuse gastric cancer and lobular breast cancer—the foremost manifestations of the hereditary diffuse gastric cancer syndrome. However, in the last decade, evidence has emerged demonstrating that CDH1 mutations can be associated with lobular breast cancer and/or several congenital abnormalities, without any personal or family history of diffuse gastric cancer. To date, no genotype–phenotype correlations have been observed. Remarkably, there are reports of mutations affecting the same nucleotide but inducing distinct clinical outcomes. In this review, we bring together a comprehensive analysis of CDH1-associated disorders and germline alterations found in each trait, providing important insights into the biological mechanisms underlying E-cadherin’s pleiotropic effects. Ultimately, this knowledge will impact genetic counselling and will be relevant to the assessment of risk of cancer development or congenital malformations in CDH1 mutation carriers.
Collapse
Affiliation(s)
- Joana Figueiredo
- Epithelial Interactions in Cancer Department, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal.,Epithelial Interactions in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Soraia Melo
- Epithelial Interactions in Cancer Department, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal.,Epithelial Interactions in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Medical Faculty of the University of Porto, Porto, Portugal
| | - Patrícia Carneiro
- Epithelial Interactions in Cancer Department, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal.,Epithelial Interactions in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Ana Margarida Moreira
- Epithelial Interactions in Cancer Department, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal.,Medical Faculty of the University of Porto, Porto, Portugal.,Epithelial Interactions in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Maria Sofia Fernandes
- Epithelial Interactions in Cancer Department, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal.,Epithelial Interactions in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Institute for Systems and Robotics (ISR/IST), LARSyS, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Sofia Ribeiro
- Epithelial Interactions in Cancer Department, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal.,Epithelial Interactions in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Parry Guilford
- Cancer Genetics Laboratory, Centre for Translational Cancer Research (Te Aho Matatū), Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Joana Paredes
- Epithelial Interactions in Cancer Department, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal.,Medical Faculty of the University of Porto, Porto, Portugal.,Epithelial Interactions in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Raquel Seruca
- Epithelial Interactions in Cancer Department, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal.,Medical Faculty of the University of Porto, Porto, Portugal.,Epithelial Interactions in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| |
Collapse
|
19
|
Polom K, Marrelli D, D'Ignazio A, Roviello F. Hereditary diffuse gastric cancer: how to look for and how to manage it. Updates Surg 2018; 70:161-166. [PMID: 29869323 DOI: 10.1007/s13304-018-0545-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 05/13/2018] [Indexed: 02/07/2023]
Abstract
With a current molecular revolution, hereditary gastric cancer represents a small group of patients that require a special multidisciplinary treatment. Surgeons being a member of the multidisciplinary teams are an important part of the diagnosis, treatment and follow-up of these patients. The prophylactic nature of the gastrectomy with all different problems associated with this procedure need to be widely discussed with patients. We present a review of how to look for and how to manage a hereditary diffuse-type gastric cancer.
Collapse
Affiliation(s)
- Karol Polom
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100, Siena, Italy.
| | - Daniele Marrelli
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100, Siena, Italy
| | - Alessia D'Ignazio
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100, Siena, Italy
| | - Franco Roviello
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100, Siena, Italy
| |
Collapse
|
20
|
Bruner HC, Derksen PWB. Loss of E-Cadherin-Dependent Cell-Cell Adhesion and the Development and Progression of Cancer. Cold Spring Harb Perspect Biol 2018; 10:a029330. [PMID: 28507022 PMCID: PMC5830899 DOI: 10.1101/cshperspect.a029330] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Classical cadherins are the key molecules that control cell-cell adhesion. Notwithstanding this function, it is also clear that classical cadherins are more than just the "glue" that keeps the cells together. Cadherins are essential regulators of tissue homeostasis that govern multiple facets of cellular function and development, by transducing adhesive signals to a complex network of signaling effectors and transcriptional programs. In cancer, cadherins are often inactivated or functionally inhibited, resulting in disease development and/or progression. This review focuses on E-cadherin and its causal role in the development and progression of breast and gastric cancer. We provide a summary of the biochemical consequences and consider the conceptual impact of early (mutational) E-cadherin loss in cancer. We advocate that carcinomas driven by E-cadherin loss should be considered "actin-diseases," caused by the specific disruption of the E-cadherin-actin connection and a subsequent dependence on sustained actomyosin contraction for tumor progression. Based on the available data from mouse and human studies we discuss opportunities for targeted clinical intervention.
Collapse
Affiliation(s)
- Heather C Bruner
- Department of Medicine, University of California at San Diego, La Jolla, California 92093
| | - Patrick W B Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht 3584CX, The Netherlands
| |
Collapse
|
21
|
Altman AM, Hui JYC, Tuttle TM. Quality-of-life implications of risk-reducing cancer surgery. Br J Surg 2018; 105:e121-e130. [DOI: 10.1002/bjs.10725] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 01/15/2023]
Abstract
Abstract
Background
Modern advances in genetic sequencing techniques have allowed for increased availability of genetic testing for hereditary cancer syndromes. Consequently, more people are being identified as mutation carriers and becoming aware of their increased risk of malignancy. Testing is commonplace for many inheritable cancer syndromes, and with that comes the knowledge of being a gene carrier for some patients. With increased risk of malignancy, many guidelines recommend that gene carriers partake in risk reduction strategies, including risk-reducing surgery for some syndromes. This review explores the quality-of-life consequences of genetic testing and risk-reducing surgery.
Methods
A narrative review of PubMed/MEDLINE was performed, focusing on the health-related quality-of-life implications of surgery for hereditary breast and ovarian cancer, familial adenomatous polyposis and hereditary diffuse gastric cancer.
Results
Risk-reducing surgery almost uniformly decreases cancer anxiety and affects patients' quality of life.
Conclusion
Although the overwhelming quality-of-life implications of surgery are neutral to positive, risk-reducing surgery is irreversible and can be associated with short- and long-term side-effects.
Collapse
Affiliation(s)
- A M Altman
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - J Y C Hui
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - T M Tuttle
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
22
|
Charalampakis N, Economopoulou P, Kotsantis I, Tolia M, Schizas D, Liakakos T, Elimova E, Ajani JA, Psyrri A. Medical management of gastric cancer: a 2017 update. Cancer Med 2018; 7:123-133. [PMID: 29239137 PMCID: PMC5773977 DOI: 10.1002/cam4.1274] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer remains a considerable health burden throughout the world. The Cancer Genome Atlas (TCGA) analysis has recently unveiled 4 genotypes of gastric cancer with data not ready to change treatment strategy yet. A multimodality approach to therapy is the cornerstone of screening, diagnosing, staging, treating and supporting patients with gastric cancer. The evidence-based approach to localized gastric cancer (>cT1b) is to use an either preoperative or postoperative strategy to maximize the benefit of surgery. The focus of future research is to optimize chemotherapy regimens, determine the role of radiation therapy and investigate the effect of treatment timing. In metastatic gastric cancer, biologic therapies have been introduced targeting markers shown to be prognostic. The results of ongoing randomized controlled phase 3 trials using targeted and immunotherapy agents, either in combination or alone, have the potential to alter the current treatment landscape of advanced gastric cancer.
Collapse
Affiliation(s)
- Nikolaos Charalampakis
- Department of Internal MedicineSection of Medical OncologyAttikon University HospitalNational and Kapodistrian University of AthensSchool of MedicineAthensGreece
| | - Panagiota Economopoulou
- Department of Internal MedicineSection of Medical OncologyAttikon University HospitalNational and Kapodistrian University of AthensSchool of MedicineAthensGreece
| | - Ioannis Kotsantis
- Department of Internal MedicineSection of Medical OncologyAttikon University HospitalNational and Kapodistrian University of AthensSchool of MedicineAthensGreece
| | - Maria Tolia
- Radiation Oncology DepartmentUniversity of ThessalySchool of Health SciencesFaculty of MedicineLarissaGreece
| | - Dimitrios Schizas
- First Department of SurgeryNational and Kapodistrian University of AthensSchool of MedicineAthensGreece
| | - Theodore Liakakos
- First Department of SurgeryNational and Kapodistrian University of AthensSchool of MedicineAthensGreece
| | - Elena Elimova
- Department of MedicineDivision of Medical OncologyPrincess Margaret Cancer CentreUniversity of TorontoTorontoOntarioCanada
- Department of Gastrointestinal Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Jaffer A. Ajani
- Department of Gastrointestinal Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Amanda Psyrri
- Department of Internal MedicineSection of Medical OncologyAttikon University HospitalNational and Kapodistrian University of AthensSchool of MedicineAthensGreece
| |
Collapse
|
23
|
Vogelaar IP, van der Post RS, van Krieken JHJ, Spruijt L, van Zelst-Stams WA, Kets CM, Lubinski J, Jakubowska A, Teodorczyk U, Aalfs CM, van Hest LP, Pinheiro H, Oliveira C, Jhangiani SN, Muzny DM, Gibbs RA, Lupski JR, de Ligt J, Vissers LELM, Hoischen A, Gilissen C, van de Vorst M, Goeman JJ, Schackert HK, Ranzani GN, Molinaro V, Gómez García EB, Hes FJ, Holinski-Feder E, Genuardi M, Ausems MGEM, Sijmons RH, Wagner A, van der Kolk LE, Bjørnevoll I, Høberg-Vetti H, van Kessel AG, Kuiper RP, Ligtenberg MJL, Hoogerbrugge N. Unraveling genetic predisposition to familial or early onset gastric cancer using germline whole-exome sequencing. Eur J Hum Genet 2017; 25:1246-1252. [PMID: 28875981 PMCID: PMC5643972 DOI: 10.1038/ejhg.2017.138] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 07/07/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022] Open
Abstract
Recognition of individuals with a genetic predisposition to gastric cancer (GC) enables preventive measures. However, the underlying cause of genetic susceptibility to gastric cancer remains largely unexplained. We performed germline whole-exome sequencing on leukocyte DNA of 54 patients from 53 families with genetically unexplained diffuse-type and intestinal-type GC to identify novel GC-predisposing candidate genes. As young age at diagnosis and familial clustering are hallmarks of genetic tumor susceptibility, we selected patients that were diagnosed below the age of 35, patients from families with two cases of GC at or below age 60 and patients from families with three GC cases at or below age 70. All included individuals were tested negative for germline CDH1 mutations before or during the study. Variants that were possibly deleterious according to in silico predictions were filtered using several independent approaches that were based on gene function and gene mutation burden in controls. Despite a rigorous search, no obvious candidate GC predisposition genes were identified. This negative result stresses the importance of future research studies in large, homogeneous cohorts.
Collapse
Affiliation(s)
- Ingrid P Vogelaar
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Rachel S van der Post
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - J Han Jm van Krieken
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - Liesbeth Spruijt
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | | | - C Marleen Kets
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Urszula Teodorczyk
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Cora M Aalfs
- Department of Clinical Genetics, Academic Medical Centre, Amsterdam, The Netherlands
| | - Liselotte P van Hest
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Hugo Pinheiro
- Expression Regulation in Cancer Group, Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Carla Oliveira
- Expression Regulation in Cancer Group, Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Al Prof Hernâni Monteiro, Porto, Portugal
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - James R Lupski
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Joep de Ligt
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Maartje van de Vorst
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Jelle J Goeman
- Department for Health Evidence, Radboud university medical center, Nijmegen, The Netherlands.,Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans K Schackert
- Department of Surgical Research, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Valeria Molinaro
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Encarna B Gómez García
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Frederik J Hes
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Elke Holinski-Feder
- Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universität München, München, Germany
| | - Maurizio Genuardi
- Institute of Genomic Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Rolf H Sijmons
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anja Wagner
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lizet E van der Kolk
- Family Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Inga Bjørnevoll
- Department of Medical Genetics and Pathology, St. Olavs University Hospital, Trondheim, Norway
| | - Hildegunn Høberg-Vetti
- Western Norway Familial Cancer Center, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ad Geurts van Kessel
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Roland P Kuiper
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Marjolijn J L Ligtenberg
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands.,Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Lv XP. Gastrointestinal tract cancers: Genetics, heritability and germ line mutations. Oncol Lett 2017; 13:1499-1508. [PMID: 28454282 PMCID: PMC5403708 DOI: 10.3892/ol.2017.5629] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/21/2016] [Indexed: 12/18/2022] Open
Abstract
Gastrointestinal (GI) tract cancers that arise due to genetic mutations affect a large number of individuals worldwide. Even though many of the GI tract cancers arise sporadically, few of these GI tract cancers harboring a hereditary predisposition are now recognized and well characterized. These include Cowden syndrome, MUTYH-associated polyposis, hereditary pancreatic cancer, Lynch syndrome, Peutz-Jeghers syndrome, familial adenomatous polyposis (FAP), attenuated FAP, serrated polyposis syndrome, and hereditary gastric cancer. Molecular characterization of the genes that are involved in these syndromes was useful in the development of genetic testing for diagnosis and also facilitated understanding of the genetic basis of GI cancers. Current knowledge on the genetics of GI cancers with emphasis on heritability and germ line mutations forms the basis of the present review.
Collapse
Affiliation(s)
- Xiao-Peng Lv
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
25
|
Figueiredo T, Guedes MTS, Souza LPSE, Rosa AAS, Accetta AC, de Luca Nascimento MA, Santiago L, Alcântara DDF. Prevalence of Family History of Cancer among Gastric Cancer Patients at Brazilian National Cancer Institute. Health (London) 2017. [DOI: 10.4236/health.2017.91003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Abstract
Gastric cancer (GC) is third leading cause of cancer-related death. Only 28.3% of new GC cases survive more than 5 years. Although incidence has declined in the United States, an increase is estimated for 2016. Risk factors include sex (risk is higher in men), Helicobacter pylori infection, heredity, and lifestyle. GC is usually diagnosed between the ages of 60-80 years. Prognosis of GC is largely dependent on the tumor stage at diagnosis and classification as intestinal or diffuse type; diffuse-type GC has worse prognosis. Chemoprevention has been shown to decrease risk, but is currently not used clinically.
Collapse
Affiliation(s)
- Juan M Marqués-Lespier
- Division of Gastroenterology, Department of Medicine, University of Puerto Rico School of Medicine, San Juan, PR 00935, USA
| | - María González-Pons
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA
| | - Marcia Cruz-Correa
- Departments of Medicine, Surgery, and Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA.
| |
Collapse
|
27
|
Khaleghian M, Shakoori A, Razavi AE, Azimi C. Relationship of Amplification and Expression of the C-MYC Gene with Survival among Gastric Cancer Patients. Asian Pac J Cancer Prev 2016; 16:7061-9. [PMID: 26514491 DOI: 10.7314/apjcp.2015.16.16.7061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During the past decades, the incidence and mortality rate of stomach cancer has demonstrated a great decrease in the world, but it is still one of the most common and fatal cancers especially among men worldwide, including Iran. The MYC proto-oncogene, which is located at 8q24.1, regulates 15% of genes and is activated in 20% of all human tumors. MYC amplification and overexpression of its protein product has been reported in 15-30% of gastric neoplasias. The aim of this investigation was to find the relative efficacy of CISH (chromogenic in situ hybridization) or IHC (immunohistochemistry) in diagnosis and prognosis of gastric cancer, as well as the relationship of amplification and expression of C-MYC gene with patient survival. MATERIALS AND METHODS In this cross-sectional study, 102 samples of gastric cancer were collected from patients who had undergone primary surgical resection at the Cancer Institute Hospital, Tehran University of Medical Sciences, from July 2009 to March 2014. All samples were randomly selected from those who were diagnosed with gastric adenocarcinomas. CISH and IHC methods were performed on all of them. RESULTS Patients were classified into two groups. The first consisted of stage I and II cases, and the second of stage III and IV. Survival tests for both groups was carried out with referrnce to CISH test reults. Group II (stage III and IV) with CISH+ featured lower survival than those with CISH- (p=0.233), but group I (stage I and II) patients demonstrated no significant variation with CISH+ or CISH- (p=0.630). Kaplan-Meier for both groups was carried out with IHC test findings and showed similar results. This data revealed that both diffuse and intestinal types of gastric cancer occurred significantly more in men than women. Our data also showed that CISH+ patients (43%) were more frequent in comparison with IHC+ patients (14.7%). CONCLUSIONS For planning treatment of gastric cancer patients, by focusing on expanding tumors, which is the greatest concern of the surgeons and patients, CISH is a better and more feasible test than IHC, in regard to sensitivity and specificity. Therefore, CISH can be used as a feasible test for tumor growth and prognosis in stage III and IV lesions. This study also indicated that C-MYC amplification in gastric cancer is correlated with survival in advanced stages.
Collapse
Affiliation(s)
- Malihea Khaleghian
- Department of Medical Genetics, Iran National Tumor Bank, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran E-mail :
| | | | | | | |
Collapse
|
28
|
Mereiter S, Balmaña M, Gomes J, Magalhães A, Reis CA. Glycomic Approaches for the Discovery of Targets in Gastrointestinal Cancer. Front Oncol 2016; 6:55. [PMID: 27014630 PMCID: PMC4783390 DOI: 10.3389/fonc.2016.00055] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/24/2016] [Indexed: 12/22/2022] Open
Abstract
Gastrointestinal (GI) cancer is the most common group of malignancies and many of its types are among the most deadly. Various glycoconjugates have been used in clinical practice as serum biomarker for several GI tumors, however, with limited diagnose application. Despite the good accessibility by endoscopy of many GI organs, the lack of reliable serum biomarkers often leads to late diagnosis of malignancy and consequently low 5-year survival rates. Recent advances in analytical techniques have provided novel glycoproteomic and glycomic data and generated functional information and putative biomarker targets in oncology. Glycosylation alterations have been demonstrated in a series of glycoconjugates (glycoproteins, proteoglycans, and glycosphingolipids) that are involved in cancer cell adhesion, signaling, invasion, and metastasis formation. In this review, we present an overview on the major glycosylation alterations in GI cancer and the current serological biomarkers used in the clinical oncology setting. We further describe recent glycomic studies in GI cancer, namely gastric, colorectal, and pancreatic cancer. Moreover, we discuss the role of glycosylation as a modulator of the function of several key players in cancer cell biology. Finally, we address several state-of-the-art techniques currently applied in this field, such as glycomic and glycoproteomic analyses, the application of glycoengineered cell line models, microarray and proximity ligation assay, and imaging mass spectrometry, and provide an outlook to future perspectives and clinical applications.
Collapse
Affiliation(s)
- Stefan Mereiter
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Meritxell Balmaña
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona , Girona , Spain
| | - Joana Gomes
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal
| |
Collapse
|
29
|
Skierucha M, Milne ANA, Offerhaus GJA, Polkowski WP, Maciejewski R, Sitarz R. Molecular alterations in gastric cancer with special reference to the early-onset subtype. World J Gastroenterol 2016; 22:2460-74. [PMID: 26937134 PMCID: PMC4768192 DOI: 10.3748/wjg.v22.i8.2460] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/06/2015] [Accepted: 12/30/2015] [Indexed: 02/06/2023] Open
Abstract
Currently, gastric cancer (GC) is one of the most frequently diagnosed neoplasms, with a global burden of 723000 deaths in 2012. It is the third leading cause of cancer-related death worldwide. There are numerous possible factors that stimulate the pro-carcinogenic activity of important genes. These factors include genetic susceptibility expressed in a single-nucleotide polymorphism, various acquired mutations (chromosomal instability, microsatellite instability, somatic gene mutations, epigenetic alterations) and environmental circumstances (e.g., Helicobcter pylori infection, EBV infection, diet, and smoking). Most of the aforementioned pathways overlap, and authors agree that a clear-cut pathway for GC may not exist. Thus, the categorization of carcinogenic events is complicated. Lately, it has been claimed that research on early-onset gastric carcinoma (EOGC) and hereditary GC may contribute towards unravelling some part of the mystery of the GC molecular pattern because young patients are less exposed to environmental carcinogens and because carcinogenesis in this setting may be more dependent on genetic factors. The comparison of various aspects that differ and coexist in EOGCs and conventional GCs might enable scientists to: distinguish which features in the pathway of gastric carcinogenesis are modifiable, discover specific GC markers and identify a specific target. This review provides a summary of the data published thus far concerning the molecular characteristics of GC and highlights the outstanding features of EOGC.
Collapse
|
30
|
Khaleghian M, Jahanzad I, Shakoori A, Emami Razavi A, Azimi C. Association Between Amplification and Expression of C-MYC Gene and Clinicopathological Characteristics of Stomach Cancer. IRANIAN RED CRESCENT MEDICAL JOURNAL 2016; 18:e21221. [PMID: 27175302 PMCID: PMC4863201 DOI: 10.5812/ircmj.21221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/04/2014] [Accepted: 08/28/2014] [Indexed: 02/07/2023]
Abstract
Background: The incidence rate of gastric cancer in western countries has shown a remarkable decline in the recent years while it is still the most common cancer among males in Iran. The proto-oncogene MYC, located at 8q24.1, regulates almost 15% of human genes and is activated in 20% of all tumors. The amplification of MYC and overexpression of its protein product are observed in 15 - 30% of gastric neoplasias. Objectives: The objective of this study was to find the preferences of Chromogenic In Situ Hybridization (CISH) and Immunohistochemistry (IHC) in diagnosis and prognosis of gastric cancer. Patients and Methods: We studied 102 samples of gastric cancer in Iran and all the patients had undergone primary surgical resection at the Cancer Institute Hospital, Tehran University of Medical Sciences. The CISH and IHC techniques were applied for all our samples. All of the samples had adenocarcinoma gastric cancer and were selected randomly. Also, the type of study was cross sectional. The sample size was 100 patients. Results: Our data revealed that both diffuse and intestinal types of gastric cancer occurred significantly more in males than females. Our results showed that there was an indication of some correlation between grades and CISH, although the difference was not significant. Our data also showed that CISH positive patients (43%) were more frequent compared to IHC positive patients (14.7%). There was a correlation between CISH and IHC. These results revealed that there was a significant difference between grades and IHC. There was also no statistical difference between CISH amplification in diffuse and intestinal types. Conclusions: From the results, it could be concluded that for administration of the treatment of stomach cancer, and progress and prognosis of tumor, which is important for patients and clinicians, the CISH is a better and more feasible test than IHC, in regards to sensitivity and specificity.
Collapse
Affiliation(s)
- Malihea Khaleghian
- Department of Medical Genetics, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Issa Jahanzad
- Department of Pathology, Immunohistochemistry Laboratory, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Abbas Shakoori
- Department of Medical Genetics, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Amirnader Emami Razavi
- Department of Pathology, Iran National Tumor Bank, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Cyrus Azimi
- Department of Medical Genetics, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, IR Iran
- Corresponding Author: Cyrus Azimi, Department of Medical Genetics, Cancer Institute of Iran, Tehran University of Medical Sciences, P. O. Box: 1419733141, Tehran, IR Iran. Tel/Fax: +98-2166945120, E-mail:
| |
Collapse
|
31
|
van der Post RS, Gullo I, Oliveira C, Tang LH, Grabsch HI, O'Donovan M, Fitzgerald RC, van Krieken H, Carneiro F. Histopathological, Molecular, and Genetic Profile of Hereditary Diffuse Gastric Cancer: Current Knowledge and Challenges for the Future. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 908:371-91. [PMID: 27573781 DOI: 10.1007/978-3-319-41388-4_18] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Familial clustering is seen in 10 % of gastric cancer cases and approximately 1-3 % of gastric cancer arises in the setting of hereditary diffuse gastric cancer (HDGC). In families with HDGC, gastric cancer presents at young age. HDGC is predominantly caused by germline mutations in CDH1 and in a minority by mutations in other genes, including CTNNA1. Early stage HDGC is characterized by a few, up to dozens of intramucosal foci of signet ring cell carcinoma and its precursor lesions. These include in situ signet ring cell carcinoma and pagetoid spread of signet ring cells. Advanced HDGC presents as poorly cohesive/diffuse type carcinoma, normally with very few typical signet ring cells, and has a poor prognosis. Currently, it is unknown which factors drive the progression towards aggressive disease, but it is clear that most intramucosal lesions will not have such progression.Immunohistochemical profile of early and advanced HDGC is often characterized by abnormal E-cadherin immunoexpression, including absent or reduced membranous expression, as well as "dotted" or cytoplasmic expression. However, membranous expression of E-cadherin does not exclude HDGC. Intramucosal HDGC (pT1a) presents with an "indolent" phenotype, characterized by typical signet ring cells without immunoexpression of Ki-67 and p53, while advanced carcinomas (pT > 1) display an "aggressive" phenotype with pleomorphic cells, that are immunoreactive for Ki-67 and p53. These features show that the IHC profile is different between intramucosal and more advanced HDGC, providing evidence of phenotypic heterogeneity, and may help to define predictive biomarkers of progression from indolent to aggressive, widely invasive carcinomas.
Collapse
Affiliation(s)
- Rachel S van der Post
- Department of Pathology, Radboud University Medical Centre, 9101, Nijmegen, 6500 HB, The Netherlands
| | - Irene Gullo
- Department of Pathology, Centro Hospitalar de São João, Al. Prof. Hernâni Monteiro, Porto, 4200-319, Portugal.,Department of Pathology and Oncology, Faculdade de Medicina da Universidade do Porto (FMUP), Al. Prof. Hernâni Monteiro, Porto, 4200-319, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Porto, Portugal and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Dr. Roberto Frias S/N, Porto, 4200-465, Portugal
| | - Carla Oliveira
- Department of Pathology, Centro Hospitalar de São João, Al. Prof. Hernâni Monteiro, Porto, 4200-319, Portugal.,Department of Pathology and Oncology, Faculdade de Medicina da Universidade do Porto (FMUP), Al. Prof. Hernâni Monteiro, Porto, 4200-319, Portugal
| | - Laura H Tang
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Heike I Grabsch
- GROW School of Oncology and Developmental Biology and Department of Pathology, Maastricht University Medical Centre, Peter Debyelaan 25, Maastricht, 6229 HX, The Netherlands
| | - Maria O'Donovan
- Department of Histopathology, Cambridge University Hospitals NHS Trust, Cambridge, CB2 0QQ, UK
| | - Rebecca C Fitzgerald
- MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, 197, Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Han van Krieken
- Department of Pathology, Radboud University Medical Centre, 9101, Nijmegen, 6500 HB, The Netherlands
| | - Fátima Carneiro
- Department of Pathology, Centro Hospitalar de São João, Al. Prof. Hernâni Monteiro, Porto, 4200-319, Portugal. .,Department of Pathology and Oncology, Faculdade de Medicina da Universidade do Porto (FMUP), Al. Prof. Hernâni Monteiro, Porto, 4200-319, Portugal. .,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Porto, Portugal and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Dr. Roberto Frias S/N, Porto, 4200-465, Portugal.
| |
Collapse
|
32
|
Vogelaar IP, van der Post RS, van de Vosse E, van Krieken JHJM, Hoogerbrugge N, Ligtenberg MJL, Gómez García E. Gastric cancer in three relatives of a patient with a biallelic IL12RB1 mutation. Fam Cancer 2015; 14:89-94. [PMID: 25467645 DOI: 10.1007/s10689-014-9764-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
IL-12Rβ1 deficiency, also known as immunodeficiency 30 (IMD30, OMIM 614891), is a rare immunodeficiency syndrome caused by biallelic mutations in IL12RB1. Three second-degree relatives of a patient with this syndrome, all women, developed intestinal-type gastric cancer (GC). In the Netherlands the incidence of non-cardia GC in women is only 7 per 100,000 person years. Both relatives that were available for testing proved to be heterozygous for the familial IL12RB1 mutation, suggesting there might be a causal relation. Testing 29 index patients from families with early onset and/or a familial history of GC for germline mutations in both IL12RB1 and IL12RB2, that encodes the binding partner of IL-12Rβ1, did not reveal other germline mutations in these genes. Therefore heterozygous inactivating mutations in IL12RB1 and IL12RB2 are unlikely to be frequently involved in GC predisposition. Additional research in families with IL12RB1 mutations is required to determine whether carriers of IL12RB1 mutations have an increased (gastric) cancer risk.
Collapse
Affiliation(s)
- Ingrid P Vogelaar
- Department of Human Genetics, Radboud university medical center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands,
| | | | | | | | | | | | | |
Collapse
|
33
|
Relationship between atrophic gastritis, gastric intestinal metaplasia and Helicobacter pylori on endoscopic screening of upper gastrointestinal tract and a brief review of the literature. Eur Surg 2015. [DOI: 10.1007/s10353-015-0378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Cancer Worry, Perceived Risk and Cancer Screening in First-Degree Relatives of Patients with Familial Gastric Cancer. J Genet Couns 2015; 25:520-8. [DOI: 10.1007/s10897-015-9903-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 10/15/2015] [Indexed: 12/19/2022]
|
35
|
van der Post RS, Vogelaar IP, Manders P, van der Kolk LE, Cats A, van Hest LP, Sijmons R, Aalfs CM, Ausems MGEM, Gómez García EB, Wagner A, Hes FJ, Arts N, Mensenkamp AR, van Krieken JH, Hoogerbrugge N, Ligtenberg MJL. Accuracy of Hereditary Diffuse Gastric Cancer Testing Criteria and Outcomes in Patients With a Germline Mutation in CDH1. Gastroenterology 2015; 149:897-906.e19. [PMID: 26072394 DOI: 10.1053/j.gastro.2015.06.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Germline mutations in the cadherin 1, type 1, E-cadherin gene (CDH1) cause a predisposition to gastric cancer. We evaluated the ability of the internationally accepted hereditary diffuse gastric cancer (HDGC) criteria to identify individuals with pathogenic mutations in CDH1, and assessed their outcomes. The criteria were as follows: families with 2 or more cases of gastric cancer, with at least 1 patient diagnosed with diffuse gastric cancer (DGC) before age 50; families with 3 or more cases of DGC; families with 1 DGC before the age of 40; and families with a history of DGC and lobular breast cancer, with 1 diagnosis before the age of 50. METHODS We collected results of a CDH1 mutation analysis of 578 individuals from 499 families tested in The Netherlands between 1999 and 2014 (118 families met the HDGC criteria for testing and 236 did not; there were 145 families with incomplete data and/or availability of only first-degree relatives). Data were linked with family histories and findings from clinical and pathology analyses. The Kaplan-Meier method and Cox regression analysis were used to evaluate the overall survival of patients with and without CDH1 mutations. RESULTS In a cohort study in The Netherlands, the HDGC criteria identified individuals with a germline CDH1 mutation with a positive predictive value of 14% and 89% sensitivity. There were 18 pathogenic CDH1 mutations in 499 families (4%); 16 of these mutations were detected in the 118 families who met the HDGC criteria for testing. One pathogenic CDH1 mutation was detected in the 236 families who did not meet HDGC criteria and 1 in the 145 families with incomplete data and/or availability of only first-degree relatives. No CDH1 mutations were found in the 67 families whose members developed intestinal-type gastric cancer, or in the 22 families whose families developed lobular breast cancer. Among patients who fulfilled the HDGC criteria and had pathogenic CDH1 mutations, 36% survived for 1 year and 4% survived for 5 years; among patients who fulfilled the HDGC criteria but did not carry pathogenic CDH1 mutations, 48% survived for 1 year and 13% survived for 5 years (P = .014 for comparative survival analysis between patients with and without a CDH1 mutation). CONCLUSIONS All individuals with a CDH1 mutation had a personal or family history of diffuse gastric cancer. Patients with gastric cancer and germline CDH1 mutations had shorter survival times than patients who met the HDGC criteria but did not have CDH1 mutations.
Collapse
Affiliation(s)
- Rachel S van der Post
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - Ingrid P Vogelaar
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Peggy Manders
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Lizet E van der Kolk
- Family Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Annemieke Cats
- Department of Gastroenterology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Liselotte P van Hest
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Rolf Sijmons
- Department of Genetics, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Cora M Aalfs
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Margreet G E M Ausems
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Encarna B Gómez García
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Anja Wagner
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Frederik J Hes
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Neeltje Arts
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Arjen R Mensenkamp
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - J Han van Krieken
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Marjolijn J L Ligtenberg
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands; Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands.
| |
Collapse
|
36
|
van der Post RS, Vogelaar IP, Carneiro F, Guilford P, Huntsman D, Hoogerbrugge N, Caldas C, Schreiber KEC, Hardwick RH, Ausems MGEM, Bardram L, Benusiglio PR, Bisseling TM, Blair V, Bleiker E, Boussioutas A, Cats A, Coit D, DeGregorio L, Figueiredo J, Ford JM, Heijkoop E, Hermens R, Humar B, Kaurah P, Keller G, Lai J, Ligtenberg MJL, O'Donovan M, Oliveira C, Pinheiro H, Ragunath K, Rasenberg E, Richardson S, Roviello F, Schackert H, Seruca R, Taylor A, ter Huurne A, Tischkowitz M, Joe STA, van Dijck B, van Grieken NCT, van Hillegersberg R, van Sandick JW, Vehof R, van Krieken JH, Fitzgerald RC. Hereditary diffuse gastric cancer: updated clinical guidelines with an emphasis on germline CDH1 mutation carriers. J Med Genet 2015; 52:361-74. [PMID: 25979631 PMCID: PMC4453626 DOI: 10.1136/jmedgenet-2015-103094] [Citation(s) in RCA: 386] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/18/2015] [Indexed: 02/06/2023]
Abstract
Germline CDH1 mutations confer a high lifetime risk of developing diffuse gastric (DGC) and lobular breast cancer (LBC). A multidisciplinary workshop was organised to discuss genetic testing, surgery, surveillance strategies, pathology reporting and the patient's perspective on multiple aspects, including diet post gastrectomy. The updated guidelines include revised CDH1 testing criteria (taking into account first-degree and second-degree relatives): (1) families with two or more patients with gastric cancer at any age, one confirmed DGC; (2) individuals with DGC before the age of 40 and (3) families with diagnoses of both DGC and LBC (one diagnosis before the age of 50). Additionally, CDH1 testing could be considered in patients with bilateral or familial LBC before the age of 50, patients with DGC and cleft lip/palate, and those with precursor lesions for signet ring cell carcinoma. Given the high mortality associated with invasive disease, prophylactic total gastrectomy at a centre of expertise is advised for individuals with pathogenic CDH1 mutations. Breast cancer surveillance with annual breast MRI starting at age 30 for women with a CDH1 mutation is recommended. Standardised endoscopic surveillance in experienced centres is recommended for those opting not to have gastrectomy at the current time, those with CDH1 variants of uncertain significance and those that fulfil hereditary DGC criteria without germline CDH1 mutations. Expert histopathological confirmation of (early) signet ring cell carcinoma is recommended. The impact of gastrectomy and mastectomy should not be underestimated; these can have severe consequences on a psychological, physiological and metabolic level. Nutritional problems should be carefully monitored.
Collapse
Affiliation(s)
- Rachel S van der Post
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ingrid P Vogelaar
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fátima Carneiro
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Department of Pathology and Oncology, Medical Faculty of the University of Porto, Porto, Portugal
- Centro Hospitalar São João, Porto, Portugal
| | - Parry Guilford
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - David Huntsman
- British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carlos Caldas
- Department of Oncology, University of Cambridge, Cambridge, UK
| | | | - Richard H Hardwick
- Department of Oesophago-Gastric Surgery, Addenbrooke's Hospital, Cambridge, UK
| | - Margreet G E M Ausems
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Linda Bardram
- Department of Surgical Gastroenterology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Tanya M Bisseling
- Department of Gastroenterology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Eveline Bleiker
- Division of Psychosocial Research and Epidemiology/Family Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alex Boussioutas
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Annemieke Cats
- Department of Gastroenterology and Hepatology, Netherlands Cancer Institute/ Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Daniel Coit
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Lynn DeGregorio
- The DeGregorio Family Foundation for Stomach and Esophageal Cancer Research, Pleasantville, New York, USA
| | - Joana Figueiredo
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - James M Ford
- Division of Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Esther Heijkoop
- Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Rosella Hermens
- Scientific Institute for Quality of Healthcare, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bostjan Humar
- Division of Surgical Research, University of Zurich, Zurich, Suisse
| | - Pardeep Kaurah
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gisella Keller
- Institute of Pathology, Technische Universität, Munich, Germany
| | - Jennifer Lai
- No Stomach For Cancer, Inc., Madison, Wisconsin, USA
| | - Marjolijn J L Ligtenberg
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria O'Donovan
- Department of Histopathology, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Carla Oliveira
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Department of Pathology and Oncology, Medical Faculty of the University of Porto, Porto, Portugal
| | - Hugo Pinheiro
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Krish Ragunath
- NIHR Biomedical Research Unit, Nottingham Digestive Diseases Centre, Queens Medical Centre campus, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | | | - Susan Richardson
- Department of Oncology, Familial Gastric Cancer Registry, Cambridge University Hospital, Cambridge, UK
| | - Franco Roviello
- Department of General Surgery and Surgical Oncology, University of Siena, Siena, Italy
| | - Hans Schackert
- Department of Surgical Research, Technical University Dresden, Dresden, Germany
| | - Raquel Seruca
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Department of Pathology and Oncology, Medical Faculty of the University of Porto, Porto, Portugal
| | - Amy Taylor
- Cambridge University Hospital, Cambridge, UK
| | | | - Marc Tischkowitz
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Sheena Tjon A Joe
- Division of Oncology, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | - Johanna W van Sandick
- Department of Surgery, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Rianne Vehof
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - J Han van Krieken
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rebecca C Fitzgerald
- Cambridge NIHR Biomedical Research Centre, University of Cambridge NHS Foundation Trust
- MRC Cancer Unit, Hutchison/MRC Research Centre, Cambridge, UK
- Department Gastroenterology, Cambridge University Hospitals, UK
| |
Collapse
|
37
|
|
38
|
Pattison S, Boussioutas A. Pathophysiology of Hereditary Diffuse Gastric Cancer. Gastric Cancer 2015. [DOI: 10.1007/978-3-319-15826-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
39
|
Rich TA, Woodson AH, Litton J, Arun B. Hereditary breast cancer syndromes and genetic testing. J Surg Oncol 2014; 111:66-80. [DOI: 10.1002/jso.23791] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/09/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Thereasa A. Rich
- Clinical Cancer Genetics Program; Department of Surgical Oncology; M. D. Anderson Cancer Center; Houston Texas
| | - Ashley H. Woodson
- Clinical Cancer Genetics Program; Department of Breast Medical Oncology; M. D. Anderson Cancer Center; Houston Texas
| | - Jennifer Litton
- Clinical Cancer Genetics Program; Department of Breast Medical Oncology; M. D. Anderson Cancer Center; Houston Texas
| | - Banu Arun
- Clinical Cancer Genetics Program; Department of Breast Medical Oncology; M. D. Anderson Cancer Center; Houston Texas
| |
Collapse
|
40
|
Meng X, Liu Y, Liu B. Glutathione S-transferase M1 null genotype meta-analysis on gastric cancer risk. Diagn Pathol 2014; 9:122. [PMID: 24948179 PMCID: PMC4079641 DOI: 10.1186/1746-1596-9-122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/22/2014] [Indexed: 12/20/2022] Open
Abstract
Background Glutathione S-transferases (GSTs) have proved to be involved in the detoxifying several carcinogens and may play an important role in carcinogenesis of cancer. Previous studies on the association between Glutathione S-transferase M1 (GSTM1) polymorphism and gastric cancer (GC) risk reported inconclusive results. To get a precise result, we conducted this present meta-analysis through pooling all eligible studies. Methods A comprehensive databases of Pubmed, Embase, Web of Science, and the Chinese Biomedical Database (CBM) were searched for case–control studies investigating the association between GSTM1 null genotype and GC risk. Odds ratios (OR) and 95% confidence intervals (95% CI) were used to assess this possible association. A χ2-based Q-test was used to examine the heterogeneity assumption. Begg’s and Egger’s test were used to examine the potential publication bias. The leave-one-out sensitivity analysis was conducted to determine whether our assumptions or decisions have a major effect on the results of present work. Statistical analyses were performed with the software program STATA 12.0. Results A total of 47 eligible case–control studies were identified, including 6,678 cases and 12,912 controls. Our analyses suggested that GSTM1 null genotype was significantly associated with increased risk of GC (OR = 1.186, 95% CI = 1.057-1.329, Pheterogenetiy = 0.000, P = 0.004). Significant association was also found in Asians (OR = 1.269, 95% CI = 1.106-1.455, Pheterogenetiy = 0.002, P = 0.001). However, GSTM1 null genotype was not contributed to GC risk in Caucasians (OR = 1.115, 95% CI = 0.937-1.326, Pheterogenetiy = 0.000, P = 0.222). In the subgroup analysis stratified by sources of controls, significant association was detected in hospital-based studies (OR = 1.355, 95% CI = 1.179-1.557, Pheterogenetiy = 0.001, P = 0.000), while there was no significant association detected in population-based studies (OR = 1.017, 95% CI = 0.862-1.200, Pheterogenetiy = 0.000, P = 0.840). Conclusion This meta-analysis showed the evidence that GSTM1 null genotype contributed to the development of GC. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1644180505119533.
Collapse
Affiliation(s)
| | - Yong Liu
- Department of Gastroenterology, Affiliated to the Fourth Hospital of Harbin Medical University, Harbin 150001, China.
| | | |
Collapse
|
41
|
Kong YJ, Yi HG, Dai JC, Wei MX. Histological changes of gastric mucosa after Helicobacter pylori eradication: a systematic review and meta-analysis. World J Gastroenterol 2014; 20:5903-11. [PMID: 24914352 PMCID: PMC4024801 DOI: 10.3748/wjg.v20.i19.5903] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/13/2013] [Accepted: 01/08/2014] [Indexed: 02/06/2023] Open
Abstract
AIM To systematically review pathological changes of gastric mucosa in gastric atrophy (GA) and intestinal metaplasia (IM) after Helicobacter pylori (H. pylori) eradication. METHODS A systematic search was made of PubMed, Web of Science, EMBASE, ClinicalTrials.gov, OVID and the Cochran Library databases for articles published before March 2013 pertaining to H. pylori and gastric premalignant lesions. Relevant outcomes from articles included in the meta-analysis were combined using Review Manager 5.2 software. A Begg's test was applied to test for publication bias using STATA 11 software. χ(2) and I(2) analyses were used to assess heterogeneity. Analysis of data with no heterogeneity (P > 0.1, I (2) < 25%) was carried out with a fixed effects model, otherwise the causes of heterogeneity were first analyzed and then a random effects model was applied. RESULTS The results of the meta-analysis showed that the pooled weighted mean difference (WMD) with 95%CI was 0.23 (0.18-0.29) between eradication and non-eradication of H. pylori infection in antral IM with a significant overall effect (Z = 8.19; P <0.00001) and no significant heterogeneity (χ(2) = 27.54, I(2) = 16%). The pooled WMD with 95%CI was -0.01 (-0.04-0.02) for IM in the corpus with no overall effect (Z = 0.66) or heterogeneity (χ(2) = 14.87, I(2) =0%) (fixed effects model). In antral GA, the pooled WMD with 95% CI was 0.25 (0.15-0.35) with a significant overall effect (Z = 4.78; P < 0.00001) and significant heterogeneity (χ(2) = 86.12, I(2) = 71%; P < 0.00001). The pooled WMD with 95% CI for GA of the corpus was 0.14 (0.04-0.24) with a significant overall effect (Z = 2.67; P = 0.008) and significant heterogeneity (χ(2) = 44.79, I(2) = 62%; P = 0.0003) (random effects model). CONCLUSION H. pylori eradication strongly correlates with improvement in IM in the antrum and GA in the corpus and antrum of the stomach.
Collapse
|
42
|
Leontiadis GI, Nyrén O. Epidemiology of Helicobacter PyloriInfection, Peptic Ulcer Disease and Gastric Cancer. GI EPIDEMIOLOGY 2014:135-157. [DOI: 10.1002/9781118727072.ch14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
43
|
Molinaro V, Pensotti V, Marabelli M, Feroce I, Barile M, Pozzi S, Laghi L, Serrano D, Bernard L, Bonanni B, Ranzani GN. Complementary molecular approaches reveal heterogeneous CDH1 germline defects in Italian patients with hereditary diffuse gastric cancer (HDGC) syndrome. Genes Chromosomes Cancer 2014; 53:432-45. [PMID: 24493355 DOI: 10.1002/gcc.22155] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/21/2014] [Indexed: 12/15/2022] Open
Abstract
Germline inactivation of the E-cadherin gene (CDH1) is associated with hereditary diffuse gastric cancer (HDGC), a rare autosomal dominant syndrome predisposing to both diffuse gastric cancer (DGC) and lobular breast cancer (LBC). We searched for CDH1 germline defects in 32 HDGC Italian probands selected according to international consensus criteria and in 5 selected relatives. We used a series of molecular methods, including: DNA sequencing, multiplex ligation-dependent probe amplification, single-nucleotide primer extension, bisulfite sequencing, reverse-transcription PCR, and bioinformatics tools. We identified pathogenic mutations in 6 out of 32 probands (19%): one truncating and two missense mutations, one large deletion, one allelic expression imbalance and one splicing defect. Three out of six CDH1 constitutive alterations were novel. Our data support the need for a multimethod approach for CDH1 genetic testing, demonstrating that both DNA and RNA analyses are required to increase the detection rate of pathogenic mutations, thus reducing the number of patients without a clear molecular diagnosis. On the whole, our results indicate that not only DGC patients, but also subjects with personal or family history of LBC might benefit from CDH1 genetic testing. Moreover, our findings support the notion that prophylactic gastrectomy should be offered to asymptomatic CDH1 mutation carriers; indeed, while endoscopic analysis with histological examination of random gastric biopsies can miss cancer foci, gastrectomy performed in these subjects always revealed foci of cancer cells.
Collapse
Affiliation(s)
- Valeria Molinaro
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bordeira-Carriço R, Ferreira D, Mateus DD, Pinheiro H, Pêgo AP, Santos MAS, Oliveira C. Rescue of wild-type E-cadherin expression from nonsense-mutated cancer cells by a suppressor-tRNA. Eur J Hum Genet 2014; 22:1085-92. [PMID: 24424122 DOI: 10.1038/ejhg.2013.292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 11/12/2013] [Accepted: 11/20/2013] [Indexed: 02/07/2023] Open
Abstract
Hereditary diffuse gastric cancer (HDGC) syndrome, although rare, is highly penetrant at an early age, and is severe and incurable because of ineffective screening tools and therapy. Approximately 45% of HDGC families carry germline CDH1/E-cadherin alterations, 20% of which are nonsense leading to premature protein truncation. Prophylactic gastrectomy is the only recommended approach for all asymptomatic CDH1 mutation carriers. Suppressor-tRNAs can replace premature stop codons (PTCs) with a cognate amino acid, inducing readthrough and generating full-length proteins. The use of suppressor-tRNAs in HDGC patients could therefore constitute a less invasive therapeutic option for nonsense mutation carriers, delaying the development of gastric cancer. Our analysis revealed that 23/108 (21.3%) of E-cadherin-mutant families carried nonsense mutations that could be potentially corrected by eight suppressor-tRNAs, and arginine was the most frequently affected amino acid. Using site-directed mutagenesis, we developed an arginine suppressor-tRNA vector to correct one HDGC nonsense mutation. E-cadherin- deficient cell lines were transfected with plasmids carrying simultaneously the suppressor-tRNA and wild-type or mutant CDH1 mini-genes. RT-PCR, western blot, immunofluorescence, flow cytometry and proximity ligation assay (PLA) were used to establish the model, and monitor mRNA and protein expression and function recovery from CDH1 vectors. Cells expressing a CDH1 mini-gene, carrying a nonsense mutation and the suppressor-tRNA, recovered full-length E-cadherin expression and its correct localization and incorporation into the adhesion complex. This is the first demonstration of functional recovery of a mutated causative gene in hereditary cancer by cognate amino acid replacement with suppressor-tRNAs. Of the HDGC families, 21.3% are candidates for correction with suppressor-tRNAs to potentially delay cancer onset.
Collapse
Affiliation(s)
- Renata Bordeira-Carriço
- Expression Regulation in Cancer Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Daniel Ferreira
- Expression Regulation in Cancer Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Denisa D Mateus
- Expression Regulation in Cancer Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Hugo Pinheiro
- Expression Regulation in Cancer Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Ana Paula Pêgo
- 1] INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal [2] Universidade do Porto-Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Porto, Portugal [3] Universidade do Porto-Faculdade de Engenharia, Porto, Portugal
| | - Manuel A S Santos
- RNA Biology Laboratory, Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Carla Oliveira
- 1] Expression Regulation in Cancer Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal [2] Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
45
|
Pinho SS, Carvalho S, Marcos-Pinto R, Magalhães A, Oliveira C, Gu J, Dinis-Ribeiro M, Carneiro F, Seruca R, Reis CA. Gastric cancer: adding glycosylation to the equation. Trends Mol Med 2013; 19:664-76. [DOI: 10.1016/j.molmed.2013.07.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/02/2013] [Accepted: 07/05/2013] [Indexed: 12/17/2022]
|
46
|
Ouyang FD, Yang FL, Chen HC, Khan MA, Huang FM, Wan XX, Xu AH, Huang X, Zhou MJ, Fang Q, Zhang DZ. Polymorphisms of DNA repair genes XPD, XRCC1, and OGG1, and lung adenocarcinoma susceptibility in Chinese population. Tumour Biol 2013; 34:2843-2848. [PMID: 23700156 DOI: 10.1007/s13277-013-0844-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/03/2013] [Indexed: 10/26/2022] Open
Abstract
Lung adenocarcinoma (ADC) is one of the major histological types of lung cancer. Genetic polymorphism in DNA repair genes and lung ADC susceptibility is well documented. In this case-control study, the association between the polymorphic sites of DNA repair genes XPD-751, XRCC1-399, and OGG1-326, and lung ADC susceptibility in ethnic Han Chinese population has been investigated. Genomic DNA was isolated from the peripheral blood of 201 healthy controls and 82 lung ADC patients from the people of Hunan Province, China. Polymorphisms of the investigated genes were analyzed by using polymerase chain reaction-restriction fragment length polymorphism. There was no significant difference between the samples from lung ADC patients and healthy controls about the genotype frequencies of XPD-751, XRCC1-399, and OGG1-326 sites. However, multifactor dimensionality reduction analysis showed that the genetic polymorphisms of the three-loci models of DNA repair genes (XPD-751/XRCC1-399/OGG1-326) are associated with lung ADC. Thus, this study reveals that a three-order interaction among the polymorphic sites of XPD-751, XRCC1-399, and OGG1-326 is associated with lung ADC risk in the studied population, although polymorphism in individual gene was not associated.
Collapse
Affiliation(s)
- Fang-dan Ouyang
- Department of Biochemistry, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yu J, Fu B, Zhao Q. Family history of malignant neoplasm and its relation with clinicopathologic features of gastric cancer patients. World J Surg Oncol 2013; 11:201. [PMID: 23953708 PMCID: PMC3751760 DOI: 10.1186/1477-7819-11-201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 08/07/2013] [Indexed: 12/22/2022] Open
Abstract
Background Few studies to date have evaluated gastric cancer(GC)-related malignant neoplasm family history (MN-FH), and their findings have been largely inconsistent. The aim of this study is to evaluate the prevalence of MN-FH and its relation to the clinicopathologic features of GC. Methods A total of 104 hospitalized patients with primary gastric adenocarcinoma was prospectively analyzed from 2008 to 2009. Positive MN-FH was defined as MN-affected first- and second-degree relatives of the current GC cases. The relation between prevalence of positive MN-FH and clinicopathologic features in the current GC patients was assessed using the Chi-square test with Cramer’s V coefficient. Results Thirty-seven (35.6%) of the GC patients had positive MN-FH, with 42 associated tumors in first- and second-degree relatives. Twenty-six (61.9%) of the associated tumors were located in the digestive system, including the esophagus (26.2%), stomach (23.8%), liver (9.5%) and colon (2.4%). Lung cancers were the most prevalent non-digestive system-associated tumors (9.5%). Correlation analysis revealed no significant relations with prevalence of MN-FH and any of the clinicopathologic features (all, P > 0.05), including sex (V = 0.044), age (V = 0.060) and histological subtypes (V = 0.109). Conclusions More than one-third of the GC patients in our hospital had positive MN-FH. The most frequent forms of MN-FH were esophageal cancer and GC. The prevalence of positive MN-FH was not correlated to any of the clinicopathologic features, including sex, age and histological subtypes in the study population of GC patients.
Collapse
Affiliation(s)
- Junxiu Yu
- Department of Gastrointestinal Surgery, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, 67 West Dongchang Road, Liaocheng, Shandong Province 252000, China.
| | | | | |
Collapse
|
48
|
Abstract
The number of described cancer susceptibility syndromes continues to grow, as does our knowledge on how to manage these syndromes with the aim of early detection and cancer prevention. Oncologists now have greater responsibility to recognize patterns of cancer that warrant referral for a genetics consultation. While some patterns of common cancers are easy to recognize as related to hereditary cancer syndromes, there are a number of rare tumors that are highly associated with cancer syndromes yet are often overlooked given their infrequency. We present a review of ten rare tumors that are strongly associated with hereditary cancer predisposition syndromes: adrenocortical carcinoma, carcinoid tumors, diffuse gastric cancer, fallopian tube/primary peritoneal cancer, leiomyosarcoma, medullary thyroid cancer, paraganglioma/pheochromocytoma, renal cell carcinoma of chromophobe, hybrid oncocytoic, or oncocytoma histology, sebaceous carcinoma, and sex cord tumors with annular tubules. This review will serve as a guide for oncologists to assist in the recognition of rare tumors that warrant referral for a genetic consultation.
Collapse
|
49
|
Uppal DS, Powell SM. Genetics/genomics/proteomics of gastric adenocarcinoma. Gastroenterol Clin North Am 2013; 42:241-60. [PMID: 23639639 DOI: 10.1016/j.gtc.2013.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hereditary diffuse gastric cancer can be caused by epithelial cadherin mutations for which genetic testing is available. Inherited cancer predisposition syndromes including Lynch, Li-Fraumeni, and Peutz-Jeghers syndromes, can be associated with gastric cancer. Chromosomal and microsatellite instability occur in gastric cancers. Several consistent genetic and molecular alterations including chromosomal instability, microsatellite instability, and epigenetic alterations have been identified in gastric cancers. Biomarkers and molecular profiles are being discovered with potential for diagnostic, prognostic, and treatment guidance implications.
Collapse
Affiliation(s)
- Dushant S Uppal
- Division of Gastroenterology/Hepatology, Department of Medicine, University of Virginia, Charlottesville, VA 22908-0708, USA
| | | |
Collapse
|
50
|
Huang FM, Chen HC, Khan MA, Yang FL, Wan XX, Xu AH, Ou-yang FD, Zhang DZ. CYP2A6, CYP1A1, and CYP2D6 polymorphisms in lung cancer patients from Central South China. Med Oncol 2013; 30:521. [PMID: 23471717 DOI: 10.1007/s12032-013-0521-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 02/21/2013] [Indexed: 10/27/2022]
|