1
|
Marciel MP, Haldar B, Hwang J, Bhalerao N, Bellis SL. Role of tumor cell sialylation in pancreatic cancer progression. Adv Cancer Res 2022; 157:123-155. [PMID: 36725107 PMCID: PMC11342334 DOI: 10.1016/bs.acr.2022.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies and is currently the third leading cause of cancer death. The aggressiveness of PDAC stems from late diagnosis, early metastasis, and poor efficacy of current chemotherapies. Thus, there is an urgent need for effective biomarkers for early detection of PDAC and development of new therapeutic strategies. It has long been known that cellular glycosylation is dysregulated in pancreatic cancer cells, however, tumor-associated glycans and their cognate glycosylating enzymes have received insufficient attention as potential clinical targets. Aberrant glycosylation affects a broad range of pathways that underpin tumor initiation, metastatic progression, and resistance to cancer treatment. One of the prevalent alterations in the cancer glycome is an enrichment in a select group of sialylated glycans including sialylated, branched N-glycans, sialyl Lewis antigens, and sialylated forms of truncated O-glycans such as the sialyl Tn antigen. These modifications affect the activity of numerous cell surface receptors, which collectively impart malignant characteristics typified by enhanced cell proliferation, migration, invasion and apoptosis-resistance. Additionally, sialic acids on tumor cells engage inhibitory Siglec receptors on immune cells to dampen anti-tumor immunity, further promoting cancer progression. The goal of this review is to summarize the predominant changes in sialylation occurring in pancreatic cancer, the biological functions of sialylated glycoproteins in cancer pathogenesis, and the emerging strategies for targeting sialoglycans and Siglec receptors in cancer therapeutics.
Collapse
Affiliation(s)
- Michael P Marciel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Barnita Haldar
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jihye Hwang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nikita Bhalerao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
2
|
Szlasa W, Wilk K, Knecht-Gurwin K, Gurwin A, Froń A, Sauer N, Krajewski W, Saczko J, Szydełko T, Kulbacka J, Małkiewicz B. Prognostic and Therapeutic Role of CD15 and CD15s in Cancer. Cancers (Basel) 2022; 14:cancers14092203. [PMID: 35565333 PMCID: PMC9101515 DOI: 10.3390/cancers14092203] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary CD15 (Lewis X) is a typical myeloid antigen presented in myeloid and monocytic lineages of cells. This molecule interacts with E-, L- and P-selectins, which allows for adhesion with endothelial cells. CD15 is found on various cancer cells, including renal cancer, prostate and bladder cancers, acute leukaemias, hepatocellular carcinoma, breast cancer and melanoma cells. Its high expression can serve as a prognostic marker for patients and is a potentially valuable target for immunotherapy against cancer. Blockage of the antigen’s function results in reduced metastatic potential and it may be an immunotherapeutic target. CD15s is a sialyl derivative of CD15; however, unlike the high expression of CD15, which is a prognostic factor in Hodgkin lymphoma, CD15s relates to poor prognosis for patients. CD15 is considered a marker of cancer stem cells. This review presents a comprehensive description of the prognostic role of CD15 and CD15s and their use in anticancer therapy. Abstract CD15 (Lewis X/Lex) is a fucosyl (3-fucosly-N-acetyl-lactosamine) moiety found on membrane proteins of various cancer cells. These cancers include renal cancer, prostate and bladder cancers, acute leukaemias, hepatocellular carcinoma, breast cancer and melanoma. The biological role of CD15 is interaction with E-, L- and P-selectins (adhesion molecules), allowing for adhesion with endothelial cells. In this way, cancer cells start to interact with the endothelia of blood vessels and consequently move out from the blood flow to the surrounding tissues. Blockage of the antigen’s function results in reduced metastatic potential. Moreover, the molecule may be a therapeutic target against cancer in monoclonal antibody-based therapies. CD15 may serve as a prognostic marker for patients and there are high hopes for its use in the immunotherapeutic treatment of tumours. CD15s is a sialyl derivative of CD15 that possesses its own unique characteristics. Its soluble form may act as a competitive inhibitor of the interaction of cancer cells with epithelial cells and thus disallow migration through the vessels. However, the prognostic relevance of CD15 and CD15s expression is very complex. This review presents a comprehensive description of the role of CD15 and CD15s in cancer development and metastasis and overviews its significance for clinical applications.
Collapse
Affiliation(s)
- Wojciech Szlasa
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.W.); (A.G.); (A.F.); (W.K.); (T.S.)
- Correspondence: (W.S.); (B.M.)
| | - Karol Wilk
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.W.); (A.G.); (A.F.); (W.K.); (T.S.)
| | - Klaudia Knecht-Gurwin
- Department of Dermatology, Venerology and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Adam Gurwin
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.W.); (A.G.); (A.F.); (W.K.); (T.S.)
| | - Anita Froń
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.W.); (A.G.); (A.F.); (W.K.); (T.S.)
| | - Natalia Sauer
- Department of Drugs Form Technology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Wojciech Krajewski
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.W.); (A.G.); (A.F.); (W.K.); (T.S.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.S.); (J.K.)
| | - Tomasz Szydełko
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.W.); (A.G.); (A.F.); (W.K.); (T.S.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.S.); (J.K.)
| | - Bartosz Małkiewicz
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.W.); (A.G.); (A.F.); (W.K.); (T.S.)
- Correspondence: (W.S.); (B.M.)
| |
Collapse
|
3
|
Song Y, Sun H, Wu K, Lyu J, Zhang J, Gu F, Ma Y, Shen B, Wang C, Chen X, Xu J, Li W, Liu F, Fu L. sLe x expression in invasive micropapillary breast carcinoma is associated with poor prognosis and can be combined with MUC1/EMA as a supplementary diagnostic indicator. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0422. [PMID: 33893728 PMCID: PMC8185870 DOI: 10.20892/j.issn.2095-3941.2020.0422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/08/2020] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Mucin 1 (MUC1/EMA) and sialyl Lewis X (sLex) indicate polarity reversal in invasive micropapillary carcinoma (IMPC). The purpose of this study was to evaluate the expression of MUC1/EMA and sLex and to assess their diagnostic and prognostic value in patients with IMPC. METHODS The expression of sLex and MUC1/EMA in 100 patients with IMPC and a control group of 89 patients with invasive ductal carcinoma not otherwise specified (IDC-NOS) were analyzed with IHC. Fresh tumor tissues were collected from patients with IMPC or IDC-NOS for primary culture and immunofluorescence analysis. RESULTS The rate of nodal metastasis was higher in patients with IMPC than those with IDC-NOS, and IMPC cells tended to express more sLex and MUC1/EMA in the cytomembranes (the stroma-facing surfaces of the micropapillary clusters) than IDC-NOS cells. In IMPC, high cytomembrane expression of sLex, but not MUC1/EMA, indicated poor prognosis. In addition, among the 100 patients with IMPC, 10 patients had sLex+/EMA- expression patterns, and 8 patients had sLex-/EMA+ expression patterns. The primary IMPC cells were suspended, non-adherent tumor cell clusters, whereas the primary IDC cells were adherent tumor cells. Immunofluorescence analysis showed that MUC1/EMA and sLex were co-expressed on the cytomembranes in IMPC cell clusters and in the cytoplasm in IDC-NOS cells. CONCLUSIONS sLex can be used as a prognostic indicator and can be combined with MUC1/EMA as a complementary diagnostic indicator to avoid missed IMPC diagnosis.
Collapse
Affiliation(s)
- Yawen Song
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Breast Cancer Innovation Team of the Ministry of Education; State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Hui Sun
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Breast Cancer Innovation Team of the Ministry of Education; State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Kailiang Wu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Breast Cancer Innovation Team of the Ministry of Education; State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Jianke Lyu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Breast Cancer Innovation Team of the Ministry of Education; State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Jingyue Zhang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Breast Cancer Innovation Team of the Ministry of Education; State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Feng Gu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Breast Cancer Innovation Team of the Ministry of Education; State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Yongjie Ma
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Breast Cancer Innovation Team of the Ministry of Education; State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Beibei Shen
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Breast Cancer Innovation Team of the Ministry of Education; State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Chijuan Wang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Breast Cancer Innovation Team of the Ministry of Education; State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Xiaojiao Chen
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Breast Cancer Innovation Team of the Ministry of Education; State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Jing Xu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Breast Cancer Innovation Team of the Ministry of Education; State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Weidong Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Breast Cancer Innovation Team of the Ministry of Education; State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Fangfang Liu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Breast Cancer Innovation Team of the Ministry of Education; State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Li Fu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Breast Cancer Innovation Team of the Ministry of Education; State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| |
Collapse
|
4
|
Mehmeti-Ajradini M, Bergenfelz C, Larsson AM, Carlsson R, Riesbeck K, Ahl J, Janols H, Wullt M, Bredberg A, Källberg E, Björk Gunnarsdottir F, Rydberg Millrud C, Rydén L, Paul G, Loman N, Adolfsson J, Carneiro A, Jirström K, Killander F, Bexell D, Leandersson K. Human G-MDSCs are neutrophils at distinct maturation stages promoting tumor growth in breast cancer. Life Sci Alliance 2020; 3:3/11/e202000893. [PMID: 32958605 PMCID: PMC7536824 DOI: 10.26508/lsa.202000893] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022] Open
Abstract
This study shows that immunosuppressive primary breast cancer patient–derived G-MDSCs (PMN-MDSCs) are neutrophils at a range of maturations stages, and provides in vivo evidence for that human G-MDSCs also promote tumor growth and myeloid immune cell exclusion. Myeloid-derived suppressor cells (MDSCs) are known to contribute to immune evasion in cancer. However, the function of the human granulocytic (G)-MDSC subset during tumor progression is largely unknown, and there are no established markers for their identification in human tumor specimens. Using gene expression profiling, mass cytometry, and tumor microarrays, we here demonstrate that human G-MDSCs occur as neutrophils at distinct maturation stages, with a disease-specific profile. G-MDSCs derived from patients with metastatic breast cancer and malignant melanoma display a unique immature neutrophil profile, that is more similar to healthy donor neutrophils than to G-MDSCs from sepsis patients. Finally, we show that primary G-MDSCs from metastatic breast cancer patients co-transplanted with breast cancer cells, promote tumor growth, and affect vessel formation, leading to myeloid immune cell exclusion. Our findings reveal a role for human G-MDSC in tumor progression and have clinical implications also for targeted immunotherapy.
Collapse
Affiliation(s)
| | - Caroline Bergenfelz
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna-Maria Larsson
- Division of Oncology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Robert Carlsson
- Translational Neurology, Department of Clinical Sciences and Wallenberg Centrum for Molecular Medicine, Lund University, Lund, Sweden
| | - Kristian Riesbeck
- Department of Translational Medicine, Clinical Microbiology, Lund University, Malmö, Sweden
| | - Jonas Ahl
- Department of Infectious Diseases, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Helena Janols
- Department of Infectious Diseases, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Marlene Wullt
- Department of Infectious Diseases, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Anders Bredberg
- Department of Translational Medicine, Clinical Microbiology, Lund University, Malmö, Sweden
| | - Eva Källberg
- Department of Translational Medicine, Cancer Immunology, Lund University, Malmö, Sweden
| | | | | | - Lisa Rydén
- Division of Oncology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Surgery and Gastroenterology, Skåne University Hospital, Lund, Sweden
| | - Gesine Paul
- Translational Neurology, Department of Clinical Sciences and Wallenberg Centrum for Molecular Medicine, Lund University, Lund, Sweden
| | - Niklas Loman
- Division of Oncology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Jörgen Adolfsson
- Science for Life Laboratory Node at Linköping's University, Linköping, Sweden
| | - Ana Carneiro
- Division of Oncology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Karin Jirström
- Department of Clinical Sciences, Oncology and Therapeutic Pathology, Lund University, Lund, Sweden
| | - Fredrika Killander
- Division of Oncology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Daniel Bexell
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Karin Leandersson
- Department of Translational Medicine, Cancer Immunology, Lund University, Malmö, Sweden
| |
Collapse
|
5
|
Jin F, Wang F. The physiological and pathological roles and applications of sialyl Lewis x, a common carbohydrate ligand of the three selectins. Glycoconj J 2020; 37:277-291. [DOI: 10.1007/s10719-020-09912-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/20/2019] [Accepted: 01/29/2020] [Indexed: 12/31/2022]
|
6
|
Cohen EN, Fouad TM, Lee BN, Arun BK, Liu D, Tin S, Gutierrez Barrera AM, Miura T, Kiyokawa I, Yamashita J, Alvarez RH, Valero V, Woodward WA, Shen Y, Ueno NT, Cristofanilli M, Reuben JM. Elevated serum levels of sialyl Lewis X (sLe X) and inflammatory mediators in patients with breast cancer. Breast Cancer Res Treat 2019; 176:545-556. [PMID: 31054033 DOI: 10.1007/s10549-019-05258-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/26/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE The carbohydrate sialyl LewisX (sLeX) mediates cell adhesion, is critical in the normal function of immune cells, and is frequently over-expressed on cancer cells. We assessed the association, differential levels, and prognostic value of sLeX and inflammatory cytokines/chemokines in breast cancer sera. METHODS We retrospectively measured sLeX and a panel of cytokines/chemokines in the sera of 26 non-invasive ductal carcinoma in situ (DCIS), 154 invasive non-metastatic breast cancer (non-MBC), 63 metastatic breast cancer (MBC) patients, and 43 healthy controls. Differences in sLeX and inflammatory cytokines among and between patient groups and healthy controls were assessed with nonparametric tests and we performed survival analysis for the prognostic potential of sLeX using a cut-off of 8 U/mL as previously defined. RESULTS Median serum sLeX was significantly higher than controls for invasive breast cancer patients (MBC and non-MBC) but not DCIS. In univariate analysis, we confirmed patients with serum sLeX > 8 U/mL have a significantly shorter progression-free survival (PFS) (P = 0.0074) and overall survival (OS (P = 0.0003). Similarly, patients with high serum MCP-1 and IP-10 had shorter OS (P = 0.001 and P < 0.001, respectively) and PFS (P = 0.010 and P < 0.001, respectively). sLeX, MCP-1 and IP-10 remained significant in multivariate survival analysis. CONCLUSION Elevated serum sLeX was associated with invasive cancer but not DCIS. High serum sLeX levels were associated with inflammatory mediators and may play a role in facilitating local invasion of breast tumor. Furthermore, serum MCP-1, IP-10 and sLeX may have prognostic value in breast cancer.
Collapse
Affiliation(s)
- Evan N Cohen
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, 1220 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Tamer M Fouad
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, 1220 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 3552, Houston, TX, 77030, USA.,Department of Medical Oncology, The National Cancer Institute, Cairo University, Kasr El-Aini Road, Cairo, 11796, Egypt
| | - Bang-Ning Lee
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, 1220 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Michael E. DeBakey Veterans Affairs Medical Center, Conroe, TX, USA
| | - Banu K Arun
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 3552, Houston, TX, 77030, USA
| | - Diane Liu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX, 77030, USA
| | - Sanda Tin
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, 1220 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Angelica M Gutierrez Barrera
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 3552, Houston, TX, 77030, USA
| | - Toshihide Miura
- Nittobo Medical Co., Ltd., 1, Shiojima Fukuhara, Fukuyama, Koriyama, Fukushima, Japan
| | - Iwao Kiyokawa
- Nittobo Medical Co., Ltd., 1, Shiojima Fukuhara, Fukuyama, Koriyama, Fukushima, Japan
| | - Jun Yamashita
- Nittobo Medical Co., Ltd., 1, Shiojima Fukuhara, Fukuyama, Koriyama, Fukushima, Japan
| | - Ricardo H Alvarez
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, 1220 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 3552, Houston, TX, 77030, USA.,Cancer Treatment Centers of America, Newnan, GA, USA
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 3552, Houston, TX, 77030, USA
| | - Wendy A Woodward
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, 1220 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 76468, Houston, TX, 77030, USA
| | - Yu Shen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX, 77030, USA
| | - Naoto T Ueno
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, 1220 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 3552, Houston, TX, 77030, USA
| | - Massimo Cristofanilli
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, 1220 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 3552, Houston, TX, 77030, USA.,Feinberg School of Medicine, Northwestern Univeristy, Chicago, IL, USA
| | - James M Reuben
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, 1220 Holcombe Blvd, Houston, TX, 77030, USA. .,Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Manz C, Grabarics M, Hoberg F, Pugini M, Stuckmann A, Struwe WB, Pagel K. Separation of isomeric glycans by ion mobility spectrometry – the impact of fluorescent labelling. Analyst 2019; 144:5292-5298. [DOI: 10.1039/c9an00937j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bloodgroup oligosaccharides have been derivatized with labels common in HPLC and evaluated regarding their ion mobility behaviour.
Collapse
Affiliation(s)
- Christian Manz
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Fritz Haber Institute of the Max Planck Society
| | - Márkó Grabarics
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Fritz Haber Institute of the Max Planck Society
| | - Friederike Hoberg
- Fritz Haber Institute of the Max Planck Society
- Department of Molecular Physics
- 14195 Berlin
- Germany
| | - Michele Pugini
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Fritz Haber Institute of the Max Planck Society
| | - Alexandra Stuckmann
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Weston B. Struwe
- Oxford Glycobiology Institute
- Department of Biochemistry
- University of Oxford
- Oxford OX1 3QU
- UK
| | - Kevin Pagel
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Fritz Haber Institute of the Max Planck Society
| |
Collapse
|
8
|
Kumar N, Chen W, Cheng CA, Deng T, Wang R, Zink JI. Stimuli-Responsive Nanomachines and Caps for Drug Delivery. Enzymes 2018; 43:31-65. [PMID: 30244808 DOI: 10.1016/bs.enz.2018.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this review we focus on methods that are used to trap and release on command therapeutic drugs from mesoporous silica nanoparticles (MSNs). The pores in the MSNs are large enough to accommodate a wide range of cargo molecules such as anticancer and antibiotic drugs and yet small enough to be blocked by a variety of bulky molecules that act as caps. The caps are designed to be tightly attached to the pore openings and trap the cargo molecules without leakage, but upon application of a designed stimulus detach from the nanoparticles and release the cargo. Of special emphasis in this review are nanomachines that respond to stimuli administered from external sources such as light or magnetic fields, or from chemical stimuli produced by the biological system such as a general change in pH or redox potential, or a highly specific chemical produced by a cancer cell or infectious bacterium. The goal is to release a high local concentration of the cargo only where and when it is needed, thus minimizing off-target side effects. We discuss sophisticated reversible nanomachines but also discuss some useful caps that simply break off from the nanoparticles in response to the selected stimulus. Many ingenious systems have been and are being designed; we primarily highlight those that have been demonstrated to operate in vitro and/or in vivo. In most cases the closed MSNs are endocytosed by diseased or infected cells and opened inside the cells to release the drugs. We begin with an overview of the nanoparticles and nanomachines and then present examples of drug release triggered by internal chemical stimuli from the organism and finally by external light and magnetic field stimuli.
Collapse
Affiliation(s)
- Navnita Kumar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, United States
| | - Wei Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, United States
| | - Chi-An Cheng
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, United States
| | - Tian Deng
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, United States
| | - Ruining Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, United States
| | - Jeffrey I Zink
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, United States.
| |
Collapse
|
9
|
Carrascal MA, Talina C, Borralho P, Gonçalo Mineiro A, Henriques AR, Pen C, Martins M, Braga S, Sackstein R, Videira PA. Staining of E-selectin ligands on paraffin-embedded sections of tumor tissue. BMC Cancer 2018; 18:495. [PMID: 29716546 PMCID: PMC5930952 DOI: 10.1186/s12885-018-4410-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/18/2018] [Indexed: 01/07/2023] Open
Abstract
Background The E-selectin ligands expressed by cancer cells mediate adhesion of circulating cancer cells to endothelial cells, as well as within tissue microenvironments important for tumor progression and metastasis. The identification of E-selectin ligands within cancer tissue could yield new biomarkers for patient stratification and aid in identifying novel therapeutic targets. The determinants of selectin ligands consist of sialylated tetrasaccharides, the sialyl Lewis X and A (sLeX and sLeA), displayed on protein or lipid scaffolds. Standardized procedures for immunohistochemistry make use of the antibodies against sLeX and/or sLeA. However, antibody binding does not define E-selectin binding activity. Methods In this study, we developed an immunohistochemical staining technique, using E-selectin-human Ig Fc chimera (E-Ig) to characterize the expression and localization of E-selectin binding sites on paraffin-embedded sections of different cancer tissue. Results E-Ig successfully stained cancer cells with high specificity. The E-Ig staining show high reactivity scores in colon and lung adenocarcinoma and moderate reactivity in triple negative breast cancer. Compared with reactivity of antibody against sLeX/A, the E-Ig staining presented higher specificity to cancer tissue with better defined borders and less background. Conclusions The E-Ig staining technique allows the qualitative and semi-quantitative analysis of E-selectin binding activity on cancer cells. The development of accurate techniques for detection of selectin ligands may contribute to better diagnostic and better understanding of the molecular basis of tumor progression and metastasis. Electronic supplementary material The online version of this article (10.1186/s12885-018-4410-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mylène A Carrascal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal.,CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Catarina Talina
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Paula Borralho
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.,Hospital CUF Descobertas, Lisbon, Portugal
| | - A Gonçalo Mineiro
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ana Raquel Henriques
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Cláudia Pen
- Centro Hospitalar de Lisboa Central, EPE e Serviço de Anatomia Patológica, Lisbon, Portugal
| | - Manuela Martins
- Centro Hospitalar de Lisboa Central, EPE e Serviço de Anatomia Patológica, Lisbon, Portugal
| | | | - Robert Sackstein
- Departments of Dermatology and Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, USA.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, USA
| | - Paula A Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal. .,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal.
| |
Collapse
|
10
|
Bhat R, García I, Aznar E, Arnaiz B, Martínez-Bisbal MC, Liz-Marzán LM, Penadés S, Martínez-Máñez R. Lectin-gated and glycan functionalized mesoporous silica nanocontainers for targeting cancer cells overexpressing Lewis X antigen. NANOSCALE 2017; 10:239-249. [PMID: 29210428 DOI: 10.1039/c7nr06415b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Gated mesoporous silica nanoparticles can deliver payload upon the application of a predefined stimulus, and therefore are promising drug delivery systems. Despite their important role, relatively low emphasis has been placed on the design of gating systems that actively target carbohydrate tumor cell membrane receptors. We describe herein a new Lewis X (Lex) antigen-targeted delivery system comprising mesoporous silica nanoparticles (MSNs) loaded with ATTO 430LS dye, functionalized with a Lex derivative (1) and capped with a fucose-specific carbohydrate-binding protein (Aleuria aurantia lectin (AAL)). This design takes advantage of the affinity of AAL for Lex overexpressed receptors in certain cancer cells. In the proximity of the cells, AAL is detached from MSNs to bind Lex, and selectins in the cells bind Lex in the gated MSNs, thereby inducing cargo delivery. Gated MSNs are nontoxic to colon cancer DLD-1 cells, and ATTO 430LS dye delivered correlated with the amount of Lex antigen overexpressed at the DLD-1 cell surface. This is one of the few examples of MSNs using biologically relevant glycans for both capping (via interaction with AAL) and targeting (via interaction with overexpressed Lex at the cell membrane).
Collapse
Affiliation(s)
- R Bhat
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hofmann J, Stuckmann A, Crispin M, Harvey DJ, Pagel K, Struwe WB. Identification of Lewis and Blood Group Carbohydrate Epitopes by Ion Mobility-Tandem-Mass Spectrometry Fingerprinting. Anal Chem 2017; 89:2318-2325. [PMID: 28192913 DOI: 10.1021/acs.analchem.6b03853] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Glycans have several elements that contribute to their structural complexity, involving a range of monosaccharide building blocks, configuration of linkages between residues and various degrees of branching on a given structure. Their analysis remains challenging and resolving minor isomeric variants can be difficult, in particular terminal fucosylated Lewis and blood group antigens present on N- and O-glycans. Accurately characterizing these isomeric structures by current techniques is not straightforward and typically requires a combination of methods and/or sample derivatization. Yet the ability to monitor the occurrence of these epitopes is important as structural changes are associated with several human diseases. The use of ion mobility-mass spectrometry (IM-MS), which separates ions in the gas phase based on their size, charge and shape, offers a new potential tool for glycan analysis and recent reports have demonstrated its potential for glycomics. Here we show that Lewis and blood group isomers, which have identical fragmentation spectra, exhibit very distinctive IM drift times and collision cross sections (CCS). We show that IM-MS/MS analysis can rapidly and accurately differentiate epitopes from parotid gland N-glycans and milk oligosaccharides based on fucosylated fragment ions with characteristic CCSs.
Collapse
Affiliation(s)
- Johanna Hofmann
- Fritz Haber Institute of the Max Planck Society , Faradayweg 4-6, 14195 Berlin, Germany.,Institut für Chemie und Biochemie, Freien Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Alexandra Stuckmann
- Institut für Chemie und Biochemie, Freien Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , OX1 3QU Oxford, United Kingdom
| | - David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , OX1 3QU Oxford, United Kingdom
| | - Kevin Pagel
- Fritz Haber Institute of the Max Planck Society , Faradayweg 4-6, 14195 Berlin, Germany.,Institut für Chemie und Biochemie, Freien Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Weston B Struwe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , OX1 3QU Oxford, United Kingdom
| |
Collapse
|
12
|
Liang JX, Liang Y, Gao W. Clinicopathological and prognostic significance of sialyl Lewis X overexpression in patients with cancer: a meta-analysis. Onco Targets Ther 2016; 9:3113-25. [PMID: 27307752 PMCID: PMC4888715 DOI: 10.2147/ott.s102389] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Many studies have shown that sialyl Lewis X (sLeX) is related to cancer prognosis and clinicopathology, but failed to provide conclusive results. We conducted the present meta-analysis to identify the association between sLeX overexpression and cancer prognosis. We searched studies in PubMed and Embase databases. Relative risk or hazard ratio with 95% confidence intervals were estimated with the Mantel–Haenszel random-effect method and 29 studies were included. Our meta-analysis showed that sLeX overexpression is significantly related to lymphatic invasion, venous invasion, T stage, N stage, M stage, tumor stage, recurrence, and overall survival. In subgroup analysis, we found that cancer type and ethnicity might be two major contributing factors to the possible presence of heterogeneity among the studies. In conclusion, sLeX overexpression is associated with tumor metastasis, recurrence, and overall survival in cancer patients, it plays an important role in cancer prognosis.
Collapse
Affiliation(s)
- Jin-Xiao Liang
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Yong Liang
- Department of Clinical Medicine, Taizhou University Medical School, Taizhou, People's Republic of China
| | - Wei Gao
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
13
|
Feng D, Shaikh AS, Wang F. Recent Advance in Tumor-associated Carbohydrate Antigens (TACAs)-based Antitumor Vaccines. ACS Chem Biol 2016; 11:850-63. [PMID: 26895482 DOI: 10.1021/acschembio.6b00084] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer cells can be distinguished from normal cells by displaying aberrant levels and types of carbohydrate structures on their surfaces. These carbohydrate structures are known as tumor-associated carbohydrate antigens (TACAs). TACAs were considered as promising targets for the design of anticancer vaccines. Unfortunately, carbohydrates alone can only evoke poor immunogenicity because they are unable to induce T-cell-dependent immune responses, which is critical for cancer therapy. Moreover, immunotolerance and immunosuppression are easily induced by using natural occurring TACAs as antigens due to their endogenous property. This review summarizes the recent strategies to overcome these obstacles: (1) covalently coupling TACAs to proper carriers to improve immunogenicity, including clustered or multivalent conjugate vaccines, (2) coupling TACAs to T-cell peptide epitopes or the built-in adjuvant to form multicomponent glycoconjugate vaccines, and (3) developing vaccines based on chemically modified TACAs, which is combined with metabolic engineering of cancer cells.
Collapse
Affiliation(s)
- Danyang Feng
- Key
Laboratory of Chemical Biology of Natural Products (Ministry of education),
Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, Shandong, Peoples’ Republic of China
- National
Glycoengineering Research Center, Shandong University, Jinan 50012, Shandong, Peoples’ Republic of ChinaChina
| | - Abdul Sami Shaikh
- Institute
of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, Peoples’ Republic of China
| | - Fengshan Wang
- Key
Laboratory of Chemical Biology of Natural Products (Ministry of education),
Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, Shandong, Peoples’ Republic of China
- National
Glycoengineering Research Center, Shandong University, Jinan 50012, Shandong, Peoples’ Republic of ChinaChina
| |
Collapse
|
14
|
Freire-de-Lima L. Sweet and sour: the impact of differential glycosylation in cancer cells undergoing epithelial-mesenchymal transition. Front Oncol 2014; 4:59. [PMID: 24724053 PMCID: PMC3971198 DOI: 10.3389/fonc.2014.00059] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/11/2014] [Indexed: 01/11/2023] Open
Abstract
Glycosylation changes are a feature of disease states. One clear example is cancer cells, which commonly express glycans at atypical levels or with different structural attributes than those found in normal cells. Epithelial–mesenchymal transition (EMT) was initially recognized as an important step for morphogenesis during embryonic development, and is now shown to be one of the key steps promoting tumor metastasis. Cancer cells undergoing EMT are characterized by significant changes in glycosylation of the extracellular matrix (ECM) components and cell-surface glycoconjugates. Current scientific methodology enables all hallmarks of EMT to be monitored in vitro and this experimental model has been extensively used in oncology research during the last 10 years. Several studies have shown that cell-surface carbohydrates attached to proteins through the amino acids, serine, or threonine (O-glycans), are involved in tumor progression and metastasis, however, the impact of O-glycans on EMT is poorly understood. Recent studies have demonstrated that transforming growth factor-beta (TGF-β), a known EMT inducer, has the ability to promote the up-regulation of a site-specific O-glycosylation in the IIICS domain of human oncofetal fibronectin, a major ECM component expressed by cancer cells and embryonic tissues. Armed with the knowledge that cell-surface glycoconjugates play a major role in the maintenance of cell homeostasis and that EMT is closely associated with glycosylation changes, we may benefit from understanding how unusual glycans can govern the molecular pathways associated with cancer progression. This review initially focuses on some well-known changes found in O-glycans expressed by cancer cells, and then discusses how these alterations may modulate the EMT process.
Collapse
Affiliation(s)
- Leonardo Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , RJ, Brazil
| |
Collapse
|
15
|
Kinoshita M, Mitsui Y, Kakoi N, Yamada K, Hayakawa T, Kakehi K. Common glycoproteins expressing polylactosamine-type glycans on matched patient primary and metastatic melanoma cells show different glycan profiles. J Proteome Res 2013; 13:1021-33. [PMID: 24354860 DOI: 10.1021/pr401015b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, we reported comparative analysis of glycoproteins which express cancer-specific N-glycans on various cancer cells and identified 24 glycoproteins having polylactosamine (polyLacNAc)-type N-glycans that are abundantly present in malignant cells [ Mitsui et al., J. Pharm. Biomed. Anal. 2012 , 70 , 718 - 726 ]. In the present study, we applied the technique to comparative studies on common glycoproteins present in the matched patient primary and metastatic melanoma cell lines. Metastatic melanoma cells (WM266-4) contained a large amount of polyLacNAc-type N-glycans in comparison with primary melanoma cells (WM115). To identify the glycoproteins expressing these N-glycans, glycopeptides having polyLacNAc-type N-glycans were captured by a Datura stramonium agglutinin (DSA)-immobilized agarose column. The captured glycopeptides were analyzed by LC/MS after removing N-glycans, and some glycoproteins such as basigin, lysosome-associated membrane protein-1 (LAMP-1), and chondroitin sulfate proteoglycan 4 (CSPG4) were identified in both WM115 and WM266-4 cells. The expression level of polyLacNAc of CSPG4 in WM266-4 cells was significantly higher than that in WM115 cells. In addition, sulfation patterns of chondroitin sulfate (CS) chains in CSPG4 showed dramatic changes between these cell lines. These data show that characteristic glycans attached to common proteins observed in different stages of cancer cells will be useful markers for determining degree of malignancies of tumor cells.
Collapse
Affiliation(s)
- Mitsuhiro Kinoshita
- School of Pharmacy, Kinki University , Kowakae 3-4-1, Higashi-Osaka 577-8502, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Tumor cells exhibit striking changes in cell surface glycosylation as a consequence of dysregulated glycosyltransferases and glycosidases. In particular, an increase in the expression of certain sialylated glycans is a prominent feature of many transformed cells. Altered sialylation has long been associated with metastatic cell behaviors including invasion and enhanced cell survival; however, there is limited information regarding the molecular details of how distinct sialylated structures or sialylated carrier proteins regulate cell signaling to control responses such as adhesion/migration or resistance to specific apoptotic pathways. The goal of this review is to highlight selected examples of sialylated glycans for which there is some knowledge of molecular mechanisms linking aberrant sialylation to critical processes involved in metastasis.
Collapse
Affiliation(s)
- Matthew J Schultz
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 982A 1918 University Boulevard, Birmingham, AL 35294-0005, USA
| | | | | |
Collapse
|
17
|
Tumor-associated glycans and their role in gynecological cancers: accelerating translational research by novel high-throughput approaches. Metabolites 2012; 2:913-39. [PMID: 24957768 PMCID: PMC3901231 DOI: 10.3390/metabo2040913] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/08/2012] [Accepted: 11/09/2012] [Indexed: 02/06/2023] Open
Abstract
Glycans are important partners in many biological processes, including carcinogenesis. The rapidly developing field of functional glycomics becomes one of the frontiers of biology and biomedicine. Aberrant glycosylation of proteins and lipids occurs commonly during malignant transformation and leads to the expression of specific tumor-associated glycans. The appearance of aberrant glycans on carcinoma cells is typically associated with grade, invasion, metastasis and overall poor prognosis. Cancer-associated carbohydrates are mostly located on the surface of cancer cells and are therefore potential diagnostic biomarkers. Currently, there is increasing interest in cancer-associated aberrant glycosylation, with growing numbers of characteristic cancer targets being detected every day. Breast and ovarian cancer are the most common and lethal malignancies in women, respectively, and potential glycan biomarkers hold promise for early detection and targeted therapies. However, the acceleration of research and comprehensive multi-target investigation of cancer-specific glycans could only be successfully achieved with the help of a combination of novel high-throughput glycomic approaches.
Collapse
|
18
|
Two opposing roles of O-glycans in tumor metastasis. Trends Mol Med 2012; 18:224-32. [PMID: 22425488 DOI: 10.1016/j.molmed.2012.02.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/03/2012] [Accepted: 02/13/2012] [Indexed: 01/01/2023]
Abstract
Despite the high prevalence of metastatic cancers and the poor outcome for patients, the processes of tumor metastasis still remain poorly understood. It has been shown that cell-surface carbohydrates attached to proteins through the amino acids serine or threonine (O-glycans) are involved in tumor metastasis, with the roles of O-glycans varying depending on their structure. Core2 O-glycans allow tumor cells to evade natural killer (NK) cells of the immune system and survive longer in the circulatory system, thereby promoting tumor metastasis. Core3 O-glycans or O-mannosyl glycans suppress tumor formation and metastasis by modulating integrin-mediated signaling. Here, we highlight recent advances in our understanding of the detailed molecular mechanisms by which O-glycans promote or suppress tumor metastasis.
Collapse
|
19
|
Julien S, Ivetic A, Grigoriadis A, QiZe D, Burford B, Sproviero D, Picco G, Gillett C, Papp SL, Schaffer L, Tutt A, Taylor-Papadimitriou J, Pinder SE, Burchell JM. Selectin ligand sialyl-Lewis x antigen drives metastasis of hormone-dependent breast cancers. Cancer Res 2011; 71:7683-93. [PMID: 22025563 DOI: 10.1158/0008-5472.can-11-1139] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The glycome acts as an essential interface between cells and the surrounding microenvironment. However, changes in glycosylation occur in nearly all breast cancers, which can alter this interaction. Here, we report that profiles of glycosylation vary between ER-positive and ER-negative breast cancers. We found that genes involved in the synthesis of sialyl-Lewis x (sLe(x); FUT3, FUT4, and ST3GAL6) are significantly increased in estrogen receptor alpha-negative (ER-negative) tumors compared with ER-positive ones. SLe(x) expression had no influence on the survival of patients whether they had ER-negative or ER-positive tumors. However, high expression of sLe(x) in ER-positive tumors was correlated with metastasis to the bone where sLe(x) receptor E-selectin is constitutively expressed. The ER-positive ZR-75-1 and the ER-negative BT20 cell lines both express sLe(x) but only ZR-75-1 cells could adhere to activated endothelial cells under dynamic flow conditions in a sLe(x) and E-selectin-dependent manner. Moreover, L/P-selectins bound strongly to ER-negative MDA-MB-231 and BT-20 cell lines in a heparan sulfate (HS)-dependent manner that was independent of sLe(x) expression. Expression of glycosylation genes involved in heparan biosynthesis (EXT1 and HS3ST1) was increased in ER-negative tumors. Taken together, our results suggest that the context of sLe(x) expression is important in determining its functional significance and that selectins may promote metastasis in breast cancer through protein-associated sLe(x) and HS glycosaminoglycans.
Collapse
Affiliation(s)
- Sylvain Julien
- Breast Cancer Biology, King's College London, Guy's Hospital, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Complex carbohydrates, which are major components of the cell membrane, perform important functions in cell-cell and cell-extracellular matrix interactions, as well as in signal transduction. They comprise three kinds of biomolecules: glycoproteins, proteoglycans and glycosphingolipids. Recent studies have also shown that glycan changes in malignant cells take a variety of forms and mediate key pathophysiological events during the various stages of tumour progression. Glycosylation changes are universal hallmarks of malignant transformation and tumour progression in human cancer, which take place on the whole cells or some specific molecules. Accordingly, those changes make them prominent candidates for cancer biomarkers in the meantime. This review mainly focuses on the correlation between glycosylation and the metastasis potential of tumour cells from comprehensive aspects to further address the vital roles of glycans in oncogenesising. Moreover, utilizing these glycosylation changes to ward off tumour metastasis by means of anti-adhesion approach or devising anti-cancer vaccine is one of promising targets of future study.
Collapse
Affiliation(s)
- Min Li
- Department of General Surgery, Zhongshan Hospital, Shanghai Medical School, Fudan University, 180, Fenglin Road, Shanghai, 200032, China
| | | | | |
Collapse
|
21
|
Abstract
A variety of post-translational protein modifications (PTMs) are known to be altered as a result of cancer development. Thus, these PTMs are potentially useful biomarkers for breast cancer. Mass spectrometry, antibody microarrays and immunohistochemistry techniques have shown promise for identifying changes in PTMs. In this review, we summarize the current literature on PTMs identified in the plasma and tumor tissue of breast-cancer patients or in breast cell lines. We also discuss some of the analytical techniques currently being used to evaluate PTMs.
Collapse
Affiliation(s)
- Hongjun Jin
- Cell Biology and Biochemistry Group, Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, PO Box 999, 902 Battelle Blvd, Richland, WA 99352
| | | |
Collapse
|