1
|
Zeng C, He R, Dai Y, Lu X, Deng L, Zhu Q, Liu Y, Liu Q, Lu W, Wang Y, Jin J. Identification of TGF-β signaling-related molecular patterns, construction of a prognostic model, and prediction of immunotherapy response in gastric cancer. Front Pharmacol 2022; 13:1069204. [PMID: 36467074 PMCID: PMC9715605 DOI: 10.3389/fphar.2022.1069204] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/07/2022] [Indexed: 06/22/2024] Open
Abstract
Background: TGF-β signaling pathway plays an essential role in tumor progression and immune responses. However, the link between TGF-β signaling pathway-related genes (TSRGs) and clinical prognosis, tumor microenvironment (TME), and immunotherapy in gastric cancer is unclear. Methods: Transcriptome data and related clinical data of gastric cancer were downloaded from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and 54 TSRGs were obtained from the Molecular Signatures Database (MSigDB). We systematically analyzed the expression profile characteristics of 54 TSRGs in 804 gastric cancer samples and examined the differences in prognosis, clinicopathological features, and TME among different molecular subtypes. Subsequently, TGF-β-related prognostic models were constructed using univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analysis to quantify the degree of risk in each patient. Patients were divided into two high- and low-risk groups based on the median risk score. Finally, sensitivity to immune checkpoint inhibitors (ICIs) and anti-tumor agents was assessed in patients in high- and low-risk groups. Results: We identified two distinct TGF-β subgroups. Compared to TGF-β cluster B, TGF-β cluster A exhibits an immunosuppressive microenvironment with a shorter overall survival (OS). Then, a novel TGF-β-associated prognostic model, including SRPX2, SGCE, DES, MMP7, and KRT17, was constructed, and the risk score was demonstrated as an independent prognostic factor for gastric cancer patients. Further studies showed that gastric cancer patients in the low-risk group, characterized by higher tumor mutation burden (TMB), the proportion of high microsatellite instability (MSI-H), immunophenoscore (IPS), and lower tumor immune dysfunction and exclusion (TIDE) score, had a better prognosis, and linked to higher response rate to immunotherapy. In addition, the risk score and anti-tumor drug sensitivity were strongly correlated. Conclusion: These findings highlight the importance of TSRGs, deepen the understanding of tumor immune microenvironment, and guide individualized immunotherapy for gastric cancer patients.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Oncology, Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Rong He
- Department of Medical Oncology, Shanghai Tenths People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuyang Dai
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaohuan Lu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linghui Deng
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Oncology, Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qi Zhu
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Oncology, Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Yu Liu
- Department of Internal Medicine, School of Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Qian Liu
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Oncology, Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Wenbin Lu
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Oncology, Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Yue Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jianhua Jin
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Oncology, Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
2
|
Alnuaimi AR, Nair VA, Malhab LJB, Abu-Gharbieh E, Ranade AV, Pintus G, Hamad M, Busch H, Kirfel J, Hamoudi R, Abdel-Rahman WM. Emerging role of caldesmon in cancer: A potential biomarker for colorectal cancer and other cancers. World J Gastrointest Oncol 2022; 14:1637-1653. [PMID: 36187394 PMCID: PMC9516648 DOI: 10.4251/wjgo.v14.i9.1637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/05/2022] [Accepted: 07/26/2022] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is a devastating disease, mainly because of metastasis. As a result, there is a need to better understand the molecular basis of invasion and metastasis and to identify new biomarkers and therapeutic targets to aid in managing these tumors. The actin cytoskeleton and actin-binding proteins are known to play an important role in the process of cancer metastasis because they control and execute essential steps in cell motility and contractility as well as cell division. Caldesmon (CaD) is an actin-binding protein encoded by the CALD1 gene as multiple transcripts that mainly encode two protein isoforms: High-molecular-weight CaD, expressed in smooth muscle, and low-molecular weight CaD (l-CaD), expressed in nonsmooth muscle cells. According to our comprehensive review of the literature, CaD, particularly l-CaD, plays a key role in the development, metastasis, and resistance to chemoradiotherapy in colorectal, breast, and urinary bladder cancers and gliomas, among other malignancies. CaD is involved in many aspects of the carcinogenic hallmarks, including epithelial mesenchymal transition via transforming growth factor-beta signaling, angiogenesis, resistance to hormonal therapy, and immune evasion. Recent data show that CaD is expressed in tumor cells as well as in stromal cells, such as cancer-associated fibroblasts, where it modulates the tumor microenvironment to favor the tumor. Interestingly, CaD undergoes selective tumor-specific splicing, and the resulting isoforms are generally not expressed in normal tissues, making these transcripts ideal targets for drug design. In this review, we will analyze these features of CaD with a focus on CRC and show how the currently available data qualify CaD as a potential candidate for targeted therapy in addition to its role in the diagnosis and prognosis of cancer.
Collapse
Affiliation(s)
- Alya R Alnuaimi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Vidhya A Nair
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Lara J Bou Malhab
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Eman Abu-Gharbieh
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Clinical Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Anu Vinod Ranade
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Basic Medical Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Gianfranco Pintus
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
| | - Mohamad Hamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hauke Busch
- University Cancer Center Schleswig-Holstein and Luebeck Institute for Experimental Dermatology, University of Luebeck, Luebeck 23560, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital Schleswig-Holstein, Luebeck 23560, Germany
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Clinical Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London WC1E 6BT, United Kingdom
| | - Wael M Abdel-Rahman
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
3
|
Cao F, Hu J, Yuan H, Cao P, Cheng Y, Wang Y. Identification of pyroptosis-related subtypes, development of a prognostic model, and characterization of tumour microenvironment infiltration in gastric cancer. Front Genet 2022; 13:963565. [PMID: 35923703 PMCID: PMC9340157 DOI: 10.3389/fgene.2022.963565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
As a new programmed death mode, pyroptosis plays an indispensable role in gastric cancer (GC) and has strong immunotherapy potential, but the specific pathogenic mechanism and antitumor function remain unclear. We comprehensively analysed the overall changes of pyroptosis-related genes (PRGs) at the genomic and epigenetic levels in 886 GC patients. We identified two molecular subtypes by consensus unsupervised clustering analysis. Then, we calculated the risk score and constructed the risk model for predicting prognostic and selected nine PRGs related genes (IL18RAP, CTLA4, SLC2A3, IL1A, KRT7,PEG10, IGFBP2, GPA33, and DES) through LASSO and COX regression analyses in the training cohorts and were verified in the test cohorts. Consequently, a highly accurate nomogram for improving the clinical applicability of the risk score was constructed. Besides, we found that multi-layer PRGs alterations were correlated with patient clinicopathological features, prognosis, immune infiltration and TME characteristics. The low risk group mainly characterized by increased microsatellite hyperinstability, tumour mutational burden and immune infiltration. The group had lower stromal cell content, higher immune cell content and lower tumour purity. Moreover, risk score was positively correlated with T regulatory cells, M1 and M2 macrophages. In addition, the risk score was significantly associated with the cancer stem cell index and chemotherapeutic drug sensitivity. This study revealed the genomic, transcriptional and TME multiomics features of PRGs and deeply explored the potential role of pyroptosis in the TME, clinicopathological features and prognosis in GC. This study provides a new immune strategy and prediction model for clinical treatment and prognosis evaluation.
Collapse
Affiliation(s)
- Feng Cao
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jingtao Hu
- Aviation Hygiene Branch, China Eastern Airlines Co,.Ltd, Anhui Branch, Hefei, China
| | - Hongtao Yuan
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, China
| | - Pengwei Cao
- Hepatopancreatobiliary Surgery, Department of General Surgery, The First Hospital of Anhui Medical University, Hefei, China
| | - Yunsheng Cheng
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Yunsheng Cheng, ; Yong Wang,
| | - Yong Wang
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Yunsheng Cheng, ; Yong Wang,
| |
Collapse
|
4
|
Cheng Q, Tang A, Wang Z, Fang N, Zhang Z, Zhang L, Li C, Zeng Y. CALD1 Modulates Gliomas Progression via Facilitating Tumor Angiogenesis. Cancers (Basel) 2021; 13:cancers13112705. [PMID: 34070840 PMCID: PMC8199308 DOI: 10.3390/cancers13112705] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Caldesmon has recently attracted attention in cancer due to its roles in cell migration, invasion and proliferation. l-CALD1 was also considered a potential serum marker for glioma. However, little is known about mechanisms underlying the effect of CALD1 on the microvascular facilitation and architecture in glioma. The purpose of this study was to explore the role of CALD1 for prediction glioma patient prognosis and in glioma angiogenesis. The findings of this study suggested that l-CALD1 could imply abnormal microvessels in anaplastic astrocytoma and GBM. In addition, high CI (calmodulin index) predicted worse prognosis in glioma, and furthermore, CALD1 may serve as a key marker for monitoring the progress of glioma and a novel target for therapy. Abstract Angiogenesis is more prominent in anaplastic gliomas and glioblastoma (GBM) than that in pilocytic and diffuse gliomas. Caldesmon (CALD1) plays roles in cell adhesion, cytoskeletal organization, and vascularization. However, limited information is available on mechanisms underlying the effect of CALD1 on the microvascular facilitation and architecture in glioma. In this study, we explored the role of CALD1 in gliomas by integrating bulk RNA-seq analysis and single cell RNA-seq analysis. A positive correlation between CALD1 expression and the gliomas’ pathological grade was noticed, according to the samples from the TCGA and CGGA database. Moreover, higher CALD1 expression samples showed worse clinical outcomes than lower CALD1 expression samples. Biofunction prediction suggested that CALD1 may affect glioma progression through modulating tumor angiogenesis. The map of the tumor microenvironment also depicted that more stromal cells, such as endothelial cells and pericytes, infiltrated in high CALD1 expression samples. CALD1 was found to be remarkably upregulated in neoplastic cells and was involved in tumorigenic processes of gliomas in single cell sequencing analysis. Histology and immunofluorescence analysis also indicated that CALD1 associates with vessel architecture, resulting in glioma grade progression. In conclusion, the present study implies that CALD1 may serve as putative marker monitoring the progress of glioma.
Collapse
Affiliation(s)
- Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China; (Q.C.); (Z.W.); (L.Z.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| | - Anliu Tang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha 410013, China; (A.T.); (N.F.)
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China; (Q.C.); (Z.W.); (L.Z.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| | - Ning Fang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha 410013, China; (A.T.); (N.F.)
| | - Zhuojing Zhang
- Department of Scientific Research, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China;
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China; (Q.C.); (Z.W.); (L.Z.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| | - Chuntao Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China; (Q.C.); (Z.W.); (L.Z.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Correspondence: (C.L.); (Y.Z.)
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China; (Q.C.); (Z.W.); (L.Z.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Correspondence: (C.L.); (Y.Z.)
| |
Collapse
|
5
|
Yao YB, Xiao CF, Lu JG, Wang C. Caldesmon: Biochemical and Clinical Implications in Cancer. Front Cell Dev Biol 2021; 9:634759. [PMID: 33681215 PMCID: PMC7930484 DOI: 10.3389/fcell.2021.634759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
Caldesmon, an actin-binding protein, can inhibit myosin binding to actin and regulate smooth muscle contraction and relaxation. However, caldesmon has recently attracted attention due to its importance in cancer. The upregulation of caldesmon in several solid cancer tissues has been reported. Caldesmon, as well as its two isoforms, is considered as a biomarker for cancer and a potent suppressor of cancer cell invasion by regulating podosome/invadopodium formation. Therefore, caldesmon may be a promising therapeutic target for diseases such as cancer. Here, we review new studies on the gene transcription, isoform structure, expression, and phosphorylation regulation of caldesmon and discuss its clinical implications in cancer.
Collapse
Affiliation(s)
- Yi-Bo Yao
- Department of Anorectal Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chang-Fang Xiao
- Department of Anorectal Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin-Gen Lu
- Longhua Hospital, Institute of Chinese Traditional Surgery, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Wang
- Department of Anorectal Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Das P, Baloda V. Use of smooth muscle markers is better than the endothelial cell markers for identification of tumor venous invasion and extramural tumor deposits in gastrointestinal tract tumors. INDIAN J PATHOL MICR 2020; 63:3-4. [PMID: 32031113 DOI: 10.4103/ijpm.ijpm_284_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Vandana Baloda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
7
|
Ogut B, Ekinci O, Celik B, Unal ER, Dursun A. Comparison of the efficiency of transgelin, smooth muscle myosin, and CD31 antibodies for the assessment of vascular tumor invasion and free tumor deposits in gastric, pancreatic, and colorectal adenocarcinomas. INDIAN J PATHOL MICR 2020; 63:25-31. [PMID: 32031118 DOI: 10.4103/ijpm.ijpm_109_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background This study aimed to compare CD31, smooth muscle myosin (SMM), and transgelin antibodies for their efficiency in detecting venous invasion (VI) and the nature of free tumor deposits (TDs) in gastric, pancreatic, and colorectal adenocarcinomas. Materials and Methods Eleven Whipple, 5 gastrectomy, and 3 colectomy specimens and 1 low anterior resection specimen were reviewed and examined, revealing 254 probable foci. Foci were reviewed and divided into 3 types: Type A, the "orphan artery" pattern; Type F, free TDs in the periorgan adipose and connective tissue without an unaccompanied artery; and Type X, a focus that could be detected only with the immunohistochemical procedures mentioned. Results No foci were positive for CD31. Transgelin staining was more sensitive than SMM staining in all focus types, Type A only and Type F only (P < 0.001, P = 0.001, and P = 0.10, respectively). In free TDs (Type F), 35.7% of the samples were negative for all four stains, and 64.2% of the samples were positive for SMM and transgelin. We did not make the distinction between a metastatic lymph node and VI in positive foci. Conclusion We conclude that hematoxylin and eosin (H and E) staining is inadequate and that smooth muscle markers, such as transgelin and/or SMM, are more effective than endothelial markers, such as CD31, in revealing VI and lymph node/large extramural invasion.
Collapse
Affiliation(s)
- Betul Ogut
- Department of Pathology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ozgur Ekinci
- Department of Pathology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Bulent Celik
- Department of Statistics, Faculty of Science, Gazi University, Ankara, Turkey
| | - Emel Rodoplu Unal
- Department of Pathology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ayse Dursun
- Department of Pathology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
8
|
Identification of prognostic biomarkers for malignant melanoma using microarray datasets. Oncol Lett 2019; 18:5243-5254. [PMID: 31620197 PMCID: PMC6788168 DOI: 10.3892/ol.2019.10914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Malignant melanoma is one of the most common types of cancer worldwide. Efforts have been made to elucidate the pathology of malignant melanoma. However, its molecular mechanisms remain unclear. Therefore, the microarray datasets GSE3189, GSE4570 and GSE4587 from the Gene Expression Omnibus database were used for the elucidation of candidate genes involved in the initiation and progression of melanoma. Assessment of the microarray datasets led to the identification of differentially expressed genes (DEGs), which were subsequently used for function enrichment analysis. These data were utilized in the construction of the protein-protein interaction network and module analysis was conducted using STRING and Cytoscape software. The results of these analyses led to the identification of a total of 182 DEGs, including 52 downregulated and 130 upregulated genes. The functions and pathways found to be enriched in the DEGs were GTPase activity, transcription from RNA polymerase II promoter, apoptotic processes, cell adhesion, membrane related pathways, calcium signaling cascade and the PI3K-Akt signaling pathway. The identified genes were demonstrated to belong to a set of 10 hub genes biologically involved in proliferation, apoptosis, cytokinesis, adhesion and migration. Survival analysis and Oncomine database analysis revealed that the calmodulin gene family, BAX and VEGFA genes, may be associated with the initiation, invasion or recurrence of melanoma. In conclusion, the DEGs and hub genes identified in the present study may be used to understand the molecular pathways involved in the initiation and progression of malignant melanoma. Furthermore, the present study may aid in the identification of possible targets for the diagnosis and treatment of melanoma.
Collapse
|