1
|
Budginaite E, Magee DR, Kloft M, Woodruff HC, Grabsch HI. Computational methods for metastasis detection in lymph nodes and characterization of the metastasis-free lymph node microarchitecture: A systematic-narrative hybrid review. J Pathol Inform 2024; 15:100367. [PMID: 38455864 PMCID: PMC10918266 DOI: 10.1016/j.jpi.2024.100367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
Background Histological examination of tumor draining lymph nodes (LNs) plays a vital role in cancer staging and prognostication. However, as soon as a LN is classed as metastasis-free, no further investigation will be performed and thus, potentially clinically relevant information detectable in tumor-free LNs is currently not captured. Objective To systematically study and critically assess methods for the analysis of digitized histological LN images described in published research. Methods A systematic search was conducted in several public databases up to December 2023 using relevant search terms. Studies using brightfield light microscopy images of hematoxylin and eosin or immunohistochemically stained LN tissue sections aiming to detect and/or segment LNs, their compartments or metastatic tumor using artificial intelligence (AI) were included. Dataset, AI methodology, cancer type, and study objective were compared between articles. Results A total of 7201 articles were collected and 73 articles remained for detailed analyses after article screening. Of the remaining articles, 86% aimed at LN metastasis identification, 8% aimed at LN compartment segmentation, and remaining focused on LN contouring. Furthermore, 78% of articles used patch classification and 22% used pixel segmentation models for analyses. Five out of six studies (83%) of metastasis-free LNs were performed on publicly unavailable datasets, making quantitative article comparison impossible. Conclusions Multi-scale models mimicking multiple microscopy zooms show promise for computational LN analysis. Large-scale datasets are needed to establish the clinical relevance of analyzing metastasis-free LN in detail. Further research is needed to identify clinically interpretable metrics for LN compartment characterization.
Collapse
Affiliation(s)
- Elzbieta Budginaite
- Department of Pathology, GROW - Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | - Maximilian Kloft
- Department of Pathology, GROW - Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Internal Medicine, Justus-Liebig-University, Giessen, Germany
| | - Henry C. Woodruff
- Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Heike I. Grabsch
- Department of Pathology, GROW - Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
- Pathology and Data Analytics, Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| |
Collapse
|
2
|
Pan Y, Dai H, Wang S, Wang L, Li Q, Wang W, Li J, Qi D, Yang Z, Jia J, Wang Y, Fang Q, Li L, Zhou W, Song Z, Zou S. Clinically Applicable Pan-Origin Cancer Detection for Lymph Nodes via Artificial Intelligence-Based Pathology. Pathobiology 2024; 91:345-358. [PMID: 38718783 DOI: 10.1159/000539010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/09/2024] [Indexed: 06/13/2024] Open
Abstract
INTRODUCTION Lymph node metastasis is one of the most common ways of tumour metastasis. The presence or absence of lymph node involvement influences the cancer's stage, therapy, and prognosis. The integration of artificial intelligence systems in the histopathological diagnosis of lymph nodes after surgery is urgent. METHODS Here, we propose a pan-origin lymph node cancer metastasis detection system. The system is trained by over 700 whole-slide images (WSIs) and is composed of two deep learning models to locate the lymph nodes and detect cancers. RESULTS It achieved an area under the receiver operating characteristic curve (AUC) of 0.958, with a 95.2% sensitivity and 72.2% specificity, on 1,402 WSIs from 49 organs at the National Cancer Center, China. Moreover, we demonstrated that the system could perform robustly with 1,051 WSIs from 52 organs from another medical centre, with an AUC of 0.925. CONCLUSION Our research represents a step forward in a pan-origin lymph node metastasis detection system, providing accurate pathological guidance by reducing the probability of missed diagnosis in routine clinical practice.
Collapse
Affiliation(s)
- Yi Pan
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,
| | - Hongtian Dai
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuhao Wang
- Thorough Lab, Thorough Future, Beijing, China
| | - Lang Wang
- Thorough Lab, Thorough Future, Beijing, China
| | - Qiting Li
- R&D Department, China Academy of Launch Vehicle Technology, Beijing, China
| | - Wenmiao Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangtao Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Qi
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhaoyang Yang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia Jia
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaxi Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Fang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weixun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Beijing, China
| | - Zhigang Song
- Department of Pathology, The Chinese PLA General Hospital, Beijing, China
| | - Shuangmei Zou
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Matsushima J, Sato T, Yoshimura Y, Mizutani H, Koto S, Matsusaka K, Ikeda JI, Sato T, Fujii A, Ono Y, Mitsui T, Ban S, Matsubara H, Hayashi H. Clinical utility of artificial intelligence assistance in histopathologic review of lymph node metastasis for gastric adenocarcinoma. Int J Clin Oncol 2023; 28:1033-1042. [PMID: 37256523 DOI: 10.1007/s10147-023-02356-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Advances in whole-slide image capture and computer image analyses using deep learning technologies have enabled the development of computer-assisted diagnostics in pathology. Herein, we built a deep learning algorithm to detect lymph node (LN) metastasis on whole-slide images of LNs retrieved from patients with gastric adenocarcinoma and evaluated its performance in clinical settings. METHODS We randomly selected 18 patients with gastric adenocarcinoma who underwent surgery with curative intent and were positive for LN metastasis at Chiba University Hospital. A ResNet-152-based assistance system was established to detect LN metastases and to outline regions that are highly probable for metastasis in LN images. Reference standards comprising 70 LN images from two different institutions were reviewed by six pathologists with or without algorithm assistance, and their diagnostic performances were compared between the two settings. RESULTS No statistically significant differences were observed between these two settings regarding sensitivity, review time, or confidence levels in classifying macrometastases, isolated tumor cells, and metastasis-negative. Meanwhile, the sensitivity for detecting micrometastases significantly improved with algorithm assistance, although the review time was significantly longer than that without assistance. Analysis of the algorithm's sensitivity in detecting metastasis in the reference standard indicated an area under the curve of 0.869, whereas that for the detection of micrometastases was 0.785. CONCLUSIONS A wide variety of histological types in gastric adenocarcinoma could account for these relatively low performances; however, this level of algorithm performance could suffice to help pathologists improve diagnostic accuracy.
Collapse
Affiliation(s)
- Jun Matsushima
- Department of Pathology, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minamikoshigaya, Koshigaya, Saitama, Japan
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, Chiba, 263-8522, Japan
- Department of Diagnostic Pathology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, Chiba, Japan
| | - Tamotsu Sato
- Toshiba Digital Solutions Corporation, 72-34 Horikawa-Cho, Saiwai-Ku, Kawasaki, Kanagawa, Japan
| | - Yuichiro Yoshimura
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, Chiba, 263-8522, Japan
| | - Hiroyuki Mizutani
- Toshiba Digital Solutions Corporation, 72-34 Horikawa-Cho, Saiwai-Ku, Kawasaki, Kanagawa, Japan
| | - Shinichiro Koto
- Toshiba Digital Solutions Corporation, 72-34 Horikawa-Cho, Saiwai-Ku, Kawasaki, Kanagawa, Japan
| | - Keisuke Matsusaka
- Department of Pathology, Chiba University Hospital, 1-8-1 Inohana, Chuo-Ku, Chiba, Chiba, Japan
| | - Jun-Ichiro Ikeda
- Department of Diagnostic Pathology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, Chiba, Japan
| | - Taiki Sato
- Department of Pathology, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minamikoshigaya, Koshigaya, Saitama, Japan
| | - Akiko Fujii
- Department of Pathology, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minamikoshigaya, Koshigaya, Saitama, Japan
| | - Yuko Ono
- Department of Diagnostic Pathology, Dokkyo Medical University, 880 Kitakobayashi, Shimotusugagun, Mibu, Tochigi, Japan
| | - Takashi Mitsui
- Department of Surgery, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minamikoshigaya, Koshigaya, Japan
| | - Shinichi Ban
- Department of Pathology, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minamikoshigaya, Koshigaya, Saitama, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, Chiba, Japan
| | - Hideki Hayashi
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, Chiba, 263-8522, Japan.
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, Chiba, Japan.
| |
Collapse
|
4
|
Yavuz A, Alpsoy A, Gedik EO, Celik MY, Bassorgun CI, Unal B, Elpek GO. Artificial intelligence applications in predicting the behavior of gastrointestinal cancers in pathology. Artif Intell Gastroenterol 2022; 3:142-162. [DOI: 10.35712/aig.v3.i5.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/25/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
Recent research has provided a wealth of data supporting the application of artificial intelligence (AI)-based applications in routine pathology practice. Indeed, it is clear that these methods can significantly support an accurate and rapid diagnosis by eliminating errors, increasing reliability, and improving workflow. In addition, the effectiveness of AI in the pathological evaluation of prognostic parameters associated with behavior, course, and treatment in many types of tumors has also been noted. Regarding gastrointestinal system (GIS) cancers, the contribution of AI methods to pathological diagnosis has been investigated in many studies. On the other hand, studies focusing on AI applications in evaluating parameters to determine tumor behavior are relatively few. For this purpose, the potential of AI models has been studied over a broad spectrum, from tumor subtyping to the identification of new digital biomarkers. The capacity of AI to infer genetic alterations of cancer tissues from digital slides has been demonstrated. Although current data suggest the merit of AI-based approaches in assessing tumor behavior in GIS cancers, a wide range of challenges still need to be solved, from laboratory infrastructure to improving the robustness of algorithms, before incorporating AI applications into real-life GIS pathology practice. This review aims to present data from AI applications in evaluating pathological parameters related to the behavior of GIS cancer with an overview of the opportunities and challenges encountered in implementing AI in pathology.
Collapse
Affiliation(s)
- Aysen Yavuz
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| | - Anil Alpsoy
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| | - Elif Ocak Gedik
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| | | | | | - Betul Unal
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| | - Gulsum Ozlem Elpek
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| |
Collapse
|