1
|
Li W, Zheng J. Negative Pressure Wound Therapy for Chronic Wounds. Ann Plast Surg 2024; 93:S19-S26. [PMID: 38896874 DOI: 10.1097/sap.0000000000003891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
ABSTRACT Chronic wounds, including those caused by venous and arterial insufficiency, diabetic complications, and pressure-induced ulcers, pose significant treatment challenges. Negative pressure wound therapy has been increasingly used for managing these wounds. This treatment aims to promote wound healing, prepare the wound bed for further surgical intervention, minimize the risk of infection, and potentially shorten the time to wound healing. Considering variances in techniques applied in different regions globally, there is an emerging need to comprehensively evaluate the effectiveness of negative pressure wound therapy on chronic wounds. Unfortunately, detailed descriptions of the techniques applied to achieve negative pressure are often lacking in existing literature abstracts, posing challenges for direct comparisons. This review aims to analyze the application of negative pressure wound therapy in the treatment of chronic wounds, summarize its advantages and disadvantages, and further explore the potential value and future research direction of negative pressure wound therapy in the repair of chronic wounds.
Collapse
Affiliation(s)
- Wenbo Li
- From the Plastic Surgery Department, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | |
Collapse
|
2
|
Miyanaga T, Yoshitomi Y, Miyanaga A. Perifascial areolar tissue graft promotes angiogenesis and wound healing in an exposed ischemic component rabbit model. PLoS One 2024; 19:e0298971. [PMID: 38377120 PMCID: PMC10878522 DOI: 10.1371/journal.pone.0298971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Multiple studies have reported the use of perifascial areolar tissue (PAT) grafts to treat wounds involving exposed ischemic tissues, avascular structures, and defective membrane structures. Our objective was to assess the quantitative effects of PAT grafts and their suitability for wounds with ischemic tissue exposure and to qualitatively determine the factors through which PAT promotes wound healing and repair. We conducted histological, immunohistochemical, and mass spectrometric analyses of the PAT grafts. PAT grafts contain numerous CD34+ progenitor/stem cells, extracellular matrix, growth factors, and cytokines that promote wound healing and angiogenesis. Furthermore, we established a male rabbit model to compare the efficacy of PAT grafting with that of an occlusive dressing treatment (control) for wounds with cartilage exposure. PAT grafts could cover ischemic components with granulation tissue and promote angiogenesis. Macroscopic and histological observations of the PAT graft on postoperative day seven revealed capillaries bridging the ischemic tissue (vascular bridging). Additionally, the PAT graft suppressed wound contraction and alpha smooth muscle actin (αSMA) levels and promoted epithelialization. These findings suggested that PAT can serve as a platform to enhance wound healing and promote angiogenesis. This is the first study to quantify the therapeutic efficacy of PAT grafts, revealing their high value for the treatment of wounds involving exposed ischemic structures. The effectiveness of PAT grafts can be attributed to two primary factors: vascular bridging and the provision of three essential elements (progenitor/stem cells, extracellular matrix molecules, and growth factors/cytokines). Moreover, PAT grafts may be used as transplant materials to mitigate excessive wound contraction and the development of hypertrophic scarring.
Collapse
Affiliation(s)
- Toru Miyanaga
- Department of Plastic Surgery, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | - Yasuo Yoshitomi
- Department of Biochemistry, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | - Aiko Miyanaga
- Department of Nursing, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| |
Collapse
|
3
|
Xu Y, Shao S, Gong Z, Ri H, Xu Z, Kang H, Shan Y, Amadou BH, Ren Y, Zhang F, Chen X. Efficacy of prophylactic negative pressure wound therapy after open ventral hernia repair: a systematic review meta-analysis. BMC Surg 2023; 23:374. [PMID: 38082353 PMCID: PMC10712064 DOI: 10.1186/s12893-023-02280-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
INTRODUCTION The susceptibility to surgical site occurrence (SSO) is high following ventral hernia repair (VHR) surgery. SSO severely increases the physical and mental burden on patients. The main purpose of this review was to analyze the efficacy of negative pressure wound therapy (NPWT) after open VHR(OVHR) and explore benefits to patients. METHODS The Cochrane Library, PubMed, and Embase databases were searched from the date of establishment to 15 October 2022. All randomized controlled trials and retrospective cohort studies comparing NPWT with standard dressings after OVHR were included. The Revman 5.4 software recommended by Cochrane and the STATA16 software were used in this meta-analysis. RESULTS Fifteen studies (involving 1666 patients) were identified and included in the meta-analysis, with 821 patients receiving NPWT. Overall, the incidence rate of SSO in the NPWT group was lower compared to the control group (odds ratio [OR] = 0.44; 95% confidence interval [CI] = 0.21-0.93; I2 = 86%; P = 0.03). The occurrence rate of surgical site infection (SSI; OR = 0.51; 95% CI = 0.38-0.68, P < 0.001), wound dehiscence (OR = 0.64; 95% CI = 0. 43-0.96; P = 0.03), and hernia recurrence (OR = 0.51; 95% CI = 0.28-0.91, P = 0.02) was also lowered. There was no significant difference in seroma (OR = 0.76; 95% CI = 0.54-1.06; P = 0.11), hematoma (OR = 0.53; 95% CI = 0.25-1.11; P = 0.09), or skin necrosis (OR = 0.83; 95% CI = 0.47-1.46; P = 0.52). CONCLUSION NPWT can effectively decrease the occurrence of SSO, SSI wound dehiscence and hernia recurrence and should be considered following OVHR.
Collapse
Affiliation(s)
- Yang Xu
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Shuai Shao
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - ZeZhong Gong
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - HyokJu Ri
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
- Department of Colorectal Surgery, the Hospital of Pyongyang Medical College, Pyongyang, 999093, Democratic People's Republic of Korea
| | - ZhaoHui Xu
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - HaoNan Kang
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Yan Shan
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Boureima Hamidou Amadou
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - YanYing Ren
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Fan Zhang
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Xin Chen
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China.
| |
Collapse
|
4
|
Ravindhran B, Schafer N, Howitt A, Carradice D, Smith G, Chetter I. Molecular mechanisms of action of negative pressure wound therapy: a systematic review. Expert Rev Mol Med 2023; 25:e29. [PMID: 37853784 DOI: 10.1017/erm.2023.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Negative pressure wound therapy (NPWT) has significantly advanced wound care and continues to find new applications. Its effects at a molecular level however, remain a subject of debate. The aim of this systematic review is to summarize the current evidence regarding the molecular mechanisms of action of NPWT. Medline, Embase, EBSCO databases and clinical trial registries were searched from inception to January 2023. Clinical studies, animal models or in-vitro studies that quantitatively or semi-quantitatively evaluated the influence of NPWT on growth factors, cytokine or gene-expression in the circulation or wound-bed were included. Risk of Bias assessment was performed using the RoBANS tool for non-randomized studies, the COCHRANE's Risk of Bias 2(ROB-2) tool for randomized clinical studies, OHAT tool for in-vitro studies or the SYRCLE tool for animal model studies. A descriptive summary was collated and the aggregated data is presented as a narrative synthesis. This review included 19 clinical studies, 11 animal studies and 3 in-vitro studies. The effects of NPWT on 43 biomarkers and 17 gene expressions were studied across included studies. NPWT stimulates modulation of numerous local and circulating cytokines and growth factor expressions to promote an anti-inflammatory profile. This is most likely achieved by downregulation of TNFα, upregulation of VEGF, TGF-β and fibronectin.
Collapse
Affiliation(s)
- Bharadhwaj Ravindhran
- Academic Vascular Surgical Unit, Hull Royal Infirmary, Hull, UK
- Department of Health Sciences, University of York, York, UK
| | - Nicole Schafer
- Academic Vascular Surgical Unit, Hull Royal Infirmary, Hull, UK
| | - Annabel Howitt
- Academic Vascular Surgical Unit, Hull Royal Infirmary, Hull, UK
| | | | - George Smith
- Academic Vascular Surgical Unit, Hull Royal Infirmary, Hull, UK
| | - Ian Chetter
- Academic Vascular Surgical Unit, Hull Royal Infirmary, Hull, UK
| |
Collapse
|
5
|
Qiu X, Luo H, Huang G. Roles of negative pressure wound therapy for scar revision. Front Physiol 2023; 14:1194051. [PMID: 37900944 PMCID: PMC10602717 DOI: 10.3389/fphys.2023.1194051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
The purpose of this study is to review the research progress of negative pressure wound therapy (NPWT) for scar revision and discuss the prospects of its further study and application. The domestic and foreign literatures on NPWT for scar revision were reviewed. The mechanism and application were summarized. NPWT improves microcirculation and lymphatic flow and stimulates the growth of granulation tissues in addition to draining secretions and necrotic tissue. As a significant clinical therapy in scar revision, NPWT reduces tension, fixes graft, and improves wound bed. In the field of scar revision, NPWT has been increasingly used as an innovative and constantly improving technology.
Collapse
Affiliation(s)
- Xiaotong Qiu
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Burns and Plastic Surgery, Jinan Central Hospital, Jinan, China
| | - Haoming Luo
- Department of Thyroid Head Neck and Maxillofacial Surgery, The Third Hospital of Mianyang & Sichuan Mental Health Center, Mianyang, China
| | - Guobao Huang
- Department of Burns and Plastic Surgery, Jinan Central Hospital, Jinan, China
- Department of Burns and Plastic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
6
|
Kanta J, Zavadakova A, Sticova E, Dubsky M. Fibronectin in hyperglycaemia and its potential use in the treatment of diabetic foot ulcers: A review. Int Wound J 2022; 20:1750-1761. [PMID: 36537075 PMCID: PMC10088845 DOI: 10.1111/iwj.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolism of fibronectin, the protein that plays a key role in the healing of wounds, is changed in the patients with diabetes mellitus. Fibronectin can interact with other proteins and proteoglycans and organise them to form the extracellular matrix, the basis of the granulation tissue in healing wounds. However, diabetic foot ulcers (DFUs) suffer from inadequate deposition of this protein. Degradation prevails over fibronectin synthesis in the proteolytic inflammatory environment in the ulcers. Because of the lack of fibronectin in the wound bed, the assembly of the extracellular matrix and the deposition of the granulation tissue cannot be started. A number of methods have been designed that prevents fibronectin degradation, replace lacking fibronectin or support its formation in non-healing wounds in animal models of diabetes. The aim of this article is to review the metabolism of fibronectin in DFUs and to emphasise that it would be useful to pay more attention to fibronectin matrix assembly in the ulcers when laboratory methods are translated to clinical practice.
Collapse
Affiliation(s)
- Jiri Kanta
- Faculty of Medicine Charles University Hradec Kralove Czech Republic
| | - Anna Zavadakova
- Biomedical Center, Faculty of Medicine Charles University Pilsen Czech Republic
| | - Eva Sticova
- Diabetes Center Institute for Clinical and Experimental Medicine Prague Czech Republic
- Third Faculty of Medicine Charles University Prague Czech Republic
| | - Michal Dubsky
- Diabetes Center Institute for Clinical and Experimental Medicine Prague Czech Republic
- First Faculty of Medicine Charles University Prague Czech Republic
| |
Collapse
|
7
|
Wang N, Li SS, Liu YP, Peng YY, Wang PF. Comparison of negative pressure wound therapy and moist wound care in patients with diabetic foot ulcers: A protocol for systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2022; 101:e29537. [PMID: 35945751 PMCID: PMC9351851 DOI: 10.1097/md.0000000000029537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND This study conducted a meta-analysis to compare the effectiveness and safety of the negative pressure wound therapy (NPWT) with the moist wound care (MWC) in the treatment of diabetic foot ulcers (DFUs). METHODS The PubMed, EMBASE, and CENTRAL were searched by 2 of the authors, to identify randomized controlled trials comparing the clinical outcomes of patients treated with NPWT versus MWC for DFUs. Meta-analyses were performed for several outcomes, including wound healing results, amputation or resection incidence, and risk of adverse events, utilizing the "meta" package of R language version 4.0.3. RESULTS A total of 10 trials (619 patients in NPWT group and 625 in MWC group) and 8 trials were included for the qualitative and quantitative syntheses, respectively. As a result, significantly lower risk of non-closure of the wound (risk ratio [RR] = 0.74, 95% confidence interval [CI]: 0.63-0.87; P = .001), lower average wound area (standard mean difference = -0.80, 95% CI: -1.54 to -0.06; P = .034), more wound area decrease (standard mean difference = 0.81, 95% CI: 0.36-1.26; P = .001), increased appearance rate of granulation tissue (RR = 1.61, 95% CI: 1.07-2.41; P-0.021), and lower risk of amputation or resection (RR = 0.70, 95% CI: 0.50-0.99; P = .045), were demonstrated for the NPWT group when compared to MWC group. However, no statistically significant difference was found for the disappearance rate of wound discharge at 8 weeks, the rate of blood culture positivity, VAS-pain score, and the overall frequency of adverse events between the 2 treatment groups (P = .05). CONCLUSION NPWT could accelerate process of the wound healing, and decrease the risk of post-treatment amputation or resection, without any additional frequency of adverse events, when compared with MWC, in patients with DFUs.
Collapse
Affiliation(s)
- Nan Wang
- Cangzhou Central Hospital, Cangzhou City, China
| | | | - Ya-Ping Liu
- Cangzhou Central Hospital, Cangzhou City, China
| | | | - Peng-Fei Wang
- Cangzhou Central Hospital, Cangzhou City, China
- * Correspondence: Peng-Fei Wang, Cangzhou Central Hospital, No. 16, Xinhua Western Road, Yunhe District, Cangzhou City, 061000, Hebei Province, China (e-mail: )
| |
Collapse
|
8
|
Zhang H, Wang S, Lei C, Li G, Wang B. Experimental study of negative pressure wound therapy combined with platelet-rich fibrin for bone-exposed wounds. Regen Med 2021; 17:23-35. [PMID: 34905932 DOI: 10.2217/rme-2021-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the efficacy of negative pressure wound therapy (NPWT) combined with platelet-rich fibrin (PRF) in treating bone-exposed wounds and explore its possible mechanism. Materials & methods: A bone-exposed wound was created in a total of 32 healthy Sprague-Dawley rats, which were divided into either control group, NPWT group, PRF group or both (N + P group). The bone-exposed area, skin contraction rate and granulation coverage and the level of growth factors in granulation tissue were determined on days 4, 7 and 10. Results: The N + P group showed significantly higher wound closure rate than that achieved with others respectively. Four factors were significantly higher in N + P group than in the other three groups. Conclusion: Combination of NPWT and PRF can repair bone-exposed wounds effectively and accelerate wound healing.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Plastic & Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou Fujian, 350000, PR China.,Department of Pediatric Surgery, Fujian Children's Hospital, Fuzhou Fujian, 350000, PR China.,Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Fuzhou Fujian, 350000, PR China.,Fujian Maternity & Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou Fujian, 350000, PR China
| | - Songyu Wang
- Department of Plastic & Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou Fujian, 350000, PR China
| | - Chen Lei
- Department of Plastic & Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou Fujian, 350000, PR China
| | - Guanmin Li
- Department of Plastic & Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou Fujian, 350000, PR China
| | - Biao Wang
- Department of Plastic & Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou Fujian, 350000, PR China
| |
Collapse
|
9
|
Ahn J. Treatment of diabetic foot ulcers. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2021. [DOI: 10.5124/jkma.2021.64.8.529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background: Diabetic foot ulcers (DFUs), a risk factor for infection, remain a difficult clinical complication. Infected DFUs may be associated with lower extremity amputation. To achieve wound healing and avoid amputation, an assortment of dressing materials and negative pressure wound therapy (NPWT) have been used on soft tissue injuries resulting from infected DFUs. A great deal of interest about the use of dressing materials and NPWT in the treatment of DFUs has arisen. However, there have only been a few high-quality studies regarding this topic.Current Concepts: Ideal dressing materials should satisfy certain conditions to alleviate symptoms of DFU infection and enhance the wound healing process. A single dressing material cannot fulfill all of these requirements. Based on clinical trials, different dressing materials must be chosen according to the status of the individual wound environment, including the amount of exudate, degree of pain, severity of the infection, and cost-effectiveness. However, there has been no clear evidence that advanced wound dressing materials are superior to basic dressing materials in wound healing. Recently, NPWT has been used to cover the soft tissue defects of infected DFU with granulation tissue. NPWT may contribute to changing growth factor expression, micro- and macro-deformation, vascular flow, amount of exudate, and the bacterial environment in DFU, despite the unclear mechanism of its role in wound repair.Discussion and Conclusion: Further research to obtain high-quality evidence regarding the benefits of using dressing materials and NPWT is needed. The optimal protocol for DFU and cost-effectiveness should be included in these future studies.
Collapse
|
10
|
Ji S, Liu X, Huang J, Bao J, Chen Z, Han C, Hao D, Hong J, Hu D, Jiang Y, Ju S, Li H, Li Z, Liang G, Liu Y, Luo G, Lv G, Ran X, Shi Z, Tang J, Wang A, Wang G, Wang J, Wang X, Wen B, Wu J, Xu H, Xu M, Ye X, Yuan L, Zhang Y, Xiao S, Xia Z. Consensus on the application of negative pressure wound therapy of diabetic foot wounds. BURNS & TRAUMA 2021; 9:tkab018. [PMID: 34212064 PMCID: PMC8240517 DOI: 10.1093/burnst/tkab018] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Because China is becoming an aging society, the incidence of diabetes and diabetic foot have been increasing. Diabetic foot has become one of the main health-related killers due to its high disability and mortality rates. Negative pressure wound therapy (NPWT) is one of the most effective techniques for the treatment of diabetic foot wounds and great progress, both in terms of research and its clinical application, has been made in the last 20 years of its development. However, due to the complex pathogenesis and management of diabetic foot, irregular application of NPWT often leads to complications, such as infection, bleeding and necrosis, that seriously affect its treatment outcomes. In 2020, under the leadership of Burns, Trauma and Tissue Repair Committee of the Cross-Straits Medicine Exchange Association, the writing group for ‘Consensus on the application of negative pressure wound therapy of diabetic foot wounds’ was established with the participation of scholars from the specialized areas of burns, endocrinology, vascular surgery, orthopedics and wound repair. Drawing on evidence-based practice suggested by the latest clinical research, this consensus proposes the best clinical practice guidelines for the application and prognostic evaluation of NPWT for diabetic foot. The consensus aims to support the formation of standardized treatment schemes that clinicians can refer to when treating cases of diabetic foot.
Collapse
Affiliation(s)
- Shizhao Ji
- Burn Institute of PLA, Department of Burns, The First Affiliated Hospital of Naval Medical University, No. 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Xiaobin Liu
- Burn Institute of PLA, Department of Burns, The First Affiliated Hospital of Naval Medical University, No. 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Jie Huang
- Burn Institute of PLA, Department of Burns, The First Affiliated Hospital of Naval Medical University, No. 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Junmin Bao
- Burn Institute of PLA, Department of Burns, The First Affiliated Hospital of Naval Medical University, No. 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Zhaohong Chen
- Fujian Burn Institute, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Gulou District, Fuzhou, 350001, China
| | - Chunmao Han
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Daifeng Hao
- No. 3 Department of Burns and Plastic Surgery and Wound Healing Center, The Fourth Medical Center of Chinese PLA General Hospital, No 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Jingsong Hong
- Foot and Ankle Surgery Department, Guangzhou Zhenggu Orthopedic Hospital, No. 449 Dongfeng Middle Road, Yuexiu District, Guangzhou, 510031, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, The First Affiliated Hospital of Air Force Medical University, No. 127 West Changle Road, Xincheng District, Xi'an, 710032, China
| | - Yufeng Jiang
- Wound Healing Department, PLA Strategic Support Force Characteristic Medical Center, No. 9 Anxiang North Lane, Chaoyang District, Beijing, 100101, China
| | - Shang Ju
- Department of Peripheral Vascular, Beijing University of Chinese Medicine, Dongzhimen Hospital, Hai Yun Cang on the 5th, Dongcheng District, Beijing, 100700, China
| | - Hongye Li
- Department of Orthopedics, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, No. 3 East Qinchun Road, Shangcheng District, Hangzhou, 310016, China
| | - Zongyu Li
- Department of Burns, The Fifth Hospital of Harbin, No. 27 Jiankang Road, Xiangfang District, 150030, Harbin, China
| | - Guangping Liang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Gaotanyan Street no. 29, Shapingba District, Chongqing, 400038, China
| | - Yan Liu
- Department of Burn, Shanghai Jiaotong University, School of Medicine Affiliated Ruijin Hospital, No. 197 Ruijin Road (No.2), Huangpu District, Shanghai, 200025, China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Gaotanyan Street no. 29, Shapingba District, Chongqing, 400038, China
| | - Guozhong Lv
- Department of Burn Surgery, the Third People's Hospital of Wuxi, No. 585 North Xingyuan Road, Wuxi, 214043, China
| | - Xingwu Ran
- Innovation Center for Wound Rpair, Diabetic Foot Care Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, China
| | - Zhongmin Shi
- Department of Orthopedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Juyu Tang
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Aiping Wang
- Diabetic Foot Centre, The Air Force Hospital From Eastern Theater of PLA, Nanjing, No.1 Malu Road, Qinhuai District, 210002, China
| | - Guangyi Wang
- Burn Institute of PLA, Department of Burns, The First Affiliated Hospital of Naval Medical University, No. 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Jiangning Wang
- Department of Orthopedic Surgery, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Haidian District, Beijing, 100038, China
| | - Xin Wang
- Department of Plastic and Hand Surgery, Ningbo No. 6 Hospital, No. 1059 East Zhongshan Road, YinZhou District, Ningbo, 315040, China
| | - Bing Wen
- Plastic and Burn Surgery Department, Diabetic Foot Prevention and Treatment Center, Peking University First Hospital, No.8, Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Jun Wu
- Department of Burn and Plastic Surgery, Second People's Hospital of Shenzhen, Shenzhen University, No. 3002 West Sungang Road, Futian District, Shenzhen, 518037, China
| | - Hailin Xu
- Department of Orthopedics and Trauma, Peking University People's Hospital, Peking University, No.11 Xizhimen South Street, Beijing, 100044, China.,Diabetic Foot Treatment Center, Peking University People's hospital, Peking University, No.11 Xizhimen South Street, Beijing, 100044, China
| | - Maojin Xu
- Burn Institute of PLA, Department of Burns, The First Affiliated Hospital of Naval Medical University, No. 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Xiaofei Ye
- Burn Institute of PLA, Department of Burns, The First Affiliated Hospital of Naval Medical University, No. 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Liangxi Yuan
- Burn Institute of PLA, Department of Burns, The First Affiliated Hospital of Naval Medical University, No. 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Yi Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong, 226001, China
| | - Shichu Xiao
- Burn Institute of PLA, Department of Burns, The First Affiliated Hospital of Naval Medical University, No. 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Zhaofan Xia
- Burn Institute of PLA, Department of Burns, The First Affiliated Hospital of Naval Medical University, No. 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| |
Collapse
|
11
|
A pulsatile release platform based on photo-induced imine-crosslinking hydrogel promotes scarless wound healing. Nat Commun 2021; 12:1670. [PMID: 33723267 PMCID: PMC7960722 DOI: 10.1038/s41467-021-21964-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Effective healing of skin wounds is essential for our survival. Although skin has strong regenerative potential, dysfunctional and disfiguring scars can result from aberrant wound repair. Skin scarring involves excessive deposition and misalignment of ECM (extracellular matrix), increased cellularity, and chronic inflammation. Transforming growth factor-β (TGFβ) signaling exerts pleiotropic effects on wound healing by regulating cell proliferation, migration, ECM production, and the immune response. Although blocking TGFβ signaling can reduce tissue fibrosis and scarring, systemic inhibition of TGFβ can lead to significant side effects and inhibit wound re-epithelization. In this study, we develop a wound dressing material based on an integrated photo-crosslinking strategy and a microcapsule platform with pulsatile release of TGF-β inhibitor to achieve spatiotemporal specificity for skin wounds. The material enhances skin wound closure while effectively suppressing scar formation in murine skin wounds and large animal preclinical models. Our study presents a strategy for scarless wound repair. Dysfunctional and disfiguring scars can result from aberrant wound repair. Here, the authors develop a wound dressing material based on an integrated photo-crosslinking strategy and a microcapsule platform with pulsatile release of TGF-β inhibitor to achieve spatiotemporal specificity for scarless wound repair.
Collapse
|
12
|
Takagi S, Oyama T, Jimi S, Saparov A, Ohjimi H. A Novel Autologous Micrografts Technology in Combination with Negative Pressure Wound Therapy (NPWT) for Quick Granulation Tissue Formation in Chronic/Refractory Ulcer. Healthcare (Basel) 2020; 8:healthcare8040513. [PMID: 33255590 PMCID: PMC7712274 DOI: 10.3390/healthcare8040513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Negative pressure wound therapy (NPWT) has been commonly used over the years for a wide range of chronic/refractory lesions. Alternatively, autologous micrografting technology is recently becoming a powerful modality for initiating wound healing. The case presented is of a patient with a lower leg ulcer that had responded poorly to NPWT alone for three weeks. Consequently, the patient was put on a combination therapy of NPWT and micrografting. After injection of a dermal tissue micrografts suspension into the entire wound bed, NPWT was performed successively for two weeks, resulting in fresh granulation tissue formation. Thereafter, the autologous skin graft was taken well. This case study indicates that for a chronic/refractory ulcer patient with poor NPWT outcome, combination therapy using micrografting treatment and NPWT could rapidly initiate and enhance granulation tissue formation, creating a favorable bedding for subsequent skin grafting.
Collapse
Affiliation(s)
- Satoshi Takagi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan; (T.O.); (H.O.)
- Correspondence:
| | - Takuto Oyama
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan; (T.O.); (H.O.)
| | - Shiro Jimi
- Central Lab for Pathology and Morphology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan;
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Hiroyuki Ohjimi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan; (T.O.); (H.O.)
| |
Collapse
|
13
|
Huang Y, Kyriakides TR. The role of extracellular matrix in the pathophysiology of diabetic wounds. Matrix Biol Plus 2020; 6-7:100037. [PMID: 33543031 PMCID: PMC7852307 DOI: 10.1016/j.mbplus.2020.100037] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/29/2022] Open
Abstract
Impaired healing leading to the formation of ulcerated wounds is a critical concern in patients with diabetes. Abnormalities in extracellular matrix (ECM) production and remodeling contribute to tissue dysfunction and delayed healing. Specifically, diabetes-induced changes in the expression and/or activity of structural proteins, ECM-modifying enzymes, proteoglycans, and matricellular proteins have been reported. In this review, we provide a summary of the key ECM molecules and associated changes in skin and diabetic wounds. Such information should allow for new insights in the understanding of impaired wound healing and lead to the development of ECM-based therapeutic strategies.
Collapse
Affiliation(s)
- Yaqing Huang
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06519, USA.,Department of Pathology, Yale University, New Haven, CT 06519, USA
| | - Themis R Kyriakides
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06519, USA.,Department of Pathology, Yale University, New Haven, CT 06519, USA.,Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| |
Collapse
|
14
|
Kunze KN, Hamid KS, Lee S, Halvorson JJ, Earhart JS, Bohl DD. Negative-Pressure Wound Therapy in Foot and Ankle Surgery. Foot Ankle Int 2020; 41:364-372. [PMID: 31833393 DOI: 10.1177/1071100719892962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Negative Pressure Wound Therapy (NPWT) is frequently utilized to manage complex wounds, however its mechanisms of healing remain poorly understood. Changes in growth factor expression, micro- and macro-deformation, blood flow, exudate removal, and bacterial concentration within the wound bed are thought to play a role. NPWT is gaining widespread usage in foot and ankle surgery, including the management of traumatic wounds; diabetic and neuropathic ulcers; wounds left open after debridement for infection or dehiscence; high-risk, closed incisions; tissue grafts and free flaps. This article reviews the rationale for NPWT, its proposed mechanisms of action, and the evidence regarding its clinical applications within the field of foot and ankle surgery. Level of Evidence: Level V, expert opinion.
Collapse
Affiliation(s)
- Kyle N Kunze
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Kamran S Hamid
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Simon Lee
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Jason J Halvorson
- Department of Orthopaedic Surgery, Wake Forest Baptist Health Center, Winston Salem, NC, USA
| | | | - Daniel D Bohl
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
15
|
Role of TGF-β in Skin Chronic Wounds: A Keratinocyte Perspective. Cells 2020; 9:cells9020306. [PMID: 32012802 PMCID: PMC7072438 DOI: 10.3390/cells9020306] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic wounds are characterized for their incapacity to heal within an expected time frame. Potential mechanisms driving this impairment are poorly understood and current hypotheses point to the development of an unbalanced milieu of growth factor and cytokines. Among them, TGF-β is considered to promote the broadest spectrum of effects. Although it is known to contribute to healthy skin homeostasis, the highly context-dependent nature of TGF-β signaling restricts the understanding of its roles in healing and wound chronification. Historically, low TGF-β levels have been suggested as a pattern in chronic wounds. However, a revision of the available evidence in humans indicates that this could constitute a questionable argument. Thus, in chronic wounds, divergences regarding skin tissue compartments seem to be characterized by elevated TGF-β levels only in the epidermis. Understanding how this aspect affects keratinocyte activities and their capacity to re-epithelialize might offer an opportunity to gain comprehensive knowledge of the involvement of TGF-β in chronic wounds. In this review, we compile existing evidence on the roles played by TGF-β during skin wound healing, with special emphasis on keratinocyte responses. Current limitations and future perspectives of TGF-β research in chronic wounds are discussed.
Collapse
|
16
|
Borys S, Ludwig-Slomczynska AH, Seweryn M, Hohendorff J, Koblik T, Machlowska J, Kiec-Wilk B, Wolkow P, Malecki MT. Negative pressure wound therapy in the treatment of diabetic foot ulcers may be mediated through differential gene expression. Acta Diabetol 2019; 56:115-120. [PMID: 30221321 PMCID: PMC6346079 DOI: 10.1007/s00592-018-1223-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/29/2018] [Indexed: 01/20/2023]
Abstract
AIMS Negative pressure wound therapy (NPWT) has been successfully used as a treatment for diabetic foot ulceration (DFU). Its mechanism of action on the molecular level, however, is not fully understood. We assessed the effect of NPWT on gene expression in patients with type 2 diabetes (T2DM) and DFU. METHODS We included two cohorts of patients-individuals treated with either NPWT or standard therapy. The assignment to NWPT was non-randomized and based on wound characteristics. Differential gene expression profiling was performed using Illumina gene expression arrays and R Bioconductor pipelines based on the 'limma' package. RESULTS The final cohort encompassed 21 patients treated with NPWT and 8 with standard therapy. The groups were similar in terms of age (69.0 versus 67.5 years) and duration of T2DM (14.5 versus 14.4 years). We identified four genes differentially expressed between the two study arms post-treatment, but not pre-treatment: GFRA2 (GDNF family receptor alpha-2), C1QBP (complement C1q binding protein), RAB35 (member of RAS oncogene family) and SYNJ1 (synaptic inositol 1,4,5-trisphosphate 5-phosphatase 1). Interestingly, all four genes seemed to be functionally involved in wound healing by influencing re-epithelialization and angiogenesis. Subsequently, we utilized co-expression analysis in publicly available RNA-seq data to reveal the molecular functions of GFRA2 and C1QBP, which appeared to be through direct protein-protein interactions. CONCLUSIONS We found initial evidence that the NPWT effect on DFUs may be mediated through differential gene expression. A discovery of the specific molecular mechanisms of NPWT is potentially valuable for its clinical application and development of new therapies.
Collapse
Affiliation(s)
- S Borys
- Department of Metabolic Diseases, Jagiellonian University Medical College, 15 Kopernika Street, 31-501, Kraków, Poland
- University Hospital, Kraków, Poland
| | - A H Ludwig-Slomczynska
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - M Seweryn
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - J Hohendorff
- Department of Metabolic Diseases, Jagiellonian University Medical College, 15 Kopernika Street, 31-501, Kraków, Poland
- University Hospital, Kraków, Poland
| | - T Koblik
- University Hospital, Kraków, Poland
| | - J Machlowska
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - B Kiec-Wilk
- Department of Metabolic Diseases, Jagiellonian University Medical College, 15 Kopernika Street, 31-501, Kraków, Poland
- University Hospital, Kraków, Poland
| | - P Wolkow
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Maciej T Malecki
- Department of Metabolic Diseases, Jagiellonian University Medical College, 15 Kopernika Street, 31-501, Kraków, Poland.
- University Hospital, Kraków, Poland.
| |
Collapse
|
17
|
Liu Z, Dumville JC, Hinchliffe RJ, Cullum N, Game F, Stubbs N, Sweeting M, Peinemann F. Negative pressure wound therapy for treating foot wounds in people with diabetes mellitus. Cochrane Database Syst Rev 2018; 10:CD010318. [PMID: 30328611 PMCID: PMC6517143 DOI: 10.1002/14651858.cd010318.pub3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Foot wounds in people with diabetes mellitus (DM) are a common and serious global health issue. People with DM are prone to developing foot ulcers and, if these do not heal, they may also undergo foot amputation surgery resulting in postoperative wounds. Negative pressure wound therapy (NPWT) is a technology that is currently used widely in wound care. NPWT involves the application of a wound dressing attached to a vacuum suction machine. A carefully controlled negative pressure (or vacuum) sucks wound and tissue fluid away from the treated area into a canister. A clear and current overview of current evidence is required to facilitate decision-making regarding its use. OBJECTIVES To assess the effects of negative pressure wound therapy compared with standard care or other therapies in the treatment of foot wounds in people with DM in any care setting. SEARCH METHODS In January 2018, for this first update of this review, we searched the Cochrane Wounds Specialised Register; the Cochrane Central Register of Controlled Trials (CENTRAL); Ovid MEDLINE (including In-Process & Other Non-Indexed Citations); Ovid Embase and EBSCO CINAHL Plus. We also searched clinical trials registries for ongoing and unpublished studies, and scanned reference lists of relevant included studies, reviews, meta-analyses and health technology reports to identify additional studies. There were no restrictions with respect to language, date of publication or study setting. We identified six additional studies for inclusion in the review. SELECTION CRITERIA Published or unpublished randomised controlled trials (RCTs) that evaluated the effects of any brand of NPWT in the treatment of foot wounds in people with DM, irrespective of date or language of publication. Particular effort was made to identify unpublished studies. DATA COLLECTION AND ANALYSIS Two review authors independently performed study selection, risk of bias assessment and data extraction. Initial disagreements were resolved by discussion, or by including a third review author when necessary. We presented and analysed data separately for foot ulcers and postoperative wounds. MAIN RESULTS Eleven RCTs (972 participants) met the inclusion criteria. Study sample sizes ranged from 15 to 341 participants. One study had three arms, which were all included in the review. The remaining 10 studies had two arms. Two studies focused on postamputation wounds and all other studies included foot ulcers in people with DM. Ten studies compared NPWT with dressings; and one study compared NPWT delivered at 75 mmHg with NPWT delivered at 125 mmHg. Our primary outcome measures were the number of wounds healed and time to wound healing.NPWT compared with dressings for postoperative woundsTwo studies (292 participants) compared NPWT with moist wound dressings in postoperative wounds (postamputation wounds). Only one study specified a follow-up time, which was 16 weeks. This study (162 participants) reported an increased number of healed wounds in the NPWT group compared with the dressings group (risk ratio (RR) 1.44, 95% confidence interval (CI) 1.03 to 2.01; low-certainty evidence, downgraded for risk of bias and imprecision). This study also reported that median time to healing was 21 days shorter with NPWT compared with moist dressings (hazard ratio (HR) calculated by review authors 1.91, 95% CI 1.21 to 2.99; low-certainty evidence, downgraded for risk of bias and imprecision). Data from the two studies suggest that it is uncertain whether there is a difference between groups in amputation risk (RR 0.38, 95% CI 0.14 to 1.02; 292 participants; very low-certainty evidence, downgraded once for risk of bias and twice for imprecision).NPWT compared with dressings for foot ulcersThere were eight studies (640 participants) in this analysis and follow-up times varied between studies. Six studies (513 participants) reported the proportion of wounds healed and data could be pooled for five studies. Pooled data (486 participants) suggest that NPWT may increase the number of healed wounds compared with dressings (RR 1.40, 95% CI 1.14 to 1.72; I² = 0%; low-certainty evidence, downgraded once for risk of bias and once for imprecision). Three studies assessed time to healing, but only one study reported usable data. This study reported that NPWT reduced the time to healing compared with dressings (hazard ratio (HR) calculated by review authors 1.82, 95% CI 1.27 to 2.60; 341 participants; low-certainty evidence, downgraded once for risk of bias and once for imprecision).Data from three studies (441 participants) suggest that people allocated to NPWT may be at reduced risk of amputation compared with people allocated to dressings (RR 0.33, 95% CI 0.15 to 0.70; I² = 0%; low-certainty evidence; downgraded once for risk of bias and once for imprecision).Low-pressure compared with high-pressure NPWT for foot ulcersOne study (40 participants) compared NPWT 75 mmHg and NPWT 125 mmHg. Follow-up time was four weeks. There were no data on primary outcomes. There was no clear difference in the number of wounds closed or covered with surgery between groups (RR 0.83, 95% CI 0.47 to 1.47; very low-certainty evidence, downgraded once for risk of bias and twice for serious imprecision) and adverse events (RR 1.50, 95% CI 0.28 to 8.04; very low-certainty evidence, downgraded once for risk of bias and twice for serious imprecision). AUTHORS' CONCLUSIONS There is low-certainty evidence to suggest that NPWT, when compared with wound dressings, may increase the proportion of wounds healed and reduce the time to healing for postoperative foot wounds and ulcers of the foot in people with DM. For the comparisons of different pressures of NPWT for treating foot ulcers in people with DM, it is uncertain whether there is a difference in the number of wounds closed or covered with surgery, and adverse events. None of the included studies provided evidence on time to closure or coverage surgery, health-related quality of life or cost-effectiveness. The limitations in current RCT evidence suggest that further trials are required to reduce uncertainty around decision-making regarding the use of NPWT to treat foot wounds in people with DM.
Collapse
Affiliation(s)
- Zhenmi Liu
- West China Hospital, Sichuan UniversityWest China School of Public HealthChengduSichuanChina610041
- University of Manchester, Manchester Academic Health Science CentreDivision of Nursing, Midwifery and Social Work, School of Health Sciences, Faculty of Biology, Medicine and HealthManchesterUKM13 9PL
| | - Jo C Dumville
- University of Manchester, Manchester Academic Health Science CentreDivision of Nursing, Midwifery and Social Work, School of Health Sciences, Faculty of Biology, Medicine and HealthManchesterUKM13 9PL
| | - Robert J Hinchliffe
- St George's Healthcare NHS TrustSt George's Vascular Institute4th Floor, St James WingBlackshaw RoadLondonUKSW17 0QT
| | - Nicky Cullum
- University of Manchester, Manchester Academic Health Science CentreDivision of Nursing, Midwifery and Social Work, School of Health Sciences, Faculty of Biology, Medicine and HealthManchesterUKM13 9PL
| | - Fran Game
- Derby Hospitals NHS Foundation TrustDepartment of Diabetes and EndocrinologyUttoxeter RoadDerbyUKDE22 3NE
| | - Nikki Stubbs
- St Mary's HospitalLeeds Community Healthcare NHS Trust3 Greenhill RoadLeedsUKLS12 3QE
| | - Michael Sweeting
- University of LeicesterDepartment of Health Sciences, College of Life SciencesGeorge Davies CentreUniversity RoadLeicesterUKLE1 7RH
| | - Frank Peinemann
- Children's Hospital, University of ColognePediatric Oncology and HematologyKerpener Str. 62CologneGermany50937
| | | |
Collapse
|
18
|
Zhu M, Feng F. [Recent progress in foot and ankle surgery]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:860-865. [PMID: 30129309 DOI: 10.7507/1002-1892.201806032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The article focuses on the recent progress in foot and ankle surgery, including the diagnosis of disease, treatment protocols, outcomes, and evaluation tools as well as other innovations. New and accurate diagnostic modalities and measurements have undergone a breakthrough. Diagnostic modalities tend to be simpler and less expensive. Measurement tools also change to simpler and more accurate. The accuracy and efficacy of surgery and the minimally invasive method have become more popular and important. New treatments and basic research have also made breakthroughs.
Collapse
Affiliation(s)
- Min Zhu
- Department of Orthopaedics, Kunming General Hospital of Chinese PLA, Kunming Yunnan, 650032,
| | - Fanzhe Feng
- Department of Orthopaedics, Kunming General Hospital of Chinese PLA, Kunming Yunnan, 650032, P.R.China
| |
Collapse
|
19
|
Affiliation(s)
- Sheldon S Lin
- Department of Orthopaedics, Rutgers New Jersey School of Medicine, Newark, New Jersey
| | - Omkar Baxi
- Department of Orthopaedics, Rutgers New Jersey School of Medicine, Newark, New Jersey
| | - Michael Yeranosian
- Department of Orthopaedics, Rutgers New Jersey School of Medicine, Newark, New Jersey
| |
Collapse
|
20
|
The role of TGFβ in wound healing pathologies. Mech Ageing Dev 2017; 172:51-58. [PMID: 29132871 DOI: 10.1016/j.mad.2017.11.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/12/2017] [Accepted: 11/01/2017] [Indexed: 12/25/2022]
Abstract
Wound healing is one of the most complex processes in multicellular organisms, involving numerous intra- and intercellular signalling pathways in various cell types. It involves extensive communication between the cellular constituents of diverse skin compartments and its extracellular matrix. Miscommunication during healing may have two distinct damaging consequences: the development of a chronic wound or the formation of a hypertrophic scar/keloid. Chronic wounds are defined as barrier defects that have not proceeded through orderly and timely reparation to regain structural and functional integrity. Several growth factors are involved in wound healing, of which transforming growth factor beta (TGFβ) is of particular importance for all phases of this procedure. It exerts pleiotropic effects on wound healing by regulating cell proliferation, differentiation, extracellular matrix production, and modulating the immune response. In this review we are presenting the role of TGFβ in physiological and pathological wound healing. We show that the context-dependent nature of the TGFβ signaling pathways on wound healing is the biggest challenge in order to gain a therapeutically applicable comprehensive knowledge of their specific involvement in chronic wounds.
Collapse
|