1
|
Markowitz J, Shamblott M, Brohl AS, Sarnaik AA, Eroglu Z, Khushalani NI, Dukes CW, Chamizo A, Bastawrous M, Garcia ET, Dehlawi A, Chen PL, De Aquino DB, Sondak VK, Tarhini AA, Kim Y, Lawman P, Pilon-Thomas S. First-in-Human Stage III/IV Melanoma Clinical Trial of Immune Priming Agent IFx-Hu2.0. Mol Cancer Ther 2024; 23:1139-1143. [PMID: 38657233 PMCID: PMC11292317 DOI: 10.1158/1535-7163.mct-23-0652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/21/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
IFx-Hu2.0 was designed to encode part of the Emm55 protein contained within a plasmid in a formulation intended for transfection into mammalian cells. IFx-Hu2.0 promotes both adaptive and innate immune responses in animal studies. Furthermore, previous studies have demonstrated safety/efficacy in equine, canine, and murine species. We present the first-in-human study of IFx-Hu2.0, administered by intralesional injection into melanoma tumors of seven patients with stage III/IV unresectable melanoma. No dose-limiting toxicities attributable to IFx-Hu2.0 were observed. Grade 1/2 injection site reactions were observed in five of seven patients. IgG and IgM responses to Emm55 peptides and known melanoma antigens were seen in the peripheral blood, suggesting that IFx-Hu2.0 acts as an individualized "in situ vaccine." Three of four patients previously refractory to anti-PD1 experienced clinical benefit upon subsequent anti-PD1-based treatment. Therefore, this approach is feasible, and clinical/correlative outcomes warrant further investigation for treating patients with metastatic melanoma with an immune priming agent.
Collapse
Affiliation(s)
- Joseph Markowitz
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, Florida.
| | | | - Andrew S. Brohl
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Sarcoma Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, Florida.
| | - Amod A. Sarnaik
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, Florida.
| | - Zeynep Eroglu
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, Florida.
| | - Nikhil I. Khushalani
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, Florida.
| | - Christopher W. Dukes
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Alejandra Chamizo
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | | | | | | | - Pei-Ling Chen
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, Florida.
| | - Deanryan B. De Aquino
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Vernon K. Sondak
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, Florida.
| | - Ahmad A. Tarhini
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, Florida.
| | - Youngchul Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | | | - Shari Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, Florida.
| |
Collapse
|
2
|
Gupta S, Yadav S, Kumar P. Efficacy of Bacillus Calmette-Guérin in Cancer Prevention and Its Putative Mechanisms. J Cancer Prev 2024; 29:6-15. [PMID: 38567111 PMCID: PMC10982520 DOI: 10.15430/jcp.23.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Bacillus Calmette-Guérin (BCG) is an attenuated strain of Mycobacterium bovis. Although it was developed as a prophylactic vaccine against tuberculosis (TB), researchers have also evaluated it for preventing cancer development or progression. These studies were inspired by the available data regarding the protective effects of microbial infection against cancers and an inverse relationship between TB and cancer mortality. Initial studies demonstrated the efficacy of BCG in preventing leukemia, melanoma and a few other cancers. However, mixed results were observed in later studies. Importantly, these studies have led to the successful use of BCG in the tertiary prevention of non-muscle invasive bladder cancer, wherein BCG therapy has been found to be more effective than chemotherapy. Moreover, in a recently published 60-year follow-up study, childhood BCG vaccination has been found to significantly prevent lung cancer development. In the present manuscript, we reviewed the studies evaluating the efficacy of BCG in cancer prevention and discussed its putative mechanisms. Also, we sought to explain the mixed results of BCG efficacy in preventing different cancers.
Collapse
Affiliation(s)
- Sakshi Gupta
- Department of Preventive Oncology (Dr. BRA-IRCH), All India Institute of Medical Sciences, New Delhi, India
| | - Saurabh Yadav
- Department of Preventive Oncology (Dr. BRA-IRCH), All India Institute of Medical Sciences, New Delhi, India
| | - Pawan Kumar
- Department of Preventive Oncology (Dr. BRA-IRCH), All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Aronson NE, Billick K. Intralesional Antimonial Drug Treatment for Leishmania braziliensis Cutaneous Leishmaniasis: The Knowns and the Unknowns. Clin Infect Dis 2023; 77:583-588. [PMID: 37185765 DOI: 10.1093/cid/ciad248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/28/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023] Open
Affiliation(s)
- Naomi E Aronson
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Kendall Billick
- Division of Dermatology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Venzel R, Campos MCP, de Oliveira LP, Dan Lins RV, Siena ÁDD, Mesquita KT, Moreira Dos Santos TP, Nohata N, Arruda LCM, Sales-Campos H, Neto MPC. Clinical and molecular overview of immunotherapeutic approaches for malignant skin melanoma: Past, present and future. Crit Rev Oncol Hematol 2023; 186:103988. [PMID: 37086955 DOI: 10.1016/j.critrevonc.2023.103988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 04/24/2023] Open
Abstract
Traditional therapeutic approaches for malignant melanoma, have proved to be limited and/or ineffective, especially with respect to their role in improving patient survival and tumor recurrence. In this regard, immunotherapy has been demonstrated to be a promising therapeutic alternative, boosting antitumor responses through the modulation of cell signaling pathways involved in the effector mechanisms of the immune system, particularly, the so-called "immunological checkpoints". Clinical studies on the efficacy and safety of immunotherapeutic regimens, alone or in combination with other antitumor approaches, have increased dramatically in recent decades, with very encouraging results. Hence, this review will discuss the current immunotherapeutic regimens used to treat malignant melanoma, as well as the molecular and cellular mechanisms involved. In addition, current clinical studies that have investigated the use, efficacy, and adverse events of immunotherapy in melanoma will also be discussed.
Collapse
Affiliation(s)
- Raphaelly Venzel
- Institute of Health and Biotechnology, Federal University of Amazonas, Coari, Brazil
| | | | | | | | | | | | - Tálita Pollyana Moreira Dos Santos
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA; Head & Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Nijiro Nohata
- Oncology Science Unit, MSD K.K, Chiyoda-ku, Tokyo, Japan
| | | | - Helioswilton Sales-Campos
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, GO, Brazil
| | | |
Collapse
|
5
|
Synergistic In Vitro Anticancer Toxicity of Pulsed Electric Fields and Glutathione. Int J Mol Sci 2022; 23:ijms232314772. [PMID: 36499100 PMCID: PMC9739270 DOI: 10.3390/ijms232314772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Despite continuous advancement in skin cancer therapy, the disease is still fatal in many patients, demonstrating the need to improve existing therapies, such as electrochemotherapy (ECT). ECT can be applied in the palliative or curative setting and is based on the application of pulsed electric fields (PEF), which by themselves exerts none to low cancer toxicity but become potently toxic when combined with low-dosed chemotherapeutics such as bleomycin and cisplatin. Albeit their favorable side-effect profiles, not all patients respond to standard ECT, and some responders experience tumor recurrence. To identify potential adjuvant or alternative agents to standard electrochemotherapy, we explored the possibility of combining PEF with a physiological compound, glutathione (GSH), to amplify anticancer toxicity. GSH is an endogenous antioxidant and is available as a dietary supplement. Surprisingly, neither GSH nor PEF mono treatment but GSH + PEF combination treatment exerted strong cytotoxic effects and declined metabolic activity in four skin cancer cell lines in vitro. The potential applicability to other tumor cells was verified by corroborating results in two leukemia cell lines. Strikingly, GSH + PEF treatment did not immediately increase intracellular GSH levels, while levels 24 h following treatment were enhanced. Similar tendencies were made for intracellular reactive oxygen species (ROS) levels, while extracellular ROS increased following combination treatment. ROS levels and the degree of cytotoxicity could be partially reversed by pre-incubating cells with the NADPH-oxidase (NOX) inhibitor diphenyleneiodonium (DPI) and the H2O2-degrading enzyme catalase. Collectively, our findings suggest a promising new "endogenous" drug to be combined with PEF for future anticancer research approaches.
Collapse
|
6
|
Detailed Structural Analysis of the Immunoregulatory Polysaccharides from the Mycobacterium Bovis BCG. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175691. [PMID: 36080458 PMCID: PMC9458083 DOI: 10.3390/molecules27175691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
Abstract
Bacillus Calmette-Guérin polysaccharide and nucleic acid (BCG-PSN), extracted from Mycobacterium bovis, is an immunoregulatory medicine commonly used in clinic. However, the structural characteristics and potential pharmacological efficacy of the polysaccharides from BCG-PSN remain unclear. Herein, two polysaccharides (BCG-1 and BCG-2) were purified and their structures were characterized. Monosaccharide composition analysis combined with methylation analysis and NMR data indicated that BCG-1 and BCG-2 were an α-D-(1→4)-mannan with (1→2)-linked branches, and an α-D-(1→4)-glucan with (1→6)-linked branches, respectively. Herein, the mannan from BCG-PSN was first reported. Bioactivity assays showed that BCG-1 and BCG-2 dose-dependently and potently increased the production of inflammatory mediators (NO, TNF-α, IL-6, IL-1β, and IL-10), as well as their mRNA expressions in RAW264.7 cells; both have similar or stronger effects compared with BCG-PSN injection. These data suggest that BCG-1 and BCG-2 are very likely the active ingredients of BCG-PSN.
Collapse
|
7
|
Hanania HL, Lewis DJ. Combination regimens and immunologic mechanisms to enhance the efficacy of cemiplimab for cutaneous squamous cell carcinoma. Expert Rev Anticancer Ther 2021; 22:237-238. [PMID: 34918605 DOI: 10.1080/14737140.2022.2020652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hannah L Hanania
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Daniel J Lewis
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Hope A, Wade SJ, Aghmesheh M, Vine KL. Localized delivery of immunotherapy via implantable scaffolds for breast cancer treatment. J Control Release 2021; 341:399-413. [PMID: 34863842 DOI: 10.1016/j.jconrel.2021.11.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer remains a leading global cause of morbidity and mortality. While the field of immunotherapy is a promising avenue of investigation and has revolutionized the standard of care for melanoma and lung cancer, modest response rates and a high incidence of immune-related adverse events often necessitate the administration of a sub-therapeutic dose or treatment cessation. Injectable and implantable drug delivery devices present a novel strategy to achieve sustained delivery of potent concentrations of drug directly to the tumor site and minimize systemic toxicity. This review will address the current limitations with conventional immunotherapy for breast cancer treatment, and the recent developments and future prospects in localized delivery strategies. We describe implantable scaffolds and injectable biomaterials for the localized delivery of immunotherapy, which can improve the safety and efficacy of immunotherapies. We discuss the limitations of these delivery systems, such as the influence of shape and material type on drug release and tumor uptake. The challenges of clinical translation, such as the availability of appropriate preclinical animal models and accurate reporting are also discussed. Considerations of these issues will pave the way for effective new therapies that will improve treatment response, patient survival and quality of life for breast cancer patients.
Collapse
Affiliation(s)
- Ashleigh Hope
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, NSW, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Samantha J Wade
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, NSW, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Morteza Aghmesheh
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Illawarra Cancer Care Centre, Illawarra Shoalhaven Local Health District, Wollongong Hospital, Wollongong, NSW, Australia
| | - Kara L Vine
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, NSW, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.
| |
Collapse
|
9
|
Lazarus HM, Ragsdale CE, Gale RP, Lyman GH. Sargramostim (rhu GM-CSF) as Cancer Therapy (Systematic Review) and An Immunomodulator. A Drug Before Its Time? Front Immunol 2021; 12:706186. [PMID: 34484202 PMCID: PMC8416151 DOI: 10.3389/fimmu.2021.706186] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/26/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Sargramostim [recombinant human granulocyte-macrophage colony-stimulating factor (rhu GM-CSF)] was approved by US FDA in 1991 to accelerate bone marrow recovery in diverse settings of bone marrow failure and is designated on the list of FDA Essential Medicines, Medical Countermeasures, and Critical Inputs. Other important biological activities including accelerating tissue repair and modulating host immunity to infection and cancer via the innate and adaptive immune systems are reported in pre-clinical models but incompletely studied in humans. OBJECTIVE Assess safety and efficacy of sargramostim in cancer and other diverse experimental and clinical settings. METHODS AND RESULTS We systematically reviewed PubMed, Cochrane and TRIP databases for clinical data on sargramostim in cancer. In a variety of settings, sargramostim after exposure to bone marrow-suppressing agents accelerated hematologic recovery resulting in fewer infections, less therapy-related toxicity and sometimes improved survival. As an immune modulator, sargramostim also enhanced anti-cancer responses in solid cancers when combined with conventional therapies, for example with immune checkpoint inhibitors and monoclonal antibodies. CONCLUSIONS Sargramostim accelerates hematologic recovery in diverse clinical settings and enhances anti-cancer responses with a favorable safety profile. Uses other than in hematologic recovery are less-well studied; more data are needed on immune-enhancing benefits. We envision significantly expanded use of sargramostim in varied immune settings. Sargramostim has the potential to reverse the immune suppression associated with sepsis, trauma, acute respiratory distress syndrome (ARDS) and COVID-19. Further, sargramostim therapy has been promising in the adjuvant setting with vaccines and for anti-microbial-resistant infections and treating autoimmune pulmonary alveolar proteinosis and gastrointestinal, peripheral arterial and neuro-inflammatory diseases. It also may be useful as an adjuvant in anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Hillard M. Lazarus
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | | | - Robert Peter Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Gary H. Lyman
- Public Health Sciences and Clinical Research Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
10
|
Zawit M, Swami U, Awada H, Arnouk J, Milhem M, Zakharia Y. Current status of intralesional agents in treatment of malignant melanoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1038. [PMID: 34277838 PMCID: PMC8267328 DOI: 10.21037/atm-21-491] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/16/2021] [Indexed: 12/22/2022]
Abstract
Prognosis of metastatic melanoma has undergone substantial improvement with the discovery of checkpoint inhibitors. Immunotherapies and targeted therapies have improved the median overall survival (OS) of metastatic melanoma from 6 months to more than 3 years. However, still about half of the patients die due to uncontrolled disease. Therefore, multiple strategies are currently being investigated to improve outcomes. One such strategy is intralesional/intratumoral (IT) therapies which can either directly kill the tumor cells or make the tumor more immunogenic to be recognized by the immune system. Talimogene laherparepvec (T-VEC), an oncolytic virus, is the first FDA approved IT therapy. This review focuses on the current status of IT agents currently under clinical trials in melanoma. Reviewed therapies include T-VEC, T-VEC with immune checkpoint inhibitors including ipilimumab and pembrolizumab or other agents, RP1, OrienX010, Canerpaturev (C-REV, HF10), CAVATAK (coxsackievirus A21, CVA21) alone or in combination with checkpoint inhibitors, oncolytic polio/rhinovirus recombinant (PVSRIPO), MAGE-A3-expressing MG1 Maraba virus, VSV-IFNbetaTYRP1, suicide gene therapy, ONCOS-102, OBP-301 (Telomelysin), Stimulation of Interferon Genes Pathway (STING agonists) including DMXAA, MIW815 (ADU-S100) and MK-1454, PV-10, toll-like receptors (TLRs) agonists including TLR-9 agonists (SD-101, CMP-001, IMO-2125 or tilsotolimod, AST-008 or cavrotolimod, MGN1703 or lefitolimod), CV8102, NKTR-262 plus NKTR-214, LHC165, G100, intralesional interleukin-2, Daromun (L19IL2 plus L19TNF), Hiltonol (poly-ICLC), electroporation including calcium electroporation and plasmid interleukin-12 electroporation (pIL-12 EP), IT ipilimumab, INT230-6 (cisplatin and vinblastine with an amphiphilic penetration enhancer), TTI-621 (SIRPαFc), CD-40 agonistic antibodies (ABBV-927 and APX005M), antimicrobial peptide LL37 and other miscellaneous agents.
Collapse
Affiliation(s)
- Misam Zawit
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Umang Swami
- Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Hassan Awada
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Joyce Arnouk
- Division of Hematology, Oncology and Blood and Marrow Transplantation and the Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Mohammed Milhem
- Division of Hematology, Oncology and Blood and Marrow Transplantation and the Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Yousef Zakharia
- Division of Hematology, Oncology and Blood and Marrow Transplantation and the Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
11
|
Singh AK, Netea MG, Bishai WR. BCG turns 100: its nontraditional uses against viruses, cancer, and immunologic diseases. J Clin Invest 2021; 131:e148291. [PMID: 34060492 DOI: 10.1172/jci148291] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
First administered to a human subject as a tuberculosis (TB) vaccine on July 18, 1921, Bacillus Calmette-Guérin (BCG) has a long history of use for the prevention of TB and later the immunotherapy of bladder cancer. For TB prevention, BCG is given to infants born globally across over 180 countries and has been in use since the late 1920s. With about 352 million BCG doses procured annually and tens of billions of doses having been administered over the past century, it is estimated to be the most widely used vaccine in human history. While its roles for TB prevention and bladder cancer immunotherapy are widely appreciated, over the past century, BCG has been also studied for nontraditional purposes, which include (a) prevention of viral infections and nontuberculous mycobacterial infections, (b) cancer immunotherapy aside from bladder cancer, and (c) immunologic diseases, including multiple sclerosis, type 1 diabetes, and atopic diseases. The basis for these heterologous effects lies in the ability of BCG to alter immunologic set points via heterologous T cell immunity, as well as epigenetic and metabolomic changes in innate immune cells, a process called "trained immunity." In this Review, we provide an overview of what is known regarding the trained immunity mechanism of heterologous protection, and we describe the current knowledge base for these nontraditional uses of BCG.
Collapse
Affiliation(s)
- Alok K Singh
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - William R Bishai
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Vidovic D, Simms GA, Pasternak S, Walsh M, Peltekian K, Stein J, Helyer LK, Giacomantonio CA. Case Report: Combined Intra-Lesional IL-2 and Topical Imiquimod Safely and Effectively Clears Multi-Focal, High Grade Cutaneous Squamous Cell Cancer in a Combined Liver and Kidney Transplant Patient. Front Immunol 2021; 12:678028. [PMID: 34122442 PMCID: PMC8190543 DOI: 10.3389/fimmu.2021.678028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/07/2021] [Indexed: 01/04/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common non-melanoma skin cancer worldwide, with ever increasing incidence and mortality. While most patients can be treated successfully with surgical excision, cryotherapy, or radiation therapy, there exist a subset of patients with aggressive cSCC who lack adequate therapies. Among these patients are solid organ transplant recipients who due to their immunosuppression, develop cSCC at a dramatically increased rate compared to the normal population. The enhanced ability of the tumor to effectively undergo immune escape in these patients leads to more aggressive tumors with a propensity to recur and metastasize. Herein, we present a case of aggressive, multi-focal cSCC in a double organ transplant recipient to frame our discussion and current understanding of the immunobiology of cSCC. We consider factors that contribute to the significantly increased incidence of cSCC in the context of immunosuppression in this patient population. Finally, we briefly review current literature describing experience with localized therapies for cSCC and present a strong argument and rationale for consideration of an IL-2 based intra-lesional treatment strategy for cSCC, particularly in this immunosuppressed patient population.
Collapse
Affiliation(s)
- Dejan Vidovic
- Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax Regional Municipality, NS, Canada
| | - Gordon A. Simms
- Faculty of Medicine, Dalhousie University, Halifax Regional Municipality, NS, Canada
| | - Sylvia Pasternak
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, Dalhousie University, Halifax Regional Municipality, NS, Canada
| | - Mark Walsh
- Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax Regional Municipality, NS, Canada
| | - Kevork Peltekian
- Department of Medicine, Faculty of Medicine, Dalhousie University, Halifax Regional Municipality, NS, Canada
| | - John Stein
- Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax Regional Municipality, NS, Canada
| | - Lucy K. Helyer
- Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax Regional Municipality, NS, Canada
| | - Carman A. Giacomantonio
- Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax Regional Municipality, NS, Canada
| |
Collapse
|
13
|
Zhu P, Hou Y, Tang M, Jin Z, Yu Y, Li D, Yan D, Dong Z. The role of HIF-1α in BCG-stimulated macrophages polarization and their tumoricidal effects in vitro. Med Microbiol Immunol 2021; 210:149-156. [PMID: 33974122 DOI: 10.1007/s00430-021-00708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 04/04/2021] [Indexed: 11/27/2022]
Abstract
BCG is widely used for cancer treatment, where macrophages play an important role. However, the mechanism of BCG affecting macrophages remains poorly understood. In this study, we used BCG to stimulate myeloid-derived macrophages lacking HIF-1α, the levels of TNF-α, IL-1β, CD86 of macrophages and their effects on the growth of tumor cells MCA207 and B16-F10 were detected. We found that the absence of HIF-1α prevents BCG-stimulated macrophages from polarizing towards the M (BCG) and attenuating its killing effect on tumor cells. In addition, we demonstrated that the tumors of mice lacking HIF-1α in macrophages were significantly increased by the experiment of mice transplantation. Our study provides relevant evidence for exploring the mechanism of the BCG vaccine in the prevention and treatment of related diseases.
Collapse
Affiliation(s)
- Pei Zhu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yuyang Hou
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Mengyan Tang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zheng Jin
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Youran Yu
- Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Dong Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| | - Zehua Dong
- Department of critical care medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
14
|
Squarzanti DF, Zavattaro E, Pizzimenti S, Amoruso A, Savoia P, Azzimonti B. Non-Melanoma Skin Cancer: news from microbiota research. Crit Rev Microbiol 2020; 46:433-449. [PMID: 32692305 DOI: 10.1080/1040841x.2020.1794792] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recently, research has been deeply focusing on the role of the microbiota in numerous diseases, either affecting the skin or other organs. What it is well established is that its dysregulation promotes several cutaneous disorders (i.e. psoriasis and atopic dermatitis). To date, little is known about its composition, mediators and role in the genesis, progression and response to therapy of Non-Melanoma Skin Cancer (NMSC). Starting from a bibliographic study, we classified the selected articles into four sections: i) normal skin microbiota; ii) in vitro study models; iii) microbiota and NMSC and iv) probiotics, antibiotics and NMSC. What has emerged is how skin microflora changes, mainly represented by increases of Staphylococcus aureus, Streptococcus pyogenes and Pseudomonas aeruginosa strains, modifications in the mutual quantity of β-Human papillomavirus genotypes, of Epstein Barr Virus and Malassezia or candidiasis, may contribute to the induction of a state of chronic self-maintaining inflammation, leading to cancer. In this context, the role of S. aureus and that of specific antimicrobial peptides look to be prominent. Moreover, although antibiotics may contribute to carcinogenesis, due to their ability to influence the microbiota balance, specific probiotics, such as Lacticaseibacillus rhamnosus GG, Lactobacillus johnsonii NCC 533 and Bifidobacteria spp., may be protective.
Collapse
Affiliation(s)
- Diletta Francesca Squarzanti
- Department of Health Sciences (DiSS), University of Piemonte Orientale (UPO), Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), DiSS, UPO, Novara, Italy
| | - Elisa Zavattaro
- Department of Translational Medicine (DiMeT), UPO, Novara, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences (DSCB), University of Turin, Turin, Italy
| | | | - Paola Savoia
- Department of Health Sciences (DiSS), University of Piemonte Orientale (UPO), Novara, Italy
| | - Barbara Azzimonti
- Department of Health Sciences (DiSS), University of Piemonte Orientale (UPO), Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), DiSS, UPO, Novara, Italy
| |
Collapse
|
15
|
Local and Recurrent Regional Metastases of Melanoma. CUTANEOUS MELANOMA 2020. [PMCID: PMC7123735 DOI: 10.1007/978-3-030-05070-2_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Up to 10% of patients with cutaneous melanoma will develop recurrent locoregional disease. While surgical resection remains the mainstay of treatment for isolated recurrences, locoregional melanoma can often present as bulky, unresectable disease and can pose a significant therapeutic challenge. This chapter focuses on the natural history of local and regionally recurrent metastases and the multiple treatment modalities which exist for advanced locoregional melanoma, including regional perfusion procedures such as hyperthermic isolated limb perfusion and isolated limb infusion, intralesional therapies, and neo-adjuvant systemic therapy strategies for borderline resectable regional disease. Hyperthermic limb perfusion (HILP) and isolated limb infusion (ILI) are generally well-tolerated and have shown overall response rates between 44% and 90%. Intralesional therapies also appear to be well-tolerated as adverse events are usually limited to the site of injection and minor transient flu-like symptoms. Systemic targeted therapies have shown to have response rates up to 85% when used as neoadjuvant therapy in patients with borderline resectable disease. While combination immunotherapy in the neoadjuvant setting has also shown promising results, this data has not yet matured.
Collapse
|
16
|
Teras J, Kroon HM, Thompson JF, Teras M, Pata P, Mägi A, Teras RM, Boudinot SR. First Eastern European experience of isolated limb infusion for in-transit metastatic melanoma confined to the limb: Is it still an effective treatment option in the modern era? Eur J Surg Oncol 2019; 46:272-276. [PMID: 31748147 DOI: 10.1016/j.ejso.2019.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/14/2019] [Accepted: 10/30/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Isolated limb infusion (ILI) with cytotoxic agents is a simple and effective treatment option for patients with melanoma in-transit metastases (ITMs) confined to an extremity. Data for ILIs performed in Europe are sparse and to date no Eastern European ILI experience has been reported. The aim of the current study was to evaluate the efficacy of ILI in Estonia. PATIENTS AND METHODS Data for twenty-one patients were collected and analysed. All patients had melanoma ITMs and underwent an ILI between January 2012 and May 2018. The cytotoxic drug combination of melphalan and actinomycin-D was used. Drug circulation times were 20-30 min under mildly hyperthermic conditions (38-39 °C). Primary outcome measures were treatment response and overall survival. RESULTS Nineteen lower limb and two upper limb ILIs were performed. The female to male ratio was 18:3. The overall response rate (complete + partial response) was 76% (n = 16), with a complete response in 38% (n = 8). The overall long-term limb salvage rate was 90% (n = 19). During follow-up, eight patients (38%) died, two due to metastatic melanoma. Five-year overall survival was 57%. CONCLUSION This first Eastern European report of ILI for melanoma ITMs shows results comparable to those from other parts of the world. In this era of effective targeted and immune therapies, ILI remains a useful treatment option, with a high overall response rate and durable responses in patients with melanoma ITMs confined to a limb.
Collapse
Affiliation(s)
- Jüri Teras
- North Estonian Medical Centre Foundation, Tallinn, Estonia; Tallinn University of Technology, Tallinn, Estonia.
| | - Hidde M Kroon
- Department of Surgery, Royal Adelaide Hospital, Adelaide, SA, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - John F Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Discipline of Surgery, The University of Sydney, Sydney, NSW, Australia
| | - Marina Teras
- North Estonian Medical Centre Foundation, Tallinn, Estonia; Tallinn University of Technology, Tallinn, Estonia
| | - Pille Pata
- Tallinn University of Technology, Tallinn, Estonia; IVEX Lab, Tallinn, Estonia
| | | | - Roland M Teras
- North Estonian Medical Centre Foundation, Tallinn, Estonia
| | | |
Collapse
|
17
|
Abstract
Advanced/metastatic melanoma is an aggressive cancer with a low survival rate. Traditional cytotoxic chemotherapies do not appreciably extend life and systemic cytokine/chemokine administration produces toxic side effects. By harnessing the surveillance and cytotoxic features of the immune system, immunotherapies can provide a durable response and are proved to improve disease outcomes in patients with advanced/metastatic melanoma and other cancers. Close monitoring is necessary, however, to identify and treat immune system-related adverse events before they become life-threatening. Because metastatic lesions can respond differently to immunotherapies, modified response criteria have been developed to assist physicians in tracking patient response to treatment.
Collapse
Affiliation(s)
- Adedayo A Onitilo
- Department of Hematology/Oncology, Marshfield Clinic - Weston Center, 3501 Cranberry Boulevard, Weston, WI 54476, USA.
| | - Jaimie A Wittig
- Pharmacy Services, Marshfield Medical Center, 1000 North Oak Avenue, Marshfield, WI 54449, USA
| |
Collapse
|
18
|
Benitez MLR, Bender CB, Oliveira TL, Schachtschneider KM, Collares T, Seixas FK. Mycobacterium bovis BCG in metastatic melanoma therapy. Appl Microbiol Biotechnol 2019; 103:7903-7916. [PMID: 31402426 DOI: 10.1007/s00253-019-10057-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022]
Abstract
Melanoma is the most aggressive form of skin cancer, with a high mortality rate and with 96,480 new cases expected in 2019 in the USS. BRAFV600E, the most common driver mutation, is found in around 50% of melanomas, contributing to tumor growth, angiogenesis, and metastatic progression. Dacarbazine (DTIC), an alkylate agent, was the first chemotherapeutic agent approved by the US Food and Drug Administration (FDA) used as a standard treatment. Since then, immunotherapies have been approved for metastatic melanoma (MM) including ipilimumab and pembrolizumab checkpoint inhibitors that help decrease the risk of progression. Moreover, Mycobacterium bovis Bacillus Calmette-Guerin (BCG) serves as an adjuvant therapy that induces the recruitment of natural killer NK, CD4+, and CD8+ T cells and contributes to antitumor immunity. BCG can be administered in combination with chemotherapeutic and immunotherapeutic agents and can be genetically manipulated to produce recombinant BCG (rBCG) strains that express heterologous proteins or overexpress immunogenic proteins, increasing the immune response and improving patient survival. In this review, we highlight several studies utilizing rBCG immunotherapy for MM in combination with other therapeutic agents.
Collapse
Affiliation(s)
- Martha Lucia Ruiz Benitez
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Camila Bonnemann Bender
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Thaís Larré Oliveira
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Tiago Collares
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fabiana Kömmling Seixas
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
19
|
Vrielink OM, Kruijff S, van Leeuwen BL, Roodenburg JL. Application of CO 2 laser evaporation in locally advanced melanoma. Melanoma Manag 2019; 6:MMT14. [PMID: 31236206 PMCID: PMC6582456 DOI: 10.2217/mmt-2018-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/18/2019] [Indexed: 11/21/2022] Open
Abstract
Aim This study aims to investigate the role of CO2 laser evaporation in the treatment of melanoma patients with satellite or in-transit metastases. Materials & methods Patients who underwent CO2 laser evaporation were retrospectively included between November 2002 and August 2018. The Sharplan 40C CO2 laser was used with a high pulse wave mode. Data concerning patient and tumor characteristics, CO2 laser evaporation and subsequent therapies were collected. Results A total of 26 patients were included. Median duration of local control was 5.5 months. The median number of lesions evaporated per treatment was three (1-16); patients received a median of three (1-19) treatments. Conclusion In a selected group of melanoma patients with satellite or in-transit metastases, CO2 laser evaporation should be considered as treatment for local control.
Collapse
Affiliation(s)
- Otis M Vrielink
- Department of Surgery, Division of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Surgery, Division of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Schelto Kruijff
- Department of Surgery, Division of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Surgery, Division of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Barbara L van Leeuwen
- Department of Surgery, Division of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Surgery, Division of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Ln Roodenburg
- Department of Oral & Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Oral & Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
20
|
Langan EA, Kümpers C, Graetz V, Perner S, Zillikens D, Terheyden P. Intralesional interleukin‐2: A novel option to maximize response to systemic immune checkpoint therapy in loco‐regional metastatic melanoma. Dermatol Ther 2019; 32:e12901. [DOI: 10.1111/dth.12901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/05/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Ewan A. Langan
- Department of DermatologyUniversity of Luebeck Lubeck Germany
- Department of Dermatological ScienceUniversity of Manchester Manchester United Kingdom
| | - Christiane Kümpers
- Department of Pathology of the University Hospital Schleswig‐Holstein, Campus Luebeck and the Research Center Borstel, Leibniz Lung Center, Luebeck and Borstel Lubeck Germany
| | - Victoria Graetz
- Department of DermatologyUniversity of Luebeck Lubeck Germany
| | - Sven Perner
- Department of Pathology of the University Hospital Schleswig‐Holstein, Campus Luebeck and the Research Center Borstel, Leibniz Lung Center, Luebeck and Borstel Lubeck Germany
| | | | | |
Collapse
|
21
|
Sun W, Shi T, Luo L, Chen X, Lv P, Lv Y, Zhuang Y, Zhu J, Liu G, Chen X, Chen H. Monodisperse and Uniform Mesoporous Silicate Nanosensitizers Achieve Low-Dose X-Ray-Induced Deep-Penetrating Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808024. [PMID: 30848541 DOI: 10.1002/adma.201808024] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/25/2019] [Indexed: 05/17/2023]
Abstract
X-ray-induced photodynamic therapy (X-PDT) combines both the advantages of radiotherapy (RT) and PDT, and has considerable potential applications in clinical deep-penetrating cancer therapy. However, it is still a major challenge to prepare monodisperse nanoscintillators with uniform size and high light yield. In this study, a general and rapid synthesis method is presented that can achieve large-scale preparation of monodisperse and uniform silicate nanoscintillators. By simply adjusting the metal dopants, silicate nanoscintillators with controllable size and X-ray-excited optical luminescence (450-900 nm) are synthesized by employing a general ion-incorporated silica-templating method. To make full use of external radiation, the silicate nanoscintillators are conjugated with photosensitizer rose bengal and arginylglycylaspartic acid (RGD) peptide, making them intrinsically dual-modal targeted imaging probes. Both in vitro and in vivo experiments demonstrate that the silicate nanosensitizers can accumulate effectively in tumors and achieve significant inhibitory effect on tumor progression under low-dose X-ray irradiation, while minimally affecting normal tissues. The insights gained in this study may provide an attractive route to synthesize nanosensitizers to overcome some of the limitations of RT and PDT in cancer treatment.
Collapse
Affiliation(s)
- Wenjing Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Tianhang Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Li Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xiaomei Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Peng Lv
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ying Lv
- College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yixi Zhuang
- College of Materials, Xiamen University, Xiamen, 361005, China
| | - Jinjie Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Hongmin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
22
|
Russo I, Sernicola A, Alaibac M. Recent advances in localized immunotherapy of skin cancers. Immunotherapy 2019; 11:443-456. [PMID: 30786845 DOI: 10.2217/imt-2018-0139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Skin cancer is the most frequent malignancy in humans. The immune system has long been known to have an important role in defeating cancer. Immunotherapy, which includes various strategies to enhance tumor immunity, currently represents an exciting option for the treatment of skin cancers. Local immunotherapy is a promising therapeutic approach and may improve response rates without inducing systemic toxicity. Here, we review the main localized immunotherapies for the management of skin cancer with a special focus on advanced melanoma, nonmelanoma skin cancer and primary cutaneous lymphoma.
Collapse
Affiliation(s)
- Irene Russo
- Unit of Dermatology, University of Padua, Via Gallucci 4, Padova 35128, Italy
| | - Alvise Sernicola
- Unit of Dermatology, University of Padua, Via Gallucci 4, Padova 35128, Italy
| | - Mauro Alaibac
- Unit of Dermatology, University of Padua, Via Gallucci 4, Padova 35128, Italy
| |
Collapse
|
23
|
Rothermel LD, Zager JS. Engineered oncolytic viruses to treat melanoma: where are we now and what comes next? Expert Opin Biol Ther 2018; 18:1199-1207. [PMID: 30392405 DOI: 10.1080/14712598.2018.1544614] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Melanoma treatments have evolved rapidly in the past decade and have included the use of intratumoral injections of engineered oncolytic viruses. One such oncolytic virus is talimogene laherparepvec (T-VEC), which is the first approved therapy of its kind for use in recurrent, unresectable stage IIIB-IVM1a melanoma. Additional oncolytic viruses and their uses in combination with other interventions are currently under investigation. AREAS COVERED Oncolytic viruses are being evaluated as immunotherapies for a variety of advanced malignancies. In this article, we review T-VEC, the only FDA-approved engineered oncolytic virus, in addition to ongoing research regarding other oncolytic viruses for the treatment of advanced melanomas. Finally, we discuss opportunities to improve these therapies through viral, host, and tumor-related modifications. EXPERT OPINION Engineered and naturally oncolytic viruses have demonstrable local and systemic efficacy as immunotherapies in cancer. T-VEC leads the way with improved survival outcomes for unresectable, stage IIIB-IVM1a melanoma as a monotherapy, and is demonstrating superior results in combination with systemic checkpoint inhibitors. Additional viral vectors show acceptable safety profiles and varying degrees of efficacy in targeting melanoma. The indications for use of oncolytic viruses will expand as their efficacy and appropriate usage is better understood in coming years.
Collapse
Affiliation(s)
| | - Jonathan S Zager
- b Department of Cutaneous Oncology and Sarcoma , Moffitt Cancer Center , Tampa , FL , USA
| |
Collapse
|
24
|
Burke EE, Zager JS. Pharmacokinetic drug evaluation of talimogene laherparepvec for the treatment of advanced melanoma. Expert Opin Drug Metab Toxicol 2018; 14:469-473. [PMID: 29557682 DOI: 10.1080/17425255.2018.1455825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Current treatment of advanced melanoma is rapidly changing with the introduction of new and effective therapies including systemic as well as locoregional therapies. An example of one such locoregional therapy is intralesional injection with talimogene laherparepvec (T-VEC). Areas covered: T-VEC has been shown in a number of studies to be an effective treatment for patients with stage IIIB, IIIC and IVM1a melanoma. In this article the effectiveness, pharmacokinetics and safety profile of T-VEC is reviewed. Additionally, new research looking at combinations of T-VEC and systemic immunotherapies is reviewed. Expert opinion: Overall, T-VEC is an easily administered, safe, well tolerated and effective oncolytic viral therapy for the treatment of stage IIIB, IIIC, IVM1a unresectable and injectable metastatic melanoma. Recently published studies are showing promising results when T-VEC is combined with systemic therapy and this may be the way of the not too distant future in how we treat metastatic melanoma. Continued work regarding the use of T-VEC with other systemic agents will provide new and more effective treatment strategies for advanced melanoma.
Collapse
Affiliation(s)
| | - Jonathan S Zager
- b Department of Cutaneous Oncology , Moffitt Cancer Center , Tampa , FL , USA
| |
Collapse
|
25
|
Chiper M, Niederreither K, Zuber G. Transduction Methods for Cytosolic Delivery of Proteins and Bioconjugates into Living Cells. Adv Healthc Mater 2018; 7:e1701040. [PMID: 29205903 DOI: 10.1002/adhm.201701040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/13/2017] [Indexed: 01/05/2023]
Abstract
The human organism and its constituting cells rely on interplay between multiple proteins exerting specific functions. Progress in molecular biotechnologies has facilitated the production of recombinant proteins. When administrated to patients, recombinant proteins can provide important healthcare benefits. To date, most therapeutic proteins must act from the extracellular environment, with their targets being secreted modulators or extracellular receptors. This is because proteins cannot passively diffuse across the plasma membrane into the cytosol. To expand the scope of action of proteins for cytosolic targets (representing more than 40% of the genome) effective methods assisting protein cytosolic entry are being developed. To date, direct protein delivery is extremely tedious and inefficient in cultured cells, even more so in animal models of pathology. Novel techniques are changing this limitation, as recently developed in vitro methods can robustly convey large amount of proteins into cell cultures. Moreover, advances in protein formulation or protein conjugates are slowly, but surely demonstrating efficiency for targeted cytosolic entry of functional protein in vivo in tumor xenograft models. In this review, various methods and recently developed techniques for protein transport into cells are summarized. They are put into perspective to address the challenges encountered during delivery.
Collapse
Affiliation(s)
- Manuela Chiper
- Molecular and Pharmaceutical Engineering of Biologics CNRS—Université de Strasbourg UMR 7242 Boulevard Sebastien Brant F‐67412 Illkirch France
- Faculté de Pharmacie—Université de Strasbourg 74 Route du Rhin F‐67400 Illkirch France
| | - Karen Niederreither
- Developmental Biology and Stem Cells Department Institute of Genetics and Molecular and Cellular Biology (IGBMC) F‐67412 Illkirch France
- Faculté de Chirurgie Dentaire Université de Strasbourg CNRS UMR 7104, INSERM U 964 F‐67000 Strasbourg France
| | - Guy Zuber
- Molecular and Pharmaceutical Engineering of Biologics CNRS—Université de Strasbourg UMR 7242 Boulevard Sebastien Brant F‐67412 Illkirch France
| |
Collapse
|
26
|
Miura JT, Zager JS. Intralesional therapy as a treatment for locoregionally metastatic melanoma. Expert Rev Anticancer Ther 2018; 18:399-408. [PMID: 29466885 DOI: 10.1080/14737140.2018.1444482] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The emergence of novel intralesional therapies have dramatically changed the treatment landscape for melanoma. The heterogeneous presentation of melanoma continues to pose challenges for clinicians, especially when dealing with advanced locoregional disease. Intralesional therapies have the benefit of causing local tumor destruction, while minimizing systemic toxicity. Moreover, the integration of immunotherapeutic agents into intralesional compounds has resulted in the additional benefit of a bystander effect, whereby untreated distant lesions also derive a benefit from treatment. Intralesional therapy has assumed an important role in the management of unresectable, locoregional disease for melanoma. Areas covered: Multiple intralesional agents have been studied over the years, with only a few demonstrating promising results. This review will provide an overview of the different intralesional agents for melanoma. Mechanisms of action, clinical efficacy, and side effects will be the primary focus. Expert commentary: Treatment options for advanced melanoma continue to evolve. Attractive new therapies delivered by an intralesional route has demonstrated promising results, with minimal side effects. The ideal treatment strategy for melanoma will remain a multimodal approach; intralesional therapy provides an additional tool in the treatment armamentarium for melanoma.
Collapse
Affiliation(s)
- John T Miura
- a Departments of Cutaneous Oncology and Sarcoma, Moffitt Cancer Center , University of South Florida School of Medicine , Tampa , FL , USA
| | - Jonathan S Zager
- a Departments of Cutaneous Oncology and Sarcoma, Moffitt Cancer Center , University of South Florida School of Medicine , Tampa , FL , USA
| |
Collapse
|
27
|
Nasr MM, Ebrahim HM, Khattab FM, Marei AM. Bacillus Calmette‐Guerin, polysaccharide nucleic acid in the treatment of cutaneous and oral lichen planus. Dermatol Ther 2018; 31:e12591. [DOI: 10.1111/dth.12591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/22/2017] [Accepted: 11/09/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Mohamad M. Nasr
- Dermatology, Venereology and Andrology, Faculty of MedicineZagazig UniversityZagazig Egypt
| | - Howyda M. Ebrahim
- Dermatology, Venereology and Andrology, Faculty of MedicineZagazig UniversityZagazig Egypt
| | - Fathia M. Khattab
- Dermatology, Venereology and Andrology, Faculty of MedicineZagazig UniversityZagazig Egypt
| | - Ayman M. Marei
- Microbiology, Faculty of MedicineZagazig UniversityZagazig Egypt
| |
Collapse
|
28
|
Electrochemotherapy with anti-PD-1 treatment induced durable complete response in heavily pretreated metastatic melanoma patient. Anticancer Drugs 2018; 29:190-196. [PMID: 29271783 DOI: 10.1097/cad.0000000000000580] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metastatic melanoma (MM) is one of the most lethal types of cancer. Although novel immunotherapeutics have been developed recently, still, these drugs fail to save the lives of a third of MM patients. Electrochemotherapy (ECT) is a local treatment of cancer based on a combination of electroporesis and low-dose chemotherapy. In this case report, we present the treatment history of a MM patient treated successfully with ECT and immunotherapy combination as a fifth-line treatment. Our patient was a 39 year-old woman who was diagnosed with nodulary melanoma stage II. Due to a local recurrence, she was given interferon-α treatment. After 6 months, her disease relapsed in the axillary lymph nodes, and temozolamide treatment 150 mg/m2 was initiated. After six cycles on temozolamide, she progressed both in the axillary site and in the lungs. Her BRAF mutation analysis revealed V600E positivity. Hence, BRAF inhibitor-vemurafenib 2'4 tablets per day was initiated. Within 3 months, she responded dramatically both in the axillary site and in the lungs. At the ninth month of treatment, she progressed again, at which time ipilimumab 3 mg/kg was started as a fourth line treatment. However, shortly after, she progressed again and developed a solitary brain metastasis. She was operated and had whole brain radiotherapy. At that point, nivolumab, an antiprogrammed cell death ligand-1 blocker, was the only remaining option. She showed a biphenotypical response to nivolumab; a mass on the anterior axilla was progressing while the other lymph nodes had regressed. Owing to the accessibility of the subcutaneous lesion with external electrodes, ECT was performed using IGEA Cliniprator device through a hexagonal electrode on the progressive mass, while on nivolumab treatment. A complete response was achieved, with no evidence of disease at 4 years since her local recurrence. Eradication of symptomatic, refractory lesions using ECT meets an important clinical need. Whenever a disseminated disease presents with cutaneous/subcutaneous lesions, high efficacy of ECT should be deployed to augment tumor immunogenicity and complement systemic immunotherapies.
Collapse
|
29
|
Wall L, Baldwin-Medsker A. Safe and Effective Standards of Care: Supporting the Administration of T-VEC for Patients With Advanced Melanoma in the Outpatient Oncology Setting. Clin J Oncol Nurs 2017; 21:E260-E266. [DOI: 10.1188/17.cjon.e260-e266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
MRI-Guided Cryoablation of In-Transit Metastases from Cutaneous Melanoma: A Brief Report on a Preliminary Experience. Cardiovasc Intervent Radiol 2017; 40:1285-1289. [DOI: 10.1007/s00270-017-1645-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/29/2017] [Indexed: 02/02/2023]
|
31
|
An SVM Framework for Malignant Melanoma Detection Based on Optimized HOG Features. COMPUTATION 2017. [DOI: 10.3390/computation5010004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Orloff M. Spotlight on talimogene laherparepvec for the treatment of melanoma lesions in the skin and lymph nodes. Oncolytic Virother 2016; 5:91-98. [PMID: 27785448 PMCID: PMC5063497 DOI: 10.2147/ov.s99532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
On October 27, 2015, talimogene laherparepvec (T-VEC), a first in class intralesional oncolytic virotherapy, was granted the US Food and Drug Administration approval for the treatment of melanoma in the skin and lymph nodes. Its approval has added yet another therapeutic option to the growing list of effective therapies for melanoma. Though the Phase III OPTiM trial has demonstrated its efficacy as a single agent, the target patient population remains narrow. With numerous effective and tolerable treatments available for unresectable and metastatic melanoma, intralesional therapies such as T-VEC are still finding their niche. T-VEC is now widely accepted as option for treatment; however, its combination with various other agents in an effort to expand its use and synergize with other interventions is still being explored. This article will review the pre-clinical and clinical work that eventually led to the Food and Drug Administration approval of this first-in-class agent, as well as address concerns about clinical application and ongoing research.
Collapse
Affiliation(s)
- Marlana Orloff
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|