1
|
Korchinsky N, Davis AM, Boros LG. Nutritional deuterium depletion and health: a scoping review. Metabolomics 2024; 20:117. [PMID: 39397213 PMCID: PMC11471703 DOI: 10.1007/s11306-024-02173-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION Large variations in fatty and amino acid natural 2H/1H ratios in reference with solvent water point to the active involvement of compartmental, inter- and intramolecular deuterium disequilibrium in adaptive biology. Yet, the human deutenome is an untapped area of energy metabolism and health in humans. OBJECTIVES The purpose of this scoping review is to examine health effects through deuterium homeostasis using deuterium-depleted water and/or a deuterium-depleted diet. We also aim to reveal health effects of nutritional, metabolic and exercise ketosis, i.e. complete mitochondrial fatty acid oxidation with the production of deuterium depleted (deupleted) metabolic water. METHODS A protocol process approach was used to retrieve current research in deuterium depletion according to the preferred reporting items protocol for systematic reviews and meta-analyses, extension for scoping reviews with checklist (PRISMA-ScR). RESULTS Fifteen research articles were used. All retrieved articles were heterogenous in nature and additional themes did not evolve. Deuterium depletion was found to have beneficial health effects in the following conditions: cancer prevention, cancer treatment, depression, diabetes, long-term memory, anti-aging, and sports performance. Deutenomics is actively pursued in drug research and there are biomarker roles attributed to large natural variations with adaptive significance in biology. CONCLUSION Even with limited data, consistent deuterium depletion can be seen across all conditions reviewed. More randomized control trials are recommended to confirm cause and effect for translationally and clinically informed integrative nutrition-based medical interventions.
Collapse
Affiliation(s)
- Nicole Korchinsky
- Department of Nutrition, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA.
| | - Anne M Davis
- Department of Nutrition, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - László G Boros
- Deutenomics Science Institute, Los Angeles, CA, USA
- Harbor-UCLA Medical Center, UCLA School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
2
|
Yasuda T, Nakajima N, Ogi T, Yanaka T, Tanaka I, Gotoh T, Kagawa W, Sugasawa K, Tajima K. Heavy water inhibits DNA double-strand break repairs and disturbs cellular transcription, presumably via quantum-level mechanisms of kinetic isotope effects on hydrolytic enzyme reactions. PLoS One 2024; 19:e0309689. [PMID: 39361575 PMCID: PMC11449287 DOI: 10.1371/journal.pone.0309689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/16/2024] [Indexed: 10/05/2024] Open
Abstract
Heavy water, containing the heavy hydrogen isotope, is toxic to cells, although the underlying mechanism remains incompletely understood. In addition, certain enzymatic proton transfer reactions exhibit kinetic isotope effects attributed to hydrogen isotopes and their temperature dependencies, indicative of quantum tunneling phenomena. However, the correlation between the biological effects of heavy water and the kinetic isotope effects mediated by hydrogen isotopes remains elusive. In this study, we elucidated the kinetic isotope effects arising from hydrogen isotopes of water and their temperature dependencies in vitro, focusing on deacetylation, DNA cleavage, and protein cleavage, which are crucial enzymatic reactions mediated by hydrolysis. Intriguingly, the intracellular isotope effects of heavy water, related to the in vitro kinetic isotope effects, significantly impeded multiple DNA double-strand break repair mechanisms crucial for cell survival. Additionally, heavy water exposure enhanced histone acetylation and associated transcriptional activation in cells, consistent with the in vitro kinetic isotope effects observed in histone deacetylation reactions. Moreover, as observed for the in vitro kinetic isotope effects, the cytotoxic effect on cell proliferation induced by heavy water exhibited temperature-dependency. These findings reveal the substantial impact of heavy water-induced isotope effects on cellular functions governed by hydrolytic enzymatic reactions, potentially mediated by quantum-level mechanisms underlying kinetic isotope effects.
Collapse
Affiliation(s)
- Takeshi Yasuda
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Nakako Nakajima
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Tomoko Yanaka
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Izumi Tanaka
- Institute for Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takaya Gotoh
- Department of Health Science, Daito Bunka University, Saitama, Japan
| | - Wataru Kagawa
- Department of Interdisciplinary Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, Tokyo, Japan
| | - Kaoru Sugasawa
- Biosignal Research Center, and Graduate School of Science, Kobe University, Kobe, Japan
| | - Katsushi Tajima
- Department of Hematology, Yamagata Prefectural Central Hospital, Yamagata, Japan
| |
Collapse
|
3
|
Kondo M, Sawada K, Matsuda Y, Abe M, Sanechika N, Takanashi Y, Mori Y, Kimura M, Toyoda M. Study of the Effects of Deuterium-Depleted Water on the Expression of GLUT4 and Insulin Resistance in the Muscle Cell Line C2C12. Biomedicines 2024; 12:1771. [PMID: 39200235 PMCID: PMC11351524 DOI: 10.3390/biomedicines12081771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
Deuterium-depleted water (DDW) is used in the treatment of many diseases, including cancer and diabetes. To detect the effect of DDW on gene expression and activation of the insulin-responsive transporter GLUT4 as a mechanism for improving the pathology of diabetes, we investigated the GLUT4 expression and glucose uptake at various concentrations of DDW using the myoblast cell line C2C12 differentiated into myotubes. GLUT4 gene expression significantly increased under deuterium depletion, reaching a maximum value at a deuterium concentration of approximately 50 ppm, which was approximately nine times that of natural water with a deuterium concentration of 150 ppm. GLUT4 protein also showed an increase at similar DDW concentrations. The membrane translocation of GLUT4 by insulin stimulation reached a maximum value at a deuterium concentration of approximately 50-75 ppm, which was approximately 2.2 times that in natural water. Accordingly, glucose uptake also increased by up to 2.2 times at a deuterium concentration of approximately 50 ppm. Drug-induced insulin resistance was attenuated, and the glucose uptake was four times higher in the presence of 10 ng/mL TNF-α and three times higher in the presence of 1 μg/mL resistin at a deuterium concentration of approximately 50 ppm relative to natural water. These results suggest that DDW promotes GLUT4 expression and insulin-stimulated activation in muscle cells and reduces insulin resistance, making it an effective treatment for diabetes.
Collapse
Affiliation(s)
- Masumi Kondo
- Division of Nephrology, Endocrinology and Metabolism, Department of Medicine, Tokai University Hachioji Hospital, 1838 Ishikawacho, Hachioji 192-0032, Japan; (M.K.); (M.A.)
| | - Kaichiro Sawada
- Division of Nephrology, Endocrinology and Metabolism, Department of Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (K.S.); (Y.M.); (N.S.); (Y.T.); (Y.M.); (M.K.)
| | - Yosuke Matsuda
- Division of Nephrology, Endocrinology and Metabolism, Department of Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (K.S.); (Y.M.); (N.S.); (Y.T.); (Y.M.); (M.K.)
| | - Makiko Abe
- Division of Nephrology, Endocrinology and Metabolism, Department of Medicine, Tokai University Hachioji Hospital, 1838 Ishikawacho, Hachioji 192-0032, Japan; (M.K.); (M.A.)
| | - Noriyuki Sanechika
- Division of Nephrology, Endocrinology and Metabolism, Department of Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (K.S.); (Y.M.); (N.S.); (Y.T.); (Y.M.); (M.K.)
| | - Yumi Takanashi
- Division of Nephrology, Endocrinology and Metabolism, Department of Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (K.S.); (Y.M.); (N.S.); (Y.T.); (Y.M.); (M.K.)
| | - Yoshitaka Mori
- Division of Nephrology, Endocrinology and Metabolism, Department of Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (K.S.); (Y.M.); (N.S.); (Y.T.); (Y.M.); (M.K.)
| | - Moritsugu Kimura
- Division of Nephrology, Endocrinology and Metabolism, Department of Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (K.S.); (Y.M.); (N.S.); (Y.T.); (Y.M.); (M.K.)
| | - Masao Toyoda
- Division of Nephrology, Endocrinology and Metabolism, Department of Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (K.S.); (Y.M.); (N.S.); (Y.T.); (Y.M.); (M.K.)
| |
Collapse
|
4
|
Qu J, Xu Y, Zhao S, Xiong L, Jing J, Lui S, Huang J, Shi H. The biological impact of deuterium and therapeutic potential of deuterium-depleted water. Front Pharmacol 2024; 15:1431204. [PMID: 39104389 PMCID: PMC11298373 DOI: 10.3389/fphar.2024.1431204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/28/2024] [Indexed: 08/07/2024] Open
Abstract
Since its discovery by Harold Urey in 1932, deuterium has attracted increased amounts of attention from the scientific community, with many previous works aimed to uncover its biological effects on living organisms. Existing studies indicate that deuterium, as a relatively rare isotope, is indispensable for maintaining normal cellular function, while its enrichment and depletion can affect living systems at multiple levels, including but not limited to molecules, organelles, cells, organs, and organisms. As an important compound of deuterium, deuterium-depleted water (DDW) possess various special effects, including but not limited to altering cellular metabolism and potentially inhibiting the growth of cancer cells, demonstrating anxiolytic-like behavior, enhancing long-term memory in rats, reducing free radical oxidation, regulating lipid metabolism, harmonizing indices related to diabetes and metabolic syndrome, and alleviating toxic effects caused by cadmium, manganese, and other harmful substances, implying its tremendous potential in anticancer, neuroprotective, antiaging, antioxidant, obesity alleviation, diabetes and metabolic syndrome treatment, anti-inflammatory, and detoxification, thereby drawing extensive attention from researchers. This review comprehensively summarizes the latest progress in deuterium acting on living organisms. We start by providing a snapshot of the distribution of deuterium in nature and the tolerance of various organisms to it. Then, we discussed the impact of deuterium excess and deprivation, in the form of deuterium-enriched water (DEW) and deuterium-depleted water (DDW), on living organisms at different levels. Finally, we focused on the potential of DDW as an adjuvant therapeutic agent for various diseases and disorders.
Collapse
Affiliation(s)
- Jiao Qu
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yufei Xu
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Shuang Zhao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Xiong
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Jing Jing
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Su Lui
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Huang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hubing Shi
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| |
Collapse
|
5
|
Lu Y, Chen H. Deuterium-Depleted Water in Cancer Therapy: A Systematic Review of Clinical and Experimental Trials. Nutrients 2024; 16:1397. [PMID: 38732643 PMCID: PMC11085166 DOI: 10.3390/nu16091397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Chemotherapy exhibits numerous side effects in anti-tumour therapy. The clinical experiments indicated that deuterium-depleted water (DDW) monotherapy or in combination with chemotherapy was beneficial in inhibiting cancer development. To further understand the potential mechanism of DDW in cancer therapy, we performed a systematic review. The data from experiments published over the past 15 years were included. PubMed, Cochrane and Web of Science (January 2008 to November 2023) were systemically searched. Fifteen studies qualified for review, including fourteen in vivo and in vitro trials and one interventional trial. The results showed that DDW alone or in combination with chemotherapy effectively inhibited cancer progression in most experiments. The combination treatment enhances the therapeutic effect on cancer compared with chemotherapeutic monotherapy. The inhibitory role of DDW in tumours is through regulating the reactive oxygen species (ROS)-related genes in Kelch-like ECH-associated protein 1 (Keap 1) and Nuclear erythroid 2-related factor 2 (Nrf2) signalling pathways, further controlling ROS production. An abnormal amount of ROS can inhibit the tumour progression. More extensive randomized controlled trials should be conducted to evaluate the accurate effect of DDW in Keap1-Nrf2 signalling pathways.
Collapse
Affiliation(s)
- Yutong Lu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, China;
| | - Hongping Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Bayi Road 461, Nanchang 330006, China
| |
Collapse
|
6
|
Yaglova NV, Obernikhin SS, Timokhina EP, Tsomartova DA, Yaglov VV, Nazimova SV, Tsomartova ES, Ivanova MY, Chereshneva EV, Lomanovskaya TA. Effects of Deuterium Depletion on Age-Declining Thymopoiesis In Vivo. Biomedicines 2024; 12:956. [PMID: 38790918 PMCID: PMC11117614 DOI: 10.3390/biomedicines12050956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
The thymus provides maturation and migration of T cells to peripheral organs of immunity, where they recognize diverse antigens and maintain immunological memory and self-tolerance. The thymus is known to be involved with age and in response to stress factors. Therefore, the search for approaches to the restoration of thymopoiesis is of great interest. The present investigation was aimed at evaluating how prolonged deuterium depletion affects morphogenetic processes and the physiological transition of the thymus to age-related involution. The study was performed on 60 male Wistar rats subjected to consumption of deuterium-depleted water with a 10 ppm deuterium content for 28 days. The control rats consumed distilled water with a normal deuterium content of 150 ppm. The examination found no significant differences in body weight gain or the amount of water consumed. The exposed rats exhibited similar to control dynamics of the thymus weight but significant changes in thymic cell maturation according to cytofluorimetric analysis of thymic subpopulations. Changes in T cell production were not monotonic and differentially engaged morphogenetic processes of cell proliferation, differentiation, and migration. The reactive response to deuterium depletion was a sharp increase in the number of progenitor CD4-CD8- cells and their differentiation into T cells. The compensatory reaction was inhibition of thymopoiesis with more pronounced suppression of differentiation of T-cytotoxic lymphocytes, followed by intensification of emigration of mature T cells to the bloodstream. This period lasts from 3 to 14 days, then differentiation of thymic lymphocytes is restored, later cell proliferation is activated, and finally the thymopoiesis rate exceeds the control values. The increase in the number of thymic progenitor cells after 3-4 weeks suggests consideration of deuterium elimination as a novel approach to prevent thymus involution.
Collapse
Affiliation(s)
- Nataliya V. Yaglova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (E.P.T.); (D.A.T.); (V.V.Y.); (S.V.N.); (E.S.T.)
| | - Sergey S. Obernikhin
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (E.P.T.); (D.A.T.); (V.V.Y.); (S.V.N.); (E.S.T.)
| | - Ekaterina P. Timokhina
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (E.P.T.); (D.A.T.); (V.V.Y.); (S.V.N.); (E.S.T.)
| | - Dibakhan A. Tsomartova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (E.P.T.); (D.A.T.); (V.V.Y.); (S.V.N.); (E.S.T.)
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (M.Y.I.); (E.V.C.); (T.A.L.)
| | - Valentin V. Yaglov
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (E.P.T.); (D.A.T.); (V.V.Y.); (S.V.N.); (E.S.T.)
| | - Svetlana V. Nazimova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (E.P.T.); (D.A.T.); (V.V.Y.); (S.V.N.); (E.S.T.)
| | - Elina S. Tsomartova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (E.P.T.); (D.A.T.); (V.V.Y.); (S.V.N.); (E.S.T.)
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (M.Y.I.); (E.V.C.); (T.A.L.)
| | - Marina Y. Ivanova
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (M.Y.I.); (E.V.C.); (T.A.L.)
| | - Elizaveta V. Chereshneva
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (M.Y.I.); (E.V.C.); (T.A.L.)
| | - Tatiana A. Lomanovskaya
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (M.Y.I.); (E.V.C.); (T.A.L.)
| |
Collapse
|
7
|
Basov A, Dorohova A, Malyshko V, Moiseev A, Svidlov A, Bezhenar M, Nechipurenko Y, Dzhimak S. Influence of a Single Deuterium Substitution for Protium on the Frequency Generation of Different-Size Bubbles in IFNA17. Int J Mol Sci 2023; 24:12137. [PMID: 37569512 PMCID: PMC10418495 DOI: 10.3390/ijms241512137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
The influence of a single 2H/1H replacement on the frequency generation of different-size bubbles in the human interferon alpha-17 gene (IFNA17) under various energies was studied by a developed algorithm and mathematical modeling without simplifications or averaging. This new approach showed the efficacy of researching DNA bubbles and open states both when all hydrogen bonds in nitrogenous base pairs are protium and after an 2H-substitution. After a single deuterium substitution under specific energies, it was demonstrated that the non-coding region of IFNA17 had a more significant regulatory role in bubble generation in the whole gene than the promoter had. It was revealed that a single deuterium substitution for protium has an influence on the frequency generation of DNA bubbles, which also depends on their size and is always higher for the smaller bubbles under the largest number of the studied energies. Wherein, compared to the natural condition under the same critical value of energy, the bigger raises of the bubble frequency occurrence (maximums) were found for 11-30 base pair (bp) bubbles (higher by 319%), 2-4 bp bubbles (higher by 300%), and 31 bp and over ones (higher by 220%); whereas the most significant reductions of the indicators (minimums) were observed for 11-30 bp bubbles (lower by 43%) and bubbles size over 30 bp (lower by 82%). In this study, we also analyzed the impact of several circumstances on the AT/GC ratio in the formation of DNA bubbles, both under natural conditions and after a single hydrogen isotope exchange. Moreover, based on the obtained data, substantial positive and inverse correlations were revealed between the AT/GC ratio and some factors (energy values, size of DNA bubbles). So, this modeling and variant of the modified algorithm, adapted for researching DNA bubbles, can be useful to study the regulation of replication and transcription in the genes under different isotopic substitutions in the nucleobases.
Collapse
Affiliation(s)
- Alexandr Basov
- Department of Fundamental and Clinical Biochemistry, Kuban State Medical University, Krasnodar 350063, Russia; (A.B.); (V.M.)
- Department of Radiophysics and Nanotechnology, Kuban State University, Krasnodar 350040, Russia; (A.D.); (A.S.); (S.D.)
| | - Anna Dorohova
- Department of Radiophysics and Nanotechnology, Kuban State University, Krasnodar 350040, Russia; (A.D.); (A.S.); (S.D.)
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Federal Research Center of the Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don 344006, Russia
| | - Vadim Malyshko
- Department of Fundamental and Clinical Biochemistry, Kuban State Medical University, Krasnodar 350063, Russia; (A.B.); (V.M.)
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Federal Research Center of the Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don 344006, Russia
| | - Arkadii Moiseev
- Scientific Department, Kuban State Agrarian University, Krasnodar 350004, Russia;
| | - Alexandr Svidlov
- Department of Radiophysics and Nanotechnology, Kuban State University, Krasnodar 350040, Russia; (A.D.); (A.S.); (S.D.)
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Federal Research Center of the Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don 344006, Russia
| | - Maria Bezhenar
- Department of Function Theory, Kuban State University, Krasnodar 350040, Russia;
| | - Yury Nechipurenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Stepan Dzhimak
- Department of Radiophysics and Nanotechnology, Kuban State University, Krasnodar 350040, Russia; (A.D.); (A.S.); (S.D.)
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Federal Research Center of the Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don 344006, Russia
| |
Collapse
|
8
|
Yaglova NV, Obernikhin SS, Timokhina EP, Yaglov VV, Tsomartova DA, Nazimova SV, Tsomartova ES, Ivanova MY, Chereshneva EV, Lomanovskaya TA. Bilateral Shifts in Deuterium Supply Similarly Change Physiology of the Pituitary–Thyroid Axis, but Differentially Influence Na+/I− Symporter Production. Int J Mol Sci 2023; 24:ijms24076803. [PMID: 37047776 PMCID: PMC10095216 DOI: 10.3390/ijms24076803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Deuterium, a stable isotope of hydrogen, is abundant in organisms. It is known to produce various biological effects. However, its impact in thyroid hormone synthesis and secretion is poorly studied. The aim of this investigation was to evaluate the dynamics of thyroid hormones and pituitary thyroid-stimulating hormone secretion during bilateral shifts in deuterium supply and assess a possible role of the Na+/I− symporter (NIS), the main iodide transporter, in altered thyroid function. The experiment was performed on adult male Wistar rats, which consumed deuterium-depleted ([D] = 10 ppm) and deuterium-enriched ([D] = 500,000 ppm) water for 21 days. The assessment of total thyroxine and triiodothyronine and their free fractions, as well as thyroid-stimulating hormone in blood serum, revealed the rapid response of the thyroid gland to shifts in the deuterium/protium balance. The present investigation shows that the bilateral changes in the deuterium body content similarly modulate thyroid hormone production and functional activity of the pituitary gland, but the responses of the thyroid and pituitary glands differ. The response of the thyroid cells was to increase the synthesis of the hormones and the pituitary thyrotropes, in order to reduce the production of the thyroid-stimulating hormone. The evaluation of NIS serum levels found a gradual increase in the rats that consumed deuterium-enriched water and no differences in the group exposed to deuterium depletion. NIS levels in both groups did not correlate with thyroid hormones and pituitary thyroid-stimulating hormone production. The data obtained show that thyroid gland has a higher sensitivity to shifts in the deuterium body content than the hypothalamic–pituitary complex, which responded later but similarly in the case of deuteration or deuterium depletion. It indicates a different sensitivity of the endocrine glands to alterations in deuterium content. It suggests that thyroid hormone production rate may depend on deuterium blood/tissue and cytosol/organelle gradients, which possibly disturb the secretory process independently of the NIS.
Collapse
Affiliation(s)
- Nataliya V. Yaglova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia
| | - Sergey S. Obernikhin
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia
| | - Ekaterina P. Timokhina
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia
| | - Valentin V. Yaglov
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia
| | - Dibakhan A. Tsomartova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution, Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Svetlana V. Nazimova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia
| | - Elina S. Tsomartova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution, Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Marina Y. Ivanova
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution, Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Elizaveta V. Chereshneva
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution, Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Tatiana A. Lomanovskaya
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution, Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| |
Collapse
|
9
|
Paul D, Nedelcu AM. The underexplored links between cancer and the internal body climate: Implications for cancer prevention and treatment. Front Oncol 2022; 12:1040034. [PMID: 36620608 PMCID: PMC9815514 DOI: 10.3389/fonc.2022.1040034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
In order to effectively manage and cure cancer we should move beyond the general view of cancer as a random process of genetic alterations leading to uncontrolled cell proliferation or simply a predictable evolutionary process involving selection for traits that increase cell fitness. In our view, cancer is a systemic disease that involves multiple interactions not only among cells within tumors or between tumors and surrounding tissues but also with the entire organism and its internal "milieu". We define the internal body climate as an emergent property resulting from spatial and temporal interactions among internal components themselves and with the external environment. The body climate itself can either prevent, promote or support cancer initiation and progression (top-down effect; i.e., body climate-induced effects on cancer), as well as be perturbed by cancer (bottom-up effect; i.e., cancer-induced body climate changes) to further favor cancer progression and spread. This positive feedback loop can move the system towards a "cancerized" organism and ultimately results in its demise. In our view, cancer not only affects the entire system; it is a reflection of an imbalance of the entire system. This model provides an integrated framework to study all aspects of cancer as a systemic disease, and also highlights unexplored links that can be altered to both prevent body climate changes that favor cancer initiation, progression and dissemination as well as manipulate or restore the body internal climate to hinder the success of cancer inception, progression and metastasis or improve therapy outcomes. To do so, we need to (i) identify cancer-relevant factors that affect specific climate components, (ii) develop 'body climate biomarkers', (iii) define 'body climate scores', and (iv) develop strategies to prevent climate changes, stop or slow the changes, or even revert the changes (climate restoration).
Collapse
Affiliation(s)
- Doru Paul
- Weill Cornell Medicine, New York, NY, United States
| | - Aurora M. Nedelcu
- Biology Department, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
10
|
Influence of Single Deuterium Replacement on Frequency of Hydrogen Bond Dissociation in IFNA17 under the Highest Critical Energy Range. Int J Mol Sci 2022; 23:ijms232415487. [PMID: 36555136 PMCID: PMC9778762 DOI: 10.3390/ijms232415487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
The effect of single substitutions of protium for deuterium in hydrogen bonds between pairs of nitrogenous bases on the open states occurrence probability at high critical breaking energies of these bonds has been studied. The study was carried out using numerical methods based on the angular mathematical model of DNA. The IFNA17 gene was divided into three approximately equal parts. A comparison of the open states occurrence probability in these parts of the gene was done. To improve the accuracy of the results, a special data processing algorithm was developed. The developed methods have shown their suitability for taking into account the occurrence of open states in the entire range of high critical energies. It has been established that single 2H/1H substitutions in certain nitrogenous bases can be a mechanism for maintaining the vital activity of IFNA17 under critical conditions. In general, the developed method of the mathematical modeling provide unprecedented insight into the DNA behavior under the highest critical energy range, which greatly expands scientific understanding of nucleobases interaction.
Collapse
|
11
|
Yaglova NV, Obernikhin SS, Timokhina EP, Nazimova SV, Yaglov VV. Reactive Alterations in Thymic Lymphocytopoiesis to Short-Term Decrease in Deuterium Content in the Body. Bull Exp Biol Med 2022; 173:494-496. [DOI: 10.1007/s10517-022-05568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 11/24/2022]
|