1
|
Cohrs G, Blumenröther AK, Sürie JP, Synowitz M, Held-Feindt J, Knerlich-Lukoschus F. Fetal and perinatal expression profiles of proinflammatory cytokines in the neuroplacodes of rats with myelomeningoceles: A contribution to the understanding of secondary spinal cord injury in open spinal dysraphism. J Neurotrauma 2021; 38:3376-3392. [PMID: 34541905 DOI: 10.1089/neu.2021.0091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cellular and molecular mechanisms that presumably underlie the progressive functional decline of the myelomeningocele (MMC) placode are not well understood. We previously identified key players in posttraumatic spinal cord injury cascades in human MMC tissues obtained during postnatal repair. In this study we conducted experiments to further investigate these mediators in the prenatal time course under standardized conditions in a retinoic-acid-induced MMC rat model. A retinoic acid MMC model was established using time-dated Sprague-Dawley rats, which were gavage-fed with all-trans retinoic acid (RA; 60 mg/kg) dissolved in olive oil at E10. Control animals received olive oil only. Fetuses from both groups were obtained at E16, E18, E22. The spinal cords (SCs) of both groups were formalin-fixed or snap-frozen. Tissues were screened by real-time RT-PCR for the expression of cytokines and chemokines known to play a role in the lesion cascades of the central nervous system after trauma. MMC placodes exhibited inflammatory cells and glial activation in the later gestational stages. At the mRNA level, IL-1b, TNFa, and TNF-R1 exhibited significant induction at E22. IL1-R1 mRNA was induced significantly at E16 and E22. Double labeling experiments confirmed the costaining of these cytokines and their receptors with Iba1 (i.e., inflammatory cells), Vimentin, and Nestin in different anatomical SC areas and NeuN in ventral horn neurons. CXCL12 mRNA was elevated in control and MMC animals at E16 compared to E18 and E22. CX3CL1 mRNA was lower in MMC tissues than in control tissues on E16. The presented findings contribute to the concept that pathophysiological mechanisms, such as cytokine induction in the neuroplacode, in addition to the "first hit", promote secondary spinal cord injury with functional loss in the late fetal time course. Furthermore, these mediators should be taken into consideration in the development of new therapeutic approaches for open spinal dysraphism.
Collapse
Affiliation(s)
- Gesa Cohrs
- Universitatsklinikum Schleswig-Holstein Campus Kiel, 15056, Dept. of Neurosurgery, Arnold-Heller-Straße 3, Kiel, Germany, 24105;
| | - Ann-Kathrin Blumenröther
- Universitätsklinikum Schleswig-Holstein, 54186, Neurosurgery, Kiel, Schleswig-Holstein, Germany;
| | - Jan-Philip Sürie
- Universitätsklinikum Schleswig-Holstein, 54186, Neurosurgery, Kiel, Schleswig-Holstein, Germany;
| | - Michael Synowitz
- Universitatsklinikum Schleswig-Holstein Campus Kiel, 15056, Neurosurgery, Kiel, Schleswig-Holstein, Germany;
| | - Janka Held-Feindt
- Universitatsklinikum Schleswig-Holstein Campus Kiel, 15056, Neurosurgery, Kiel, Schleswig-Holstein, Germany;
| | - Friederike Knerlich-Lukoschus
- Universitätsklinikum Schleswig-Holstein, 54186, Neurosurgery, Kiel, Schleswig-Holstein, Germany.,Asklepios Kinderklinik Sankt Augustin, 248587, Pediatric Neurosurgery, Sankt Augustin, Nordrhein-Westfalen, Germany;
| |
Collapse
|
2
|
Bodnar TS, Raineki C, Wertelecki W, Yevtushok L, Plotka L, Zymak-Zakutnya N, Honerkamp-Smith G, Wells A, Rolland M, Woodward TS, Coles CD, Kable JA, Chambers CD, Weinberg J. Altered maternal immune networks are associated with adverse child neurodevelopment: Impact of alcohol consumption during pregnancy. Brain Behav Immun 2018; 73:205-215. [PMID: 29738852 PMCID: PMC6344127 DOI: 10.1016/j.bbi.2018.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 01/10/2023] Open
Abstract
Cytokines and chemokines are potent modulators of brain development and as such, dysregulation of the maternal immune system can result in deviations in the fetal cytokine balance, altering the course of typical brain development, and putting the individual on a "pathway to pathology". In the current study, we used a multi-variate approach to evaluate networks of interacting cytokines and investigated whether alterations in the maternal immune milieu could be linked to alcohol-related and alcohol-independent child neurodevelopmental delay. This was achieved through the measurement of 40 cytokines/chemokines from maternal blood samples collected during the second and third trimesters of pregnancy. Importantly, during the second trimester we identified network enrichment in levels of cytokines including IFN-ɣ, IL-10, TNF-β, TNF-α, and CRP associated with offspring neurodevelopmental delay. However, as elevations in levels of these cytokines have previously been reported in a wide range of neurodevelopmental disorders including autism spectrum disorder and schizophrenia, we suggest that this cytokine profile is likely not disorder specific, but rather may be an indicator of neurodevelopmental delay in general. By contrast, distinct clusters of activated/inhibited cytokines were identified based on maternal alcohol consumption and child neurodevelopmental outcome. Specifically, cytokines including IL-15, IL-10, MDC, and members of the VEGF sub-family were highest in alcohol-consuming mothers of children with neurodevelopmental delay and were identified in both network analyses and examination of individual cytokines, whereas a differential and unique cytokine profile was identified in the case of alcohol-independent child neurodevelopmental delay. We propose that the current findings could provide a critical step towards the development of early biomarkers and possibly interventions for alcohol-related neurodevelopmental delay. Importantly, the current approach could be informative for understanding mechanisms linking maternal immune system dysfunction and adverse child outcomes in a range of other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Tamara S. Bodnar
- Department of Cellular and Physiological Sciences,
University of British Columbia, Vancouver, BC, Canada,Corresponding author: Tamara S.
Bodnar, Ph.D., Department of Cellular and Physiological Sciences, University of
British Columbia, 3307 – 2350 Health Sciences Mall, Vancouver, BC V6T
1Z3, Canada, , Phone: +1 (604) 822-4554, FAX:
+1 (604) 822-2316
| | - Charlis Raineki
- Department of Cellular and Physiological Sciences,
University of British Columbia, Vancouver, BC, Canada
| | | | - Lyubov Yevtushok
- OMNI-Net for Children International Charitable Fund, Rivne
Oblast Medical Diagnostic Center, Rivne, Ukraine
| | - Larisa Plotka
- OMNI-Net for Children International Charitable Fund, Rivne
Oblast Medical Diagnostic Center, Rivne, Ukraine
| | - Natalya Zymak-Zakutnya
- OMNI-Net for Children International Charitable Fund,
Khmelnytsky Perinatal Center, Khmelnytsky, Ukraine
| | | | - Alan Wells
- Department of Pediatrics, University of California San
Diego, La Jolla, USA
| | - Matthieu Rolland
- Department of Pediatrics, University of California San
Diego, La Jolla, USA
| | - Todd S. Woodward
- Department of Psychiatry, University of British Columbia,
Vancouver, Canada,Translational Research Unit, BC Mental Health and
Addictions Research Institute, Provincial Health Services Authority, Vancouver, BC,
Canada
| | - Claire D. Coles
- Department of Psychiatry and Behavioral Sciences;
Department of Pediatrics, Emory University School of Medicine, Atlanta, USA
| | - Julie A. Kable
- Department of Psychiatry and Behavioral Sciences;
Department of Pediatrics, Emory University School of Medicine, Atlanta, USA
| | - Christina D. Chambers
- Department of Pediatrics, University of California San
Diego, La Jolla, USA,Department of Family Medicine and Public Health, University
of California San Diego, La Jolla, CA, USA
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences,
University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
3
|
Raineki C, Bodnar TS, Holman PJ, Baglot SL, Lan N, Weinberg J. Effects of early-life adversity on immune function are mediated by prenatal environment: Role of prenatal alcohol exposure. Brain Behav Immun 2017; 66:210-220. [PMID: 28698116 PMCID: PMC5650917 DOI: 10.1016/j.bbi.2017.07.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/06/2017] [Accepted: 07/03/2017] [Indexed: 01/07/2023] Open
Abstract
The contribution of the early postnatal environment to the pervasive effects of prenatal alcohol exposure (PAE) is poorly understood. Moreover, PAE often carries increased risk of exposure to adversity/stress during early life. Dysregulation of immune function may play a role in how pre- and/or postnatal adversity/stress alters brain development. Here, we combine two animal models to examine whether PAE differentially increases vulnerability to immune dysregulation in response to early-life adversity. PAE and control litters were exposed to either limited bedding (postnatal day [PN] 8-12) to model early-life adversity or normal bedding, and maternal behavior and pup vocalizations were recorded. Peripheral (serum) and central (amygdala) immune (cytokines and C-reactive protein - CRP) responses of PAE animals to early-life adversity were evaluated at PN12. Insufficient bedding increased negative maternal behavior in both groups. Early-life adversity increased vocalization in all animals; however, PAE pups vocalized less than controls. Early-life adversity reduced serum TNF-α, KC/GRO, and IL-10 levels in control but not PAE animals. PAE increased serum CRP, and levels were even higher in pups exposed to adversity. Finally, PAE reduced KC/GRO and increased IL-10 levels in the amygdala. Our results indicate that PAE alters immune system development and both behavioral and immune responses to early-life adversity, which could have subsequent consequences for brain development and later life health.
Collapse
Affiliation(s)
- Charlis Raineki
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.
| | - Tamara S Bodnar
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Parker J Holman
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Samantha L Baglot
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Ni Lan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
4
|
Morgan JT, Chana G, Abramson I, Semendeferi K, Courchesne E, Everall IP. Abnormal microglial-neuronal spatial organization in the dorsolateral prefrontal cortex in autism. Brain Res 2012; 1456:72-81. [PMID: 22516109 DOI: 10.1016/j.brainres.2012.03.036] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 03/08/2012] [Accepted: 03/15/2012] [Indexed: 12/27/2022]
Abstract
Microglial activation and alterations in neuron number have been reported in autism. However, it is unknown whether microglial activation in the disorder includes a neuron-directed microglial response that might reflect neuronal dysfunction, or instead indicates a non-directed, pro-activation brain environment. To address this question, we examined microglial and neuronal organization in the dorsolateral prefrontal cortex, a region of pronounced early brain overgrowth in autism, via spatial pattern analysis of 13 male postmortem autism subjects and 9 controls. We report that microglia are more frequently present near neurons in the autism cases at a distance interval of 25 μm, as well as 75 and 100 μm. Many interactions are observed between near-distance microglia and neurons that appear to involve encirclement of the neurons by microglial processes. Analysis of a young subject subgroup preliminarily suggests that this alteration may be present from an early age in autism. We additionally observed that neuron-neuron clustering, although normal in cases with autism as a whole, increases with advancing age in autism, suggesting a gradual loss of normal neuronal organization in the disorder. Microglia-microglia organization is normal in autism at all ages, indicating that aberrantly close microglia-neuron association in the disorder is not a result of altered microglial distribution. Our findings confirm that at least some microglial activation in the dorsolateral prefrontal cortex in autism is associated with a neuron-specific reaction, and suggest that neuronal organization may degrade later in life in the disorder.
Collapse
Affiliation(s)
- John T Morgan
- Department of Neuroscience, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0602, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Gestational nicotine treatment modulates cell death/survival-related pathways in the brains of adolescent female rats. Int J Neuropsychopharmacol 2011; 14:91-106. [PMID: 20426880 DOI: 10.1017/s1461145710000416] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Gestational exposure to nicotine affects brain development, leading to numerous behavioural and physiological deficits in the offspring during adolescence. To analyse the molecular mechanisms underlying these effects, a pathway-focused oligonucleotide microarray was used to determine gene expression profiles in five brain regions (i.e. amygdala, prefrontal cortex, nucleus accumbens, periventricular nucleus of the hypothalamus, and caudate putamen CPu) of adolescent rats that received nicotine or saline during gestation. Following appropriate statistical and Gene Set Enrichment Analyses, 24 cell death/survival-related pathways were found to be significantly modulated by gestational nicotine. On the basis of their biological functions, these pathways can be classified into three categories: growth factor, death receptor, and kinase cascade. We employed a quantitative real-time PCR array to verify the findings by measuring the expression of 29 genes involved in cell death/survival-related pathways. Together, our findings indicate that gestational nicotine exposure has significant effects on gene expression in cell death/survival-related pathways in the brains of adolescent offspring. Such effects appear to be brain region-specific and are realized through regulation of the expression of growth factors and receptors, caspases, kinases, and transcription factors. On the basis of these findings, we offer a hypothetical model to explain how gestational nicotine exposure may affect cell death and survival in the brains of adolescent offspring by regulating the balance between growth-factor and death-receptor pathways.
Collapse
|
6
|
Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol Psychiatry 2010; 68:368-76. [PMID: 20674603 DOI: 10.1016/j.biopsych.2010.05.024] [Citation(s) in RCA: 481] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 05/05/2010] [Accepted: 05/22/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND In the neurodevelopmental disorder autism, several neuroimmune abnormalities have been reported. However, it is unknown whether microglial somal volume or density are altered in the cortex and whether any alteration is associated with age or other potential covariates. METHODS Microglia in sections from the dorsolateral prefrontal cortex of nonmacrencephalic male cases with autism (n = 13) and control cases (n = 9) were visualized via ionized calcium binding adapter molecule 1 immunohistochemistry. In addition to a neuropathological assessment, microglial cell density was stereologically estimated via optical fractionator and average somal volume was quantified via isotropic nucleator. RESULTS Microglia appeared markedly activated in 5 of 13 cases with autism, including 2 of 3 under age 6, and marginally activated in an additional 4 of 13 cases. Morphological alterations included somal enlargement, process retraction and thickening, and extension of filopodia from processes. Average microglial somal volume was significantly increased in white matter (p = .013), with a trend in gray matter (p = .098). Microglial cell density was increased in gray matter (p = .002). Seizure history did not influence any activation measure. CONCLUSIONS The activation profile described represents a neuropathological alteration in a sizeable fraction of cases with autism. Given its early presence, microglial activation may play a central role in the pathogenesis of autism in a substantial proportion of patients. Alternatively, activation may represent a response of the innate neuroimmune system to synaptic, neuronal, or neuronal network disturbances, or reflect genetic and/or environmental abnormalities impacting multiple cellular populations.
Collapse
|
7
|
Rao RS, Medhi B, Saikia UN, Arora SK, Toor JS, Khanduja KL, Pandhi P. Experimentally induced various inflammatory models and seizure: understanding the role of cytokine in rat. Eur Neuropsychopharmacol 2008; 18:760-7. [PMID: 18701263 DOI: 10.1016/j.euroneuro.2008.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2008] [Revised: 06/12/2008] [Accepted: 06/17/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND The mechanism of epileptogenesis is not well established. There is higher incidence of seizures among patients with chronic inflammatory disease. Cytokines are rapidly induced in the brain after a variety of stimuli including inflammation. Aim of this study was to produce various inflammatory models and seizure to understand the role of TNFalpha in above mentioned models. MATERIALS AND METHODS A total of 54 male rats were included in the study. Animals were divided into 3 groups of colitis, arthritis, and cotton wool granuloma. Each group had 3 subgroups of control, model and treatment. At the end of 3 days in colitis, 17 days in arthritis and 7 days in cotton wool granuloma groups a subconvulsive dose of PTZ (40 mg/kg i.p) was injected to note seizure onset and seizure score. Brain samples were subjected to DNA fragmentation testing. Presence of inflammation was confirmed by morphology and histology. Plasma and brain TNFalpha levels were measured. RESULTS The models of colitis, arthritis and CWG were effectively produced as evidenced by morphology and histology scores (p<0.001). Seizure onset was reduced and grade was increased (p<0.001). Thalidomide reduced the morphological, histological (p<0.002), DNA fragmentation and seizure grade (p<0.001) while increased seizure onset (p<0.001) in the arthritis group. TNFalpha levels in both plasma and brain were reduced following thalidomide treatment (p<0.002) in arthritis group. There were no significant findings in colitis or cotton wool granuloma groups. CONCLUSION Inflammation was associated with decreased threshold to PTZ induced seizure. Thalidomide is effective in reducing the extent of arthritis as well as reducing the seizure scoring and increasing seizure onset in the adjuvant arthritis group. Thalidomide was also effective in reducing TNFalpha levels thus contributing to its antiepileptic activity.
Collapse
Affiliation(s)
- R S Rao
- Department of Pharmacology, Postgraduate Institute of Medical Education & Research, Chandigarh PGIMER, Chandigarh, India
| | | | | | | | | | | | | |
Collapse
|
8
|
Wekerle H. [The enigma of arrival: [corrected] the entrance of auto-immune T lymphocytes in central nervous tissues and of their attack against the myelin structures]. C R Biol 2006; 330:1-12. [PMID: 17241944 DOI: 10.1016/j.crvi.2006.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 10/05/2006] [Indexed: 11/19/2022]
Abstract
This paper describes the conditions under which autoimmune T cells enter the central nervous system to attack the local tissue. During a prodromal period preceding the onset of neurological disease, the CNS tissue is converted from its physiological immune-hostile state to an immune-friendly state. At the same time, in the peripheral immune system, activated autoimmune T cells undergo profound changes that allow them to enter through the blood-brain barrier and to finally interact with local autoantigen-presenting cells. Antigen recognition leads to T cell activation and the secretion of inflammatory mediators that are responsible for the development of the inflammatory lesions and the neurological deficits.
Collapse
Affiliation(s)
- Hartmut Wekerle
- Max-Planck-Institut für Neurobiologie, Am Klopferspitz 18, 82152 Martinsried, Allemagne.
| |
Collapse
|
9
|
Kipp M, Karakaya S, Pawlak J, Araujo-Wright G, Arnold S, Beyer C. Estrogen and the development and protection of nigrostriatal dopaminergic neurons: concerted action of a multitude of signals, protective molecules, and growth factors. Front Neuroendocrinol 2006; 27:376-90. [PMID: 16949139 DOI: 10.1016/j.yfrne.2006.07.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 07/03/2006] [Accepted: 07/10/2006] [Indexed: 01/03/2023]
Abstract
The nigrostriatal dopamine system comprises the dopaminergic neurons located in the ventral midbrain, their axonal connections to the forebrain, and their direct cellular target cells in the striatal complex, i.e. GABAergic neurons. The major function of the nigrostriatal dopaminergic unit is the coordination and fine tuning of motor functions at the extrapyramidal level. Numerous biologically active factors including different types of growth factors (neurotrophins, members of the TGFbeta family, IGFs) and peptide/steroid hormones have been identified in the past to be implicated in the regulation of developmental aspects of this neural system. Some of these developmentally active determinants have in addition been found to play a crucial role in the mediation of neuroprotection concerning dopaminergic neurons. Estrogen was identified as such a compound interfering with embryonic neuronal differentiation and cell survival. The physiological mechanisms underlying these effects are very complex and include interactions with other developmental signals (growth factors), inflammatory processes as well as apoptotic events, but also require the activation of nonneuronal cells such as astrocytes. It appears that estrogen is assuming control over or at least influences a multitude of developmental and protective cellular mechanisms rather than taking over the part of a singular protagonist.
Collapse
Affiliation(s)
- Markus Kipp
- Institute of Neuroanatomy, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | | | | | | | | | | |
Collapse
|