1
|
Peacock ZS, Krishnan DG. Advances in Imaging Over 100 Years: The Impact on Oral and Maxillofacial Surgery. J Oral Maxillofac Surg 2018; 76:1387-1399. [DOI: 10.1016/j.joms.2018.02.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 01/08/2023]
|
2
|
Liu CH, Ren J, Liu CM, Liu PK. Intracellular gene transcription factor protein-guided MRI by DNA aptamers in vivo. FASEB J 2013; 28:464-73. [PMID: 24115049 DOI: 10.1096/fj.13-234229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The mechanisms by which transcription factor (TF) protein AP-1 modulates amphetamine's effects on gene transcription in living brains are unclear. We describe here the first part of our studies to investigate these mechanisms, specifically, our efforts to develop and validate aptamers containing the binding sequence of TF AP-1 (5ECdsAP1), in order to elucidate its mechanism of action in living brains. This AP-1-targeting aptamer, as well as a random sequence aptamer with no target (5ECdsRan) as a control, was partially phosphorothioate modified and tagged with superparamagnetic iron oxide nanoparticles (SPIONs), gold, or fluorescein isothiothianate contrast agent for imaging. Optical and transmission electron microscopy studies revealed that 5ECdsAP1 is taken up by endocytosis and is localized in the neuronal endoplasmic reticulum. The results of magnetic resonance imaging (MRI) with SPION-5ECdsAP1 revealed that neuronal AP-1 TF protein levels were elevated in neurons of live male C57black6 mice after amphetamine exposure; however, pretreatment with SCH23390, a dopaminergic receptor antagonist, suppressed this elevation. As studies in transgenic mice with neuronal dominant-negative A-FOS mutant protein, which has no binding affinity for the AP-1 sequence, showed a completely null MRI signal in the striatum, we can conclude that the MR signal reflects specific binding between the 5ECdsAP1 aptamer and endogenous AP-1 protein. Together, these data lend support to the application of 5ECdsAP1 aptamer for intracellular protein-guided imaging and modulation of gene transcription, which will thus allow investigation of the mechanisms of signal transduction in living brains.
Collapse
Affiliation(s)
- Christina H Liu
- 3Massachusetts General Hospital, CNY149 (2301) Thirteenth St., Charlestown, MA 02129, USA.
| | | | | | | |
Collapse
|
3
|
Papagiannaros A, Righi V, Day GG, Rahme LG, Liu PK, Fischman AJ, Tompkins RG, Tzika AA. Imaging C-Fos Gene Expression in Burns Using Lipid Coated Spion Nanoparticles. ADVANCES IN MOLECULAR IMAGING 2012; 2:31-37. [PMID: 24995147 DOI: 10.4236/ami.2012.24005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
MR imaging of gene transcription is important as it should enable the non-invasive detection of mRNA alterations in disease. A range of MRI methods have been proposed for in vivo molecular imaging of cells based on the use of ultra-small super-paramagnetic iron oxide (USPIO) nanoparticles and related susceptibility weighted imaging methods. Although immunohistochemistry can robustly differentiate the expression of protein variants, there is currently no direct gene assay technique that is capable of differentiating established to differentiate the induction profiles of c-Fos mRNA in vivo. To visualize the differential FosB gene expression profile in vivo after burn trauma, we developed MR probes that link the T2* contrast agent [superparamagnetic iron oxide nanoparticles (SPION)] with an oligodeoxynucleotide (ODN) sequence complementary to FosB mRNA to visualize endogenous mRNA targets via in vivo hybridization. The presence of this SPION-ODN probe in cells results in localized signal reduction in T2*-weighted MR images, in which the rate of signal reduction (R2*) reflects the regional iron concentration at different stages of amphetamine (AMPH) exposure in living mouse tissue. Our aim was to produce a superior contrast agent that can be administered using systemic as opposed to local administration and which will target and accumulate at sites of burn injury. Specifically, we developed and evaluated a PEGylated lipid coated MR probe with ultra-small super-paramagnetic iron oxide nanoparticles (USPION, a T2 susceptibility agent) coated with cationic fusogenic lipids, used for cell transfection and gene delivery and covalently linked to a phosphorothioate modified oligodeoxynucleotide (sODN) complementary to c-Fos mRNA (SPION-cFos) and used the agent to image mice with leg burns. Our study demonstrated the feasibility of monitoring burn injury using MR imaging of c-Fos transcription in vivo, in a clinically relevant mouse model of burn injury for the first time.
Collapse
Affiliation(s)
- Aristarchos Papagiannaros
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School, Boston, USA
| | - Valeria Righi
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School, Boston, USA ; Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, USA ; Department of Biochemistry "G. Moruzzi", University of Bologna, Bologna, Italy
| | - George G Day
- Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, USA
| | - Laurence G Rahme
- Molecular Surgery Laboratory, Department of Surgery, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School and Massachusetts General Hospital, Boston, USA ; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Philip K Liu
- Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, USA
| | - Alan J Fischman
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Ronald G Tompkins
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - A Aria Tzika
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School, Boston, USA ; Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, USA ; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
4
|
Xanthos T, Chatzigeorgiou M, Johnson EO, Chalkias A. Magnetically targeted drug delivery during cardiopulmonary resuscitation and the post-resuscitation period. Resuscitation 2012; 83:803-5. [PMID: 22289681 DOI: 10.1016/j.resuscitation.2012.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 12/22/2011] [Accepted: 01/08/2012] [Indexed: 12/27/2022]
Abstract
Treatment with pharmacological agents is frequently required during cardiopulmonary resuscitation efforts and almost always during the post-resuscitation period. However, the lack of scientific evidence, the potent side effects and the association of resuscitation drugs with poor outcome act as a disincentive for their use. The use of magnetic nanoparticles in medicine has great potential. Magnetically targeted drug delivery may be an ideal method of pharmaceutical treatment during the resuscitation efforts and post-resuscitation period. In addition, there is evidence that magnetic nanotechnology may be used in the detection of post-cardiac arrest brain injury. In the light of poor survival of cardiac arrest victims, research in cardiopulmonary resuscitation should focus on this promising technology as soon as possible.
Collapse
Affiliation(s)
- Theodoros Xanthos
- National and Kapodistrian University of Athens, Medical School, Department of Anatomy, Athens, Greece
| | | | | | | |
Collapse
|
5
|
Abstract
Gene action plays a role in neural cell migration, learning processes, stress response, drug addiction, cancer, mental health, psychiatric and neurological disorders, as well as neurodegenerative diseases. Studies also show that upregulation of certain gene activities in neurons may contribute to the development of Alzheimer's disease and other progressive cognitive disorders many decades after the alteration itself occurs. Endogenous, environmental stress-related, or drug-induced chemical imbalances in the brain affect the homeostasis of gene activities in neurons in specific brain regions and contribute to the comorbidity of mental illness and substance dependence. On the other hand, altered gene activities are also a necessary part of repair processes after brain injury. Our general well-being is governed by the highly regulated gene activities in our brains. A better understanding of gene activities and their relationship to the progression of neurological disease can help the research and medical communities develop necessary measures for early intervention, as well as plan more appropriate interventions or new therapeutic approaches that can benefit a broad spectrum of patients who will be or have been affected by brain diseases. We developed a non-invasive imaging technique that allows real-time assessment of gene transcription profiles in live brains. This imaging method has the potential to provide first-hand information about the progression of neurological disorders by gene targeting and cell typing, and it could elucidate a surrogate marker for therapeutic efficacy for future planning of treatments for human diseases. We have established a workable and reproducible MRI technique in live rodent brains.
Collapse
Affiliation(s)
- Philip K Liu
- Department of Radiology, AA Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
| | | |
Collapse
|
6
|
CNS animal fMRI in pain and analgesia. Neurosci Biobehav Rev 2010; 35:1125-43. [PMID: 21126534 DOI: 10.1016/j.neubiorev.2010.11.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 11/22/2022]
Abstract
Animal imaging of brain systems offers exciting opportunities to better understand the neurobiology of pain and analgesia. Overall functional studies have lagged behind human studies as a result of technical issues including the use of anesthesia. Now that many of these issues have been overcome including the possibility of imaging awake animals, there are new opportunities to study whole brain systems neurobiology of acute and chronic pain as well as analgesic effects on brain systems de novo (using pharmacological MRI) or testing in animal models of pain. Understanding brain networks in these areas may provide new insights into translational science, and use neural networks as a "language of translation" between preclinical to clinical models. In this review we evaluate the role of functional and anatomical imaging in furthering our understanding in pain and analgesia.
Collapse
|
7
|
Turner MR, Modo M. Advances in the application of MRI to amyotrophic lateral sclerosis. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2010; 4:483-496. [PMID: 21516259 PMCID: PMC3080036 DOI: 10.1517/17530059.2010.536836] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
IMPORTANCE OF THE FIELD: With the emergence of therapeutic candidates for the incurable and rapidly progressive neurodegenerative condition of amyotrophic lateral sclerosis (ALS), it will be essential to develop easily obtainable biomarkers for diagnosis, as well as monitoring, in a disease where clinical examination remains the predominant diagnostic tool. Magnetic resonance imaging (MRI) has greatly developed over the past thirty years since its initial introduction to neuroscience. With multi-modal applications, MRI is now offering exciting opportunities to develop practical biomarkers in ALS. AREAS COVERED IN THIS REVIEW: The historical application of MRI to the field of ALS, its state-of-the-art and future aspirations will be reviewed. Specifically, the significance and limitations of structural MRI to detect gross morphological tissue changes in relation to clinical presentation will be discussed. The more recent application of diffusion tensor imaging (DTI), magnetic resonance spectroscopy (MRS), functional and resting-state MRI (fMRI & R-fMRI) will be contrasted in relation to these more conventional MRI assessments. Finally, future aspirations will be sketched out in providing a more disease mechanism-based molecular MRI. WHAT THE READER WILL GAIN: This review will equip the reader with an overview of the application of MRI to ALS and illustrate its potential to develop biomarkers. This discussion is exemplified by key studies, demonstrating the strengths and limitations of each modality. The reader will gain an expert opinion on both the current and future developments of MR imaging in ALS. TAKE HOME MESSAGE: MR imaging generates potential diagnostic, prognostic and therapeutic monitoring biomarkers of ALS. The emerging fusion of structural, functional and potentially molecular imaging will improve our understanding of wider cerebral connectivity and holds the promise of biomarkers sensitive to the earliest changes.
Collapse
Affiliation(s)
- Martin R Turner
- Oxford University Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | | |
Collapse
|
8
|
Diffusion-weighted magnetic resonance imaging reversal by gene knockdown of matrix metalloproteinase-9 activities in live animal brains. J Neurosci 2009; 29:3508-17. [PMID: 19295156 DOI: 10.1523/jneurosci.5332-08.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The involvement of matrix metalloproteinase-9 (MMP-9) activities in the development of abnormal water diffusion in the brain after cardiac arrest is not fully understood. We used magnetic resonance imaging to determine the correlation between MMP-9 activity and the mechanism of abnormal water diffusion after global cerebral ischemia (GCI)-induced brain damage in C57black6 mice. We induced GCI in mice by occluding both carotid arteries for 60 min, then allowing reperfusion. We labeled a short DNA that targets mmp-9 mRNA activity [phosphorothioate-modified oligodeoxynucleotide (sODN)-mmp9] or a control probe without intracellular target (sODN-Ran) with iron-based MR contrast agent [superparamagnetic iron oxide nanoparticle (SPION)-mmp9 or SPION-Ran] or fluorescein isothiocyanate (FITC)-sODN-mmp9 or FITC-sODN-Ran; we then delivered these probes by intracerebroventricular infusion or intraperitoneal injection within 3 h of reperfusion. At low dose (120 pmol/kg) the SPION-mmp9 probe was retained at significant levels in the striatum and cortex of living brains 10 h after GCI. Probe retention was validated by similar elevation of mmp-9 mRNA and antigens in postmortem samples taken from regions that exhibited GCI-induced hyperintensity in diffusion-weighted imaging, and a significant reduction in apparent diffusion coefficient (rADC, p = 0.0006, n = 12). At a higher dose (120 nmol/kg), the FITC-sODN-mmp9 probe revealed significant knockdown of MMP-9 activity, per zymography, and a reversal of striatal rADC (p = 0.004, n = 6). These observations were not duplicated in the control group. We conclude that expression of mmp-9 mRNA is associated with abnormal ADC after GCI.
Collapse
|
9
|
van Ommen B, Keijer J, Kleemann R, Elliott R, Drevon CA, McArdle H, Gibney M, Müller M. The challenges for molecular nutrition research 2: quantification of the nutritional phenotype. GENES AND NUTRITION 2008; 3:51-9. [PMID: 18850187 DOI: 10.1007/s12263-008-0084-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Accepted: 05/26/2008] [Indexed: 12/20/2022]
Abstract
In quantifying the beneficial effect of dietary interventions in healthy subjects, nutrition research meets a number of new challenges. Inter individual variation in biomarker values often is larger than the effect related to the intervention. Healthy subjects have a remarkable capacity to maintain homeostasis, both through direct metabolic regulation, metabolic compensation of altered diets, and effective defence and repair mechanisms in oxidative and inflammatory stress. Processes involved in these regulatory activities essentially different from processes involved in early onset of diet related diseases. So, new concepts and approaches are needed to better quantify the subtle effects possibly achieved by dietary interventions in healthy subjects. Apart from quantification of the genotype and food intake (these are discussed in separate reviews in this series), four major areas of innovation are discussed: the biomarker profile concept, perturbation of homeostasis combined with omics analysis, imaging, modelling and fluxes. All of these areas contribute to a better understanding and quantification of the nutritional phenotype.
Collapse
Affiliation(s)
- Ben van Ommen
- Department of BioSciences, TNO-Quality of Life, Zeist, The Netherlands,
| | | | | | | | | | | | | | | |
Collapse
|