1
|
Kovács Z, Rauch E, D’Agostino DP, Ari C. Putative Role of Adenosine A1 Receptors in Exogenous Ketone Supplements-Evoked Anti-Epileptic Effect. Int J Mol Sci 2024; 25:9869. [PMID: 39337356 PMCID: PMC11432942 DOI: 10.3390/ijms25189869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Approximately 30% of patients with epilepsy are drug-refractory. There is an urgent need to elucidate the exact pathophysiology of different types of epilepsies and the mechanisms of action of both antiseizure medication and metabolic therapies to treat patients more effectively and safely. For example, it has been demonstrated that exogenous ketone supplement (EKS)-generated therapeutic ketosis, as a metabolic therapy, may decrease epileptic activity in both animal models and humans, but its exact mechanism of action is unknown. However, it was demonstrated that therapeutic ketosis, among others, can increase adenosine level, which may enhance activity of A1 adenosine receptors (A1Rs) in the brain. It has also been demonstrated previously that adenosine has anti-epileptic effect through A1Rs in different models of epilepsies. Thus, it is possible that (i) therapeutic ketosis generated by the administration of EKSs may exert its anti-epileptic effect through, among other mechanisms, increased adenosine level and A1R activity and that (ii) the enhanced activity of A1Rs may be a necessary anti-epileptic mechanism evoked by EKS administration-generated ketosis. Moreover, EKSs can evoke and maintain ketosis without severe side effects. These results also suggest that the therapeutic application of EKS-generated ketosis may be a promising opportunity to treat different types of epilepsies. In this literature review, we specifically focus on the putative role of A1Rs in the anti-epileptic effect of EKS-induced ketosis.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, BDTTC, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary or (Z.K.); (E.R.)
| | - Enikő Rauch
- Department of Biology, BDTTC, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary or (Z.K.); (E.R.)
- Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary
| | - Dominic P. D’Agostino
- Ketone Technologies LLC., Tampa, FL 33612, USA;
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA
| | - Csilla Ari
- Ketone Technologies LLC., Tampa, FL 33612, USA;
- Department of Psychology, Behavioral Neuroscience Research Laboratory, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
2
|
Kumar V, Nair SC. Nano Lipid Carriers as a Promising Drug Delivery Carrier for Neurodegenerative Disorders - An Overview of Recent Advances. Recent Pat Biotechnol 2024; 18:2-21. [PMID: 38205772 DOI: 10.2174/1872208317666230320164219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 01/12/2024]
Abstract
The last few decades have seen a rise in the number of deaths caused by neurological disorders. The blood-brain barrier (BBB), which is very complex and has multiple mechanisms, makes drug delivery to the brain challenging for many scientists. Lipid nanoparticles (LNPs) such as nanoemulsions, solid-lipid nanoparticles, liposomes, and nano lipid carriers (NLCs) exhibit enhanced bioavailability and flexibility among these nanocarriers. NLCs are found to be very effective. In the last few decades, they have been a center of attraction for controlled drug delivery. According to the current global status of specific neurological disorders, out of all LNPs, NLC significantly reduces the cross-permeability of drugs through the BBB due to their peculiar properties. They offer a host of advantages over other carriers because of their biocompatibility, safety, non-toxicity, non-irritating behavior, stability, high encapsulation efficiency, high drug loading, high drug targeting, control of drug release, and ease in manufacturing. The biocompatible lipid matrix is ideally suited as a drug carrier system due to the nano-size range. For certain neurological conditions such as Parkinsonism, Alzheimer's, Epilepsy, Multiple sclerosis, and Brain cancer, we examined recent advances in NLCs to improve brain targeting of bioactive with special attention to formulation aspects and pharmacokinetic characteristics. This article also provides a brief overview of a critical approach for brain targeting, i.e., direct nose-to-brain drug delivery and some recent patents published on NLC".
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Sreeja C Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| |
Collapse
|
3
|
Effects of in utero exposure to valproate or levetiracetam on the seizures and newborn histopathology of genetic absence epilepsy rats. Neurosci Lett 2022; 776:136574. [PMID: 35271996 DOI: 10.1016/j.neulet.2022.136574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/22/2022]
Abstract
Valproate (VPA) and levetiracetam (LEV), the two broad spectrum antiseizure drugs with antiabsence effects were previously tested for their antiepileptogenic effects when administered in the early postnatal period and revealed possible modification of the epileptogenic process though the effect being not persistent. The aim of this study was to investigate the effects of in utero exposure to these drugs on the absence epilepsy seizures of Genetic Absence Epilepsy Rats from Strasbourg (GAERS) rats on electroencephalogram (EEG) which are characterised by bilateral, symmetrical, and synchronized spike-and-wave discharges (SWDs). Considering LEV was proposed as a safer drug of choice in pregnancy, its effects on the newborn histopathology of GAERS was also investigated. Adult female GAERS were randomly grouped as VPA-(400 mg/kg/day), LEV- (100 mg/kg/day), and saline-treated. The drugs were injected into the animals intraperitoneally starting before pregnancy until parturition. The lungs, kidneys, and brains of the LEV-exposed newborns were evaluated histologically to be compared with unexposed naïve Wistar and GAERS newborns. Rest of the VPA-, LEV-, and saline-exposed offsprings were taken for EEG recordings on postnatal day 90. VPA or LEV did not show significant effect on mean cumulative duration and mean number of SWDs on EEG. The lungs of the LEV-exposed offsprings showed thickened alveolar epithelium in most regions, suggesting incomplete development of the alveoli. The renal examination revealed dilated Bowman's spaces in some renal corpuscles, which may be interpreted as a deleterious effect of LEV on the kidney. In addition, brain examination of LEV- and saline-exposed groups revealed irregularities in cortical thickness compared to Wistar control group. Lack of significant difference on SWD parameters may indicate that the mechanism responsible for the antiepileptogenic effects of VPA and LEV may not be operating in the prenatal period. The detrimental effect of LEV exposure observed in our study on the lungs and the kidneys of the newborns should be investigated by further studies with advanced molecular and biochemical techniques.
Collapse
|
4
|
Balikci A, Ilbay G, Ates N. Neonatal Tactile Stimulations Affect Genetic Generalized Epilepsy and Comorbid Depression-Like Behaviors. Front Behav Neurosci 2020; 14:132. [PMID: 32792925 PMCID: PMC7390910 DOI: 10.3389/fnbeh.2020.00132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022] Open
Abstract
Recent studies suggest that development of absence epilepsy and comorbid depression might be prevented by increased maternal care of the offspring, in which tactile stimulation induced by licking/grooming and non-nutritive contact seem to be crucial. In this study, we aimed to evaluate the effect of neonatal tactile stimulations (NTS) on absence epilepsy and depression-like behaviors in adulthood. Wistar Albino Glaxo from Rijswijk (WAG/Rij) rat pups with a genetic predisposition to absence epilepsy were divided into tactile stimulation (TS) group, deep touch pressure (DTP) group, maternal separation (MS) group or control group. Between postnatal day 3 and 21, manipulations (TS, DTP, and MS) were carried out for 15 min and three times a day. Animals were submitted to locomotor activity, sucrose consumption test (SCT) and forced swimming test (FST) at five months of age. At the age of six months, the electroencephalogram (EEG) recordings were conducted in order to quantify the spike-wave discharges (SWDs), which is the hallmark of absence epilepsy. The TS and DTP groups showed less and shorter SWDs in later life in comparison to maternally separated and control rats. SWDs’ number and total duration were significantly reduced in TS and DTP groups whereas mean duration of SWDs was reduced only in DTP group (p < 0.05). TS and DTP also decreased depression-like behaviors measured by SCT and FST in adult animals. In the SCT, number of approaches was significantly higher in TS and DTP groups than the maternally separated and control rats. In the FST, while the immobility latency of TS and DTP groups was significantly higher, only TS group showed significantly decreased immobility and increased swimming time. The results showed that NTS decreases both the number and length of SWDs and the depression-like behaviors in WAG/Rij rats probably by increasing arousal level and causing alterations in the level of some neurotrophic factors as well as in functions of the neural plasticity in the developing rat’s brain.
Collapse
Affiliation(s)
- Aymen Balikci
- Department of Physiology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Gul Ilbay
- Department of Physiology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Nurbay Ates
- Department of Physiology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
5
|
Agrawal M, Saraf S, Saraf S, Dubey SK, Puri A, Patel RJ, Ajazuddin, Ravichandiran V, Murty US, Alexander A. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. J Control Release 2020; 321:372-415. [PMID: 32061621 DOI: 10.1016/j.jconrel.2020.02.020] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
Abstract
In last two decades, the lipid nanocarriers have been extensively investigated for their drug targeting efficiency towards the critical areas of the human body like CNS, cardiac region, tumor cells, etc. Owing to the flexibility and biocompatibility, the lipid-based nanocarriers, including nanoemulsion, liposomes, SLN, NLC etc. have gained much attention among various other nanocarrier systems for brain targeting of bioactives. Across different lipid nanocarriers, NLC remains to be the safest, stable, biocompatible and cost-effective drug carrier system with high encapsulation efficiency. Drug delivery to the brain always remains a challenging issue for scientists due to the complex structure and various barrier mechanisms surrounding the brain. The application of a suitable nanocarrier system and the use of any alternative route of drug administration like nose-to-brain drug delivery could overcome the hurdle and improves the therapeutic efficiency of CNS acting drugs thereof. NLC, a second-generation lipid nanocarrier, upsurges the drug permeation across the BBB due to its unique structural properties. The biocompatible lipid matrix and nano-size make it an ideal drug carrier for brain targeting. It offers many advantages over other drug carrier systems, including ease of manufacturing and scale-up to industrial level, higher drug targeting, high drug loading, control drug release, compatibility with a wide range of drug substances, non-toxic and non-irritant behavior. This review highlights recent progresses towards the development of NLC for brain targeting of bioactives with particular reference to its surface modifications, formulations aspects, pharmacokinetic behavior and efficacy towards the treatment of various neurological disorders like AD, PD, schizophrenia, epilepsy, brain cancer, CNS infection (viral and fungal), multiple sclerosis, cerebral ischemia, and cerebral malaria. This work describes in detail the role and application of NLC, along with its different fabrication techniques and associated limitations. Specific emphasis is given to compile a summary and graphical data on the area explored by scientists and researchers worldwide towards the treatment of neurological disorders with or without NLC. The article also highlights a brief insight into two prime approaches for brain targeting, including drug delivery across BBB and direct nose-to-brain drug delivery along with the current global status of specific neurological disorders.
Collapse
Affiliation(s)
- Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, NCI-Frederick, NIH, Frederick, USA
| | - Ravish J Patel
- Ramanbhai Patel College of Pharmacy (RPCP), Charotar University of Sciences and Technology (CHARUSAT), Gujarat 388421, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research (NIPER-Kolkata), Ministry of Chemicals & Fertilizers, Govt. of India, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| | - Upadhyayula Suryanarayana Murty
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup, 781125 Guwahati, Assam, India
| | - Amit Alexander
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup, 781125 Guwahati, Assam, India.
| |
Collapse
|
6
|
The effects of lamotrigine and ethosuximide on seizure frequency, neuronal loss, and astrogliosis in a model of temporal-lobe epilepsy. Brain Res 2019; 1712:1-6. [DOI: 10.1016/j.brainres.2019.01.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 01/18/2019] [Accepted: 01/26/2019] [Indexed: 12/28/2022]
|
7
|
Russo E, Citraro R. Pharmacology of epileptogenesis and related comorbidities in the WAG/Rij rat model of genetic absence epilepsy. J Neurosci Methods 2018; 310:54-62. [PMID: 29857008 DOI: 10.1016/j.jneumeth.2018.05.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 01/23/2023]
Abstract
Animal studies currently represent the best source of information also in the field of epileptogenesis research. Many animal models have been proposed and studied so far both from the pathophysiological and pharmacological point of view. Furthermore, they are widely used for the identification of potentially clinically valuable biomarkers. The WAG/Rij rat model, similarly to other genetic animal strains, represents a suitable animal model of absence epileptogenesis accompanied by depressive-like and cognitive comorbidities. Generally, animal models of epileptogenesis are characterized by an identifiable initial insult (e.g. traumatic brain injury), a latent phase lasting up to the appearance of the first spontaneous seizure and a chronic phase characterized by recurrent spontaneous seizures. In most of genetic models: the initial insult should be defined as the mutation causing epilepsy, which is not clearly defined in the WAG/Rij rat model; the latent phase ends at the appearance of the first spontaneous seizure, which is about 2-3 months of age in WAG/Rij rats and thereafter the chronic phase. WAG/Rij rats also display depressive-like comorbidity around the age of 4 months, which is apparently linked to the development of absence seizures considering both its ontogeny and the fact that drugs affecting absence seizures development also block the development of depressive-like behavior. Finally, WAG/Rij rats also display cognitive impairment in some memory tasks, however, this has not been yet definitively linked to absence seizures development and may represent an epiphenomenon. This review is focused on the effects of pharmacological treatments against epileptogenesis and their effects on comorbidities.
Collapse
Affiliation(s)
- Emilio Russo
- Science of Health Department, School of Medicine, University of Catanzaro, Italy.
| | - Rita Citraro
- Science of Health Department, School of Medicine, University of Catanzaro, Italy
| |
Collapse
|
8
|
Gu F, Parada I, Yang T, Longo FM, Prince DA. Partial TrkB receptor activation suppresses cortical epileptogenesis through actions on parvalbumin interneurons. Neurobiol Dis 2018; 113:45-58. [PMID: 29408225 DOI: 10.1016/j.nbd.2018.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/21/2018] [Accepted: 01/24/2018] [Indexed: 01/17/2023] Open
Abstract
Post-traumatic epilepsy is one of the most common and difficult to treat forms of acquired epilepsy worldwide. Currently, there is no effective way to prevent post-traumatic epileptogenesis. It is known that abnormalities of interneurons, particularly parvalbumin-containing interneurons, play a critical role in epileptogenesis following traumatic brain injury. Thus, enhancing the function of existing parvalbumin interneurons might provide a logical therapeutic approach to prevention of post-traumatic epilepsy. The known positive effects of brain-derived neurotrophic factor on interneuronal growth and function through activation of its receptor tropomyosin receptor kinase B, and its decrease after traumatic brain injury, led us to hypothesize that enhancing trophic support might improve parvalbumin interneuronal function and decrease epileptogenesis. To test this hypothesis, we used the partial neocortical isolation ('undercut', UC) model of posttraumatic epileptogenesis in mature rats that were treated for 2 weeks, beginning on the day of injury, with LM22A-4, a newly designed partial agonist at the tropomyosin receptor kinase B. Effects of treatment were assessed with Western blots to measure pAKT/AKT; immunocytochemistry and whole cell patch clamp recordings to examine functional and structural properties of GABAergic interneurons; field potential recordings of epileptiform discharges in vitro; and video-EEG recordings of PTZ-induced seizures in vivo. Results showed that LM22A-4 treatment 1) increased pyramidal cell perisomatic immunoreactivity for VGAT, GAD65 and parvalbumin; 2) increased the density of close appositions of VGAT/gephyrin immunoreactive puncta (putative inhibitory synapses) on pyramidal cell somata; 3) increased the frequency of mIPSCs in pyramidal cells; and 4) decreased the incidence of spontaneous and evoked epileptiform discharges in vitro. 5) Treatment of rats with PTX BD4-3, another partial TrkB receptor agonist, reduced the incidence of bicuculline-induced ictal episodes in vitro and PTZ induced electrographic and behavioral ictal episodes in vivo. 6) Inactivation of TrkB receptors in undercut TrkBF616A mice with 1NMPP1 abolished both LM22A-4-induced effects on mIPSCs and on increased perisomatic VGAT-IR. Results indicate that chronic activation of the tropomyosin receptor kinase B by a partial agonist after cortical injury can enhance structural and functional measures of GABAergic inhibition and suppress posttraumatic epileptogenesis. Although the full agonist effects of brain-derived neurotrophic factor and tropomyosin receptor kinase B activation in epilepsy models have been controversial, the present results indicate that such trophic activation by a partial agonist may potentially serve as an effective therapeutic option for prophylactic treatment of posttraumatic epileptogenesis, and treatment of other neurological and psychiatric disorders whose pathogenesis involves impaired parvalbumin interneuronal function.
Collapse
Affiliation(s)
- Feng Gu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, United States
| | - Isabel Parada
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, United States
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, United States
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, United States
| | - David A Prince
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, United States.
| |
Collapse
|
9
|
Russo E, Citraro R, Constanti A, Leo A, Lüttjohann A, van Luijtelaar G, De Sarro G. Upholding WAG/Rij rats as a model of absence epileptogenesis: Hidden mechanisms and a new theory on seizure development. Neurosci Biobehav Rev 2016; 71:388-408. [DOI: 10.1016/j.neubiorev.2016.09.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 09/19/2016] [Indexed: 02/06/2023]
|
10
|
An easy-to-use liquid chromatography assay for the analysis of lamotrigine in rat plasma and brain samples using microextraction by packed sorbent: Application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1035:67-75. [DOI: 10.1016/j.jchromb.2016.09.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 09/18/2016] [Accepted: 09/24/2016] [Indexed: 12/30/2022]
|
11
|
Ferastraoaru V, Schulze-Bonhage A, Lipton RB, Dümpelmann M, Legatt AD, Blumberg J, Haut SR. Termination of seizure clusters is related to the duration of focal seizures. Epilepsia 2016; 57:889-95. [PMID: 27030215 DOI: 10.1111/epi.13375] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2016] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Clustered seizures are characterized by shorter than usual interseizure intervals and pose increased morbidity risk. This study examines the characteristics of seizures that cluster, with special attention to the final seizure in a cluster. METHODS This is a retrospective analysis of long-term inpatient monitoring data from the EPILEPSIAE project. Patients underwent presurgical evaluation from 2002 to 2009. Seizure clusters were defined by the occurrence of at least two consecutive seizures with interseizure intervals of <4 h. Other definitions of seizure clustering were examined in a sensitivity analysis. Seizures were classified into three contextually defined groups: isolated seizures (not meeting clustering criteria), terminal seizure (last seizure in a cluster), and intracluster seizures (any other seizures within a cluster). Seizure characteristics were compared among the three groups in terms of duration, type (focal seizures remaining restricted to one hemisphere vs. evolving bilaterally), seizure origin, and localization concordance among pairs of consecutive seizures. RESULTS Among 92 subjects, 77 (83%) had at least one seizure cluster. The intracluster seizures were significantly shorter than the last seizure in a cluster (p = 0.011), whereas the last seizure in a cluster resembled the isolated seizures in terms of duration. Although focal only (unilateral), seizures were shorter than seizures that evolved bilaterally and there was no correlation between the seizure type and the seizure position in relation to a cluster (p = 0.762). Frontal and temporal lobe seizures were more likely to cluster compared with other localizations (p = 0.009). Seizure pairs that are part of a cluster were more likely to have a concordant origin than were isolated seizures. Results were similar for the 2 h definition of clustering, but not for the 8 h definition of clustering. SIGNIFICANCE We demonstrated that intracluster seizures are short relative to isolated seizures and terminal seizures. Frontal and temporal lobe seizures are more likely to cluster.
Collapse
Affiliation(s)
- Victor Ferastraoaru
- Department of Neurology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, U.S.A.,Comprehensive Epilepsy Management Center, Montefiore Medical Center, Bronx, New York, U.S.A
| | | | - Richard B Lipton
- Department of Neurology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, U.S.A
| | | | - Alan D Legatt
- Department of Neurology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, U.S.A.,Comprehensive Epilepsy Management Center, Montefiore Medical Center, Bronx, New York, U.S.A
| | - Julie Blumberg
- Epilepsy Center, University Medical Center Freiburg, Freiburg, Germany.,Department of Neuropediatrics and Muscle Disorders, University Medical Center Freiburg, Freiburg, Germany
| | - Sheryl R Haut
- Department of Neurology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, U.S.A.,Comprehensive Epilepsy Management Center, Montefiore Medical Center, Bronx, New York, U.S.A
| |
Collapse
|
12
|
Sharma N, Bhandari S, Deshmukh R, Yadav AK, Mishra N. Development and characterization of embelin-loaded nanolipid carriers for brain targeting. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:409-413. [DOI: 10.3109/21691401.2016.1160407] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Nancy Sharma
- Department of Pharmaceutics, I.S.F. College of Pharmacy, GT Road, Moga, Punjab, India
| | - Saurav Bhandari
- Department of Quality Assurance, I.S.F. College of Pharmacy, GT Road, Moga, Punjab, India
| | - Rahul Deshmukh
- Department of Pharmacology, I.S.F. College of Pharmacy, GT Road, Moga, Punjab, India
| | - Awesh K Yadav
- Department of Pharmaceutics, Bhagyoday Tirth Pharmacy College, Sagar (MP), India
| | - Neeraj Mishra
- Department of Pharmaceutics, I.S.F. College of Pharmacy, GT Road, Moga, Punjab, India
| |
Collapse
|
13
|
Prince D, Gu F, Parada I. Antiepileptogenic repair of excitatory and inhibitory synaptic connectivity after neocortical trauma. PROGRESS IN BRAIN RESEARCH 2016; 226:209-27. [DOI: 10.1016/bs.pbr.2016.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Jiang Z, Guo M, Shi C, Wang H, Yao L, Liu L, Xie C, Pu S, LaChaud G, Shen J, Zhu M, Mu L, Ge H, Long Y, Wang X, Song Y, Sun J, Hou X, Zarringhalam A, Park SH, Shi C, Shen H, Lin Z. Protection against cognitive impairment and modification of epileptogenesis with curcumin in a post-status epilepticus model of temporal lobe epilepsy. Neuroscience 2015; 310:362-71. [DOI: 10.1016/j.neuroscience.2015.09.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/20/2015] [Accepted: 09/21/2015] [Indexed: 12/12/2022]
|
15
|
Löscher W, Hirsch LJ, Schmidt D. The enigma of the latent period in the development of symptomatic acquired epilepsy - Traditional view versus new concepts. Epilepsy Behav 2015; 52:78-92. [PMID: 26409135 DOI: 10.1016/j.yebeh.2015.08.037] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 08/30/2015] [Indexed: 01/21/2023]
Abstract
A widely accepted hypothesis holds that there is a seizure-free, pre-epileptic state, termed the "latent period", between a brain insult, such as traumatic brain injury or stroke, and the onset of symptomatic epilepsy, during which a cascade of structural, molecular, and functional alterations gradually mediates the process of epileptogenesis. This review, based on recent data from both animal models and patients with different types of brain injury, proposes that epileptogenesis and often subclinical epilepsy can start immediately after brain injury without any appreciable latent period. Even though the latent period has traditionally been the cornerstone concept representing epileptogenesis, we suggest that the evidence for the existence of a latent period is spotty both for animal models and human epilepsy. Knowing whether a latent period exists or not is important for our understanding of epileptogenesis and for the discovery and the trial design of antiepileptogenic agents. The development of antiepileptogenic treatments to prevent epilepsy in patients at risk from a brain insult is a major unmet clinical need.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany.
| | | | | |
Collapse
|
16
|
Modification of Astrocyte Metabolism as an Approach to the Treatment of Epilepsy: Triheptanoin and Acetyl-l-Carnitine. Neurochem Res 2015; 41:86-95. [DOI: 10.1007/s11064-015-1728-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 12/30/2022]
|
17
|
Hazrati MK, Keil A, Principe JC. Long-term scalp epileptic EEG quantification with GMA dynamics. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:2892-2895. [PMID: 26736896 DOI: 10.1109/embc.2015.7318996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The paper concerns the problem of automatic seizure detection based on scalp EEG and proposes to employ the generalized measure of association (GMA) to quantify the statistical dependencies and infer the dynamical interactions of brain regions with the focus area. The experimental results with clinical recordings show that the estimated GMA values changes dramatically before and during epileptic seizures reflecting the dynamic coupling and decoupling between brain regions, which can be an useful measure to quantify epileptic EEG signals.
Collapse
|
18
|
Citraro R, Leo A, De Fazio P, De Sarro G, Russo E. Antidepressants but not antipsychotics have antiepileptogenic effects with limited effects on comorbid depressive-like behaviour in the WAG/Rij rat model of absence epilepsy. Br J Pharmacol 2015; 172:3177-88. [PMID: 25754610 DOI: 10.1111/bph.13121] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/22/2015] [Accepted: 02/21/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Two of the most relevant unmet needs in epilepsy are represented by the development of disease-modifying drugs able to affect epileptogenesis and/or the study of related neuropsychiatric comorbidities. No systematic study has investigated the effects of chronic treatment with antipsychotics or antidepressants on epileptogenesis. However, such drugs are known to influence seizure threshold. EXPERIMENTAL APPROACH We evaluated the effects of an early long-term treatment (ELTT; 17 weeks), started before seizure onset (P45), with fluoxetine (selective 5-HT-reuptake inhibitor), duloxetine (dual-acting 5-HT-noradrenaline reuptake inhibitor), haloperidol (typical antipsychotic drug), risperidone and quetiapine (atypical antipsychotic drugs) on the development of absence seizures and comorbid depressive-like behaviour in the WAG/Rij rat model. Furthermore, we studied the effects of these drugs on established absence seizures in adult (6-month-old) rats after a chronic 7 weeks treatment. KEY RESULTS ELTT with all antipsychotics did not affect the development of seizures, whereas, both ELTT haloperidol (1 mg · kg(-1) day(-1)) and risperidone (0.5 mg · kg(-1) day(-1)) increased immobility time in the forced swimming test and increased absence seizures only in adult rats (7 weeks treatment). In contrast, both fluoxetine (30 mg · kg(-1) day(-1)) and duloxetine (10-30 mg · kg(-1) day(-1)) exhibited clear antiepileptogenic effects. Duloxetine decreased and fluoxetine increased absence seizures in adult rats. Duloxetine did not affect immobility time; fluoxetine 30 mg · kg(-1) day(-1) reduced immobility time while at 10 mg · kg(-1) day(-1) an increase was observed. CONCLUSIONS AND IMPLICATIONS In this animal model, antipsychotics had no antiepileptogenic effects and might worsen depressive-like comorbidity, while antidepressants have potential antiepileptogenic effects even though they have limited effects on comorbid depressive-like behaviour.
Collapse
Affiliation(s)
- Rita Citraro
- Pharmacology Unit, Science of Health Department School of Medicine and Surgery, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- Pharmacology Unit, Science of Health Department School of Medicine and Surgery, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Pasquale De Fazio
- Psichiatry Unit, Science of Health Department School of Medicine and Surgery, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Giovambattista De Sarro
- Pharmacology Unit, Science of Health Department School of Medicine and Surgery, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Emilio Russo
- Pharmacology Unit, Science of Health Department School of Medicine and Surgery, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| |
Collapse
|
19
|
Citraro R, Leo A, Marra R, De Sarro G, Russo E. Antiepileptogenic effects of the selective COX-2 inhibitor etoricoxib, on the development of spontaneous absence seizures in WAG/Rij rats. Brain Res Bull 2015; 113:1-7. [DOI: 10.1016/j.brainresbull.2015.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/09/2015] [Accepted: 02/13/2015] [Indexed: 11/25/2022]
|
20
|
Hadera MG, Eloqayli H, Jaradat S, Nehlig A, Sonnewald U. Astrocyte-neuronal interactions in epileptogenesis. J Neurosci Res 2015; 93:1157-64. [DOI: 10.1002/jnr.23584] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/13/2015] [Accepted: 02/13/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Mussie Ghezu Hadera
- Department of Neuroscience; Faculty of Medicine; Norwegian University of Science and Technology; Trondheim Norway
| | - Haytham Eloqayli
- Department of Neuroscience; Faculty of Medicine; Jordan University of Science and Technology; Irbid Jordan
| | - Saied Jaradat
- Princess Haya Biotechnology Center; Jordan University of Science and Technology; Irbid Jordan
| | - Astrid Nehlig
- INSERM U1129 "Infantile Epilepsies and Brain Plasticity"; Paris, France; Paris Descartes University-Sorbonne Paris Cité; Paris France
- CEA, Gif sur Yvette; France
| | - Ursula Sonnewald
- Department of Neuroscience; Faculty of Medicine; Norwegian University of Science and Technology; Trondheim Norway
| |
Collapse
|
21
|
Depaulis A, Hamelin S. Animal models for mesiotemporal lobe epilepsy: The end of a misunderstanding? Rev Neurol (Paris) 2015; 171:217-26. [DOI: 10.1016/j.neurol.2015.01.558] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/20/2015] [Indexed: 01/24/2023]
|
22
|
Sitnikova E, Rutskova EM, Raevsky VV. Reduction of epileptic spike-wave activity in WAG/Rij rats fostered by Wistar dams. Brain Res 2014; 1594:305-9. [PMID: 25449890 DOI: 10.1016/j.brainres.2014.10.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/06/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
Abstract
In WAG/Rij rat genetic model of absence epilepsy, the first spike-wave discharges (EEG hallmark of absence epilepsy) are known to appear after puberty, and their incidence increases with age. WAG/Rij rats are known to have a genetic predisposition to absence epilepsy, and further development of epilepsy might be influenced by epigenetic factors. This preliminary study examined the effect of early postnatal factors on the incidence of epileptic spike-wave discharges in adulthood. The newborn WAG/Rij rats were fostered by Wistar dams (from birth throughout the weaning age), and their EEG was examined continuously from 5 to 13 months of age. It was found that the number and duration of absence seizures was reduced in WAG/Rij rats adopted by Wistar dams as compared with the age-matched control WAG/Rij rats nursed by their own mothers. These data indicate that natural (epigenetic) factors, such as maternal care during suckling period, affect development of seizure activity in genetically prone subjects. It is suggested that improvement of primarily care-giving environment in subjects with genetic predisposition to absence epilepsy is a way to reduce epileptic activity in later life.
Collapse
Affiliation(s)
- Evgenia Sitnikova
- Institute of the Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova str., 5A, Moscow 117485, Russia.
| | - Elizaveta M Rutskova
- Institute of the Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova str., 5A, Moscow 117485, Russia.
| | - Vladimir V Raevsky
- Institute of the Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova str., 5A, Moscow 117485, Russia.
| |
Collapse
|
23
|
Abstract
Epilepsy is one of the most common chronic neurological conditions worldwide. Anti-epileptic drugs (AEDs) can suppress seizures, but do not affect the underlying epileptic state, and many epilepsy patients are unable to attain seizure control with AEDs. To cure or prevent epilepsy, disease-modifying interventions that inhibit or reverse the disease process of epileptogenesis must be developed. A major limitation in the development and implementation of such an intervention is the current poor understanding, and the lack of reliable biomarkers, of the epileptogenic process. Neuroimaging represents a non-invasive medical and research tool with the ability to identify early pathophysiological changes involved in epileptogenesis, monitor disease progression, and assess the effectiveness of possible therapies. Here we will provide an overview of studies conducted in animal models and in patients with epilepsy that have utilized various neuroimaging modalities to investigate epileptogenesis.
Collapse
Affiliation(s)
- Sandy R Shultz
- Department of Medicine, The Melbourne Brain Centre, The Royal Melbourne Hospital, The University of Melbourne, Building 144, Royal Parade, Parkville, VIC, 3010, Australia,
| | | | | | | |
Collapse
|
24
|
van Luijtelaar G, Mishra AM, Edelbroek P, Coman D, Frankenmolen N, Schaapsmeerders P, Covolato G, Danielson N, Niermann H, Janeczko K, Kiemeneij A, Burinov J, Bashyal C, Coquillette M, Lüttjohann A, Hyder F, Blumenfeld H, van Rijn CM. Anti-epileptogenesis: Electrophysiology, diffusion tensor imaging and behavior in a genetic absence model. Neurobiol Dis 2013; 60:126-38. [PMID: 23978468 DOI: 10.1016/j.nbd.2013.08.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 08/14/2013] [Indexed: 11/18/2022] Open
Abstract
The beneficial effects of chronic and early pharmacological treatment with ethosuximide on epileptogenesis were studied in a genetic absence epilepsy model comorbid for depression. It was also investigated whether there is a critical treatment period and treatment length. Cortical excitability in the form of electrical evoked potentials, but also to cortico-thalamo-cortical network activity (spike-wave discharges, SWD and afterdischarges), white matter changes representing extra cortico-thalamic functions and depressive-like behavior were investigated. WAG/Rij rats received either ethosuximide for 2 months (post natal months 2-3 or 4-5), or ethosuximide for 4 months (2-5) in their drinking water, while control rats drank plain water. EEG measurements were made during treatment, and 6 days and 2 months post treatment. Behavioral test were also done 6 days post treatment. DTI was performed ex vivo post treatment. SWD were suppressed during treatment, and 6 days and 2 months post treatment in the 4 month treated group, as well as the duration of AD elicited by cortical electrical stimulation 6 days post treatment. Increased fractional anisotropy in corpus callosum and internal capsula on DTI was found, an increased P8 evoked potential amplitude and a decreased immobility in the forced swim test. Shorter treatments with ETX had no large effects on any parameter. Chronic ETX has widespread effects not only within but also outside the circuitry in which SWD are initiated and generated, including preventing epileptogenesis and reducing depressive-like symptoms. The treatment of patients before symptom onset might prevent many of the adverse consequences of chronic epilepsy.
Collapse
Affiliation(s)
- Gilles van Luijtelaar
- Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ketzef M, Gitler D. Epileptic synapsin triple knockout mice exhibit progressive long-term aberrant plasticity in the entorhinal cortex. ACTA ACUST UNITED AC 2012; 24:996-1008. [PMID: 23236212 DOI: 10.1093/cercor/bhs384] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Studying epileptogenesis in a genetic model can facilitate the identification of factors that promote the conversion of a normal brain into one chronically prone to seizures. Synapsin triple-knockout (TKO) mice exhibit adult-onset epilepsy, thus allowing the characterization of events as preceding or following seizure onset. Although it has been proposed that a congenital reduction in inhibitory transmission is the underlying cause for epilepsy in these mice, young TKO mice are asymptomatic. We report that the genetic lesion exerts long-term progressive effects that extend well into adulthood. Although inhibitory transmission is initially reduced, it is subsequently strengthened relative to its magnitude in control mice, so that the excitation to inhibition balance in adult TKOs is inverted in favor of inhibition. In parallel, we observed long-term alterations in synaptic depression kinetics of excitatory transmission and in the extent of tonic inhibition, illustrating adaptations in synaptic properties. Moreover, age-dependent acceleration of the action potential did not occur in TKO cortical pyramidal neurons, suggesting wide-ranging secondary changes in brain excitability. In conclusion, although congenital impairments in inhibitory transmission may initiate epileptogenesis in the synapsin TKO mice, we suggest that secondary adaptations are crucial for the establishment of this epileptic network.
Collapse
Affiliation(s)
- Maya Ketzef
- Department of Physiology and Cell Biology, Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | |
Collapse
|
26
|
Kerr MSD, Burns SP, Gale J, Gonzalez-Martinez J, Bulacio J, Sarma SV. Multivariate analysis of SEEG signals during seizure. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:8279-82. [PMID: 22256265 DOI: 10.1109/iembs.2011.6092041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Epilepsy is a neurological disorder that affects tens of millions of people every year and is characterized by sudden-onset seizures which are often associated with physical convulsions. Effective treatment and management of epilepsy would be greatly improved if convulsions could be caught quickly through early seizure detection. However, this is still a largely open problem due to the challenge of finding a robust statistic from the neural measurements. This paper suggests a new multivariate statistic by combining spectral techniques with matrix theory. Specifically, stereoelectroencephalography (SEEG) data was used to generate a series of coherence connectivity matrices which were then examined using singular value decomposition. Tracking the relative angles of the first singular vectors generated from this data provides an effective way of defining the most dominant characteristics of the SEEG during the normal, the pre-ictal, and the ictal states. This paper indicates that the first singular vector has a characteristic direction indicative of the seizure state and illustrates a data analysis method that incorporates all neural data as opposed to a small selection of channels.
Collapse
Affiliation(s)
- Matthew S D Kerr
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore Maryland, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Sloviter RS, Bumanglag AV. Defining "epileptogenesis" and identifying "antiepileptogenic targets" in animal models of acquired temporal lobe epilepsy is not as simple as it might seem. Neuropharmacology 2012; 69:3-15. [PMID: 22342985 DOI: 10.1016/j.neuropharm.2012.01.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/20/2012] [Accepted: 01/25/2012] [Indexed: 11/17/2022]
Abstract
The "latent period" between brain injury and clinical epilepsy is widely regarded to be a seizure-free, pre-epileptic state during which a time-consuming cascade of molecular events and structural changes gradually mediates the process of "epileptogenesis." The concept of the "latent period" as the duration of "epileptogenesis" implies that epilepsy is not an immediate result of brain injury, and that anti-epileptogenic strategies need to target delayed secondary mechanisms that develop sometime after an initial injury. However, depth recordings made directly from the dentate granule cell layers in awake rats after convulsive status epilepticus-induced injury have now shown that whenever perforant pathway stimulation-induced status epilepticus produces extensive hilar neuron loss and entorhinal cortical injury, hyperexcitable granule cells immediately generate spontaneous epileptiform discharges and focal or generalized behavioral seizures. This indicates that hippocampal injury caused by convulsive status epilepticus is immediately epileptogenic and that hippocampal epileptogenesis requires no delayed secondary mechanism. When latent periods do exist after injury, we hypothesize that less extensive cell loss causes an extended period during which initially subclinical focal seizures gradually increase in duration to produce the first clinical seizure. Thus, the "latent period" is suggested to be a state of "epileptic maturation," rather than a prolonged period of "epileptogenesis," and therefore the antiepileptogenic therapeutic window may only remain open during the first week after injury, when some delayed cell death may still be preventable. Following the perhaps unavoidable development of the first focal seizures ("epileptogenesis"), the most fruitful therapeutic strategy may be to interrupt the process of "epileptic maturation," thereby keeping focal seizures focal. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'.
Collapse
Affiliation(s)
- Robert S Sloviter
- Department of Pharmacology, University of Arizona College of Medicine, 1501 N. Campbell Avenue, Tucson, AZ 85724-5050, USA.
| | | |
Collapse
|
28
|
Ono T, Galanopoulou AS. Epilepsy and epileptic syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 724:99-113. [PMID: 22411237 DOI: 10.1007/978-1-4614-0653-2_8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epilepsy is one of the most common neurological disorders. In most patients with epilepsy, seizures respond to available medications. However, a significant number of patients, especially in the setting of medically-intractable epilepsies, may experience different degrees of memory or cognitive impairment, behavioral abnormalities or psychiatric symptoms, which may limit their daily functioning. As a result, in many patients, epilepsy may resemble a neurodegenerative disease. Epileptic seizures and their potential impact on brain development, the progressive nature of epileptogenesis that may functionally alter brain regions involved in cognitive processing, neurodegenerative processes that relate to the underlying etiology, comorbid conditions or epigenetic factors, such as stress, medications, social factors, may all contribute to the progressive nature of epilepsy. Clinical and experimental studies have addressed the pathogenetic mechanisms underlying epileptogenesis and neurodegeneration.We will primarily focus on the findings derived from studies on one of the most common causes of focal onset epilepsy, the temporal lobe epilepsy, which indicate that both processes are progressive and utilize common or interacting pathways. In this chapter we will discuss some of these studies, the potential candidate targets for neuroprotective therapies as well as the attempts to identify early biomarkers of progression and epileptogenesis, so as to implement therapies with early-onset disease-modifying effects.
Collapse
Affiliation(s)
- Tomonori Ono
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | |
Collapse
|
29
|
Lew FH, Buckmaster PS. Is there a critical period for mossy fiber sprouting in a mouse model of temporal lobe epilepsy? Epilepsia 2011; 52:2326-32. [PMID: 22092282 DOI: 10.1111/j.1528-1167.2011.03315.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PURPOSE Dentate granule cell axon (mossy fiber) sprouting creates an aberrant positive-feedback circuit that might be epileptogenic. Presumably, mossy fiber sprouting is initiated by molecular signals, but it is unclear whether they are expressed transiently or persistently. If transient, there might be a critical period when short preventative treatments could permanently block mossy fiber sprouting. Alternatively, if signals persist, continuous treatment would be necessary. The present study tested whether temporary treatment with rapamycin has long-term effects on mossy fiber sprouting. METHODS Mice were treated daily with 1.5 mg/kg rapamycin or vehicle (i.p.) beginning 24 h after pilocarpine-induced status epilepticus. Mice were perfused for anatomic evaluation immediately after 2 months of treatment ("0 delay") or after an additional 6 months without treatment ("6-month delay"). One series of sections was Timm-stained, and an adjacent series was Nissl-stained. Stereologic methods were used to measure the volume of the granule cell layer plus molecular layer and the Timm-positive fraction. Numbers of Nissl-stained hilar neurons were estimated using the optical fractionator method. KEY FINDINGS At 0 delay, rapamycin-treated mice had significantly less black Timm staining in the granule cell layer plus molecular layer than vehicle-treated animals. However, by 6-month delay, Timm staining had increased significantly in mice that had been treated with rapamycin. Percentages of the granule cell layer plus molecular layer that were Timm-positive were high and similar in 0 delay vehicle-treated, 6-month delay vehicle-treated, and 6-month delay rapamycin-treated mice. Extent of hilar neuron loss was similar among all groups that experienced status epilepticus and, therefore, was not a confounding factor. Compared to naive controls, average volume of the granule cell layer plus molecular layer was larger in 0 delay vehicle-treated mice. The hypertrophy was partially suppressed in 0 delay rapamycin-treated mice. However, 6-month delay vehicle- and 6-month delay rapamycin-treated animals had similar average volumes of the granule cell layer plus molecular layer that were significantly larger than those of all other groups. SIGNIFICANCE Status epilepticus-induced mossy fiber sprouting and dentate gyrus hypertrophy were suppressed by systemic treatment with rapamycin but resumed after treatment ceased. These findings suggest that molecular signals that drive mossy fiber sprouting and dentate gyrus hypertrophy might persist for >2 months after status epilepticus in mice. Therefore, prolonged or continuous treatment might be required to permanently suppress mossy fiber sprouting.
Collapse
Affiliation(s)
- Felicia H Lew
- Department of Comparative Medicine, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
30
|
Berdichevsky Y, Dzhala V, Mail M, Staley KJ. Interictal spikes, seizures and ictal cell death are not necessary for post-traumatic epileptogenesis in vitro. Neurobiol Dis 2011; 45:774-85. [PMID: 22115940 DOI: 10.1016/j.nbd.2011.11.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 10/27/2011] [Accepted: 11/07/2011] [Indexed: 11/25/2022] Open
Abstract
Clinical studies indicate that phenytoin prevents acute post-traumatic seizures but not subsequent post-traumatic epilepsy. We explored this phenomenon using organotypic hippocampal slice cultures as a model of severe traumatic brain injury. Hippocampal slices were cultured for up to eight weeks, during which acute and chronic electrical recordings revealed a characteristic evolution of spontaneous epileptiform discharges, including interictal spikes, seizure activity and electrical status epilepticus. Cell death exhibited an early peak immediately following slicing, and a later secondary peak that coincided with the peak of seizure-like activity. The secondary peak in neuronal death was abolished by either blockade of glutamatergic transmission with kynurenic acid or by elimination of ictal activity and status epilepticus with phenytoin. Withdrawal of kynurenic acid or phenytoin was followed by a sharp increase in spontaneous seizure activity. Phenytoin's anticonvulsant and neuroprotective effects failed after four weeks of continuous administration. These data support the clinical findings that after brain injury, anticonvulsants prevent seizures but not epilepsy or the development of anticonvulsant resistance. We extend the clinical data by showing that secondary neuronal death is correlated with ictal but not interictal activity, and that blocking all three of these sequelae of brain injury does not prevent epileptogenesis in this in vitro model.
Collapse
Affiliation(s)
- Yevgeny Berdichevsky
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | | | | | | |
Collapse
|
31
|
Oliveira LDBD, Oliveira RWDD, Futuro Neto HDA, Nakamura-Palacios EM. The role of magnesium sulfate in prevention of seizures induced by pentylenetetrazole in rats. ARQUIVOS DE NEURO-PSIQUIATRIA 2011; 69:349-55. [PMID: 21625764 DOI: 10.1590/s0004-282x2011000300016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 11/01/2010] [Indexed: 11/22/2022]
Abstract
Magnesium sulfate (MgSO₄) has been used to prevent seizures in eclampsia. This study examined the central effects of MgSO₄ on different types of pentylenetetrazole (PTZ)-induced seizures. Male Wistar rats were submitted to intracerebroventricular (ICV) administration of MgSO₄ at different doses followed by intraperitoneal administration of PTZ. The latency to the onset of the first seizure induced by PTZ was significantly increased by ICV administration of MgSO₄ at a dose of 100 µg compared to the control treatment. In addition, the total period during which animals presented with seizures was significantly reduced at this dose of MgSO₄. Furthermore, the latency to the onset of the first partial complex seizure was significantly increased by the lowest dose of MgSO₄. However, a high dose of MgSO₄ had no effect or even potentiated the effect of PTZ. These results suggest that, depending on the dose, MgSO₄ may be important in prevention of epileptic seizures.
Collapse
|
32
|
Libbey JE, Fujinami RS. Neurotropic viral infections leading to epilepsy: focus on Theiler's murine encephalomyelitis virus. Future Virol 2011; 6:1339-1350. [PMID: 22267964 PMCID: PMC3259611 DOI: 10.2217/fvl.11.107] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neurotropic viruses cause viral encephalitis and are associated with the development of seizures/epilepsy. The first infection-driven animal model for epilepsy, the Theiler's murine encephalomyelitis virus-induced seizure model is described herein. Intracerebral infection of C57BL/6 mice with Theiler's murine encephalomyelitis virus induces acute seizures from which the animals recover. However, once the virus is cleared, a significant portion of the animals that experienced acute seizures later develop epilepsy. Components of the innate immune response to viral infection, including IL-6 and complement component 3, have been implicated in the development of acute seizures. Multiple mechanisms, including neuronal cell destruction and cytokine activation, play a role in the development of acute seizures. Future studies targeting the innate immune response will lead to new therapies for seizures/epilepsy.
Collapse
Affiliation(s)
- Jane E Libbey
- Department of Pathology, University of Utah, 30 North 1900 East, 3R330 SOM, Salt Lake City, UT 84132, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah, 30 North 1900 East, 3R330 SOM, Salt Lake City, UT 84132, USA
| |
Collapse
|
33
|
Kealy J, Commins S. The rat perirhinal cortex: A review of anatomy, physiology, plasticity, and function. Prog Neurobiol 2011; 93:522-48. [DOI: 10.1016/j.pneurobio.2011.03.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 01/28/2011] [Accepted: 03/10/2011] [Indexed: 11/26/2022]
|
34
|
Mani R, Pollard J, Dichter MA. Human clinical trails in antiepileptogenesis. Neurosci Lett 2011; 497:251-6. [PMID: 21439351 DOI: 10.1016/j.neulet.2011.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 01/11/2023]
Abstract
Blocking the development of epilepsy (epileptogenesis) is a fundamental research area with the potential to provide large benefits to patients by avoiding the medical and social consequences that occur with epilepsy and lifelong therapy. Human clinical trials attempting to prevent epilepsy (antiepileptogenesis) have been few and universally unsuccessful to date. In this article, we review data about possible pathophysiological mechanisms underlying epileptogenesis, discuss potential interventions, and summarize prior antiepileptogenesis trials. Elements of ideal trials designs for successful antiepileptogenic intervention are suggested.
Collapse
Affiliation(s)
- Ram Mani
- Department of Neurology, University of Pennsylvania, United States
| | | | | |
Collapse
|