1
|
Bayraktar E, Lopez-Pigozzi D, Bortolozzi M. Calcium Regulation of Connexin Hemichannels. Int J Mol Sci 2024; 25:6594. [PMID: 38928300 PMCID: PMC11204158 DOI: 10.3390/ijms25126594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Connexin hemichannels (HCs) expressed at the plasma membrane of mammalian cells are of paramount importance for intercellular communication. In physiological conditions, HCs can form gap junction (GJ) channels, providing a direct diffusive path between neighbouring cells. In addition, unpaired HCs provide conduits for the exchange of solutes between the cytoplasm and the extracellular milieu, including messenger molecules involved in paracrine signalling. The synergistic action of membrane potential and Ca2+ ions controls the gating of the large and relatively unselective pore of connexin HCs. The four orders of magnitude difference in gating sensitivity to the extracellular ([Ca2+]e) and the cytosolic ([Ca2+]c) Ca2+ concentrations suggests that at least two different Ca2+ sensors may exist. While [Ca2+]e acts as a spatial modulator of the HC opening, which is most likely dependent on the cell layer, compartment, and organ, [Ca2+]c triggers HC opening and the release of extracellular bursts of messenger molecules. Such molecules include ATP, cAMP, glutamate, NAD+, glutathione, D-serine, and prostaglandins. Lost or abnormal HC regulation by Ca2+ has been associated with several diseases, including deafness, keratitis ichthyosis, palmoplantar keratoderma, Charcot-Marie-Tooth neuropathy, oculodentodigital dysplasia, and congenital cataracts. The fact that both an increased and a decreased Ca2+ sensitivity has been linked to pathological conditions suggests that Ca2+ in healthy cells finely tunes the normal HC function. Overall, further investigation is needed to clarify the structural and chemical modifications of connexin HCs during [Ca2+]e and [Ca2+]c variations. A molecular model that accounts for changes in both Ca2+ and the transmembrane voltage will undoubtedly enhance our interpretation of the experimental results and pave the way for developing therapeutic compounds targeting specific HC dysfunctions.
Collapse
Affiliation(s)
- Erva Bayraktar
- Veneto Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padova, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padua, Via Marzolo 8, 35131 Padova, Italy
| | - Diego Lopez-Pigozzi
- Veneto Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padova, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padua, Via Marzolo 8, 35131 Padova, Italy
| | - Mario Bortolozzi
- Veneto Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padova, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padua, Via Marzolo 8, 35131 Padova, Italy
- Institute of Endocrinology and Oncology “Gaetano Salvatore” (IEOS-CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
2
|
Sakaibara M, Yamamoto H, Murota H, Monma N, Sato S, Hirano-Iwata A. Enhanced responses to inflammatory cytokine interleukin-6 in micropatterned networks of cultured cortical neurons. Biochem Biophys Res Commun 2024; 695:149379. [PMID: 38159413 DOI: 10.1016/j.bbrc.2023.149379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Cortical neurons in dissociated cultures are an indispensable model system for pharmacological research that provides insights into chemical responses in well-defined environments. However, cortical neurons plated on homogeneous substrates develop an unstructured network that exhibits excessively synchronized activity, which occasionally masks the consequences induced by external substances. Here, we show that hyperactivity and excessive synchrony in cultured cortical networks can be effectively suppressed by growing neurons in microfluidic devices. These devices feature a hierarchically modular design that resembles the in vivo network. We focused on interleukin-6, a pro-inflammatory cytokine, and assessed its acute and chronic effects. Fluorescence calcium imaging of spontaneous neural activity for up to 20 days of culture showed detectable modulation of collective activity events and neural correlation in micropatterned neurons, which was not apparent in neurons cultured on homogeneous substrates. Our results indicate that engineered neuronal networks provide a unique platform for detecting and understanding the fundamental effects of biochemical compounds on neuronal networks.
Collapse
Affiliation(s)
- Mamoru Sakaibara
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan; Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Hideaki Yamamoto
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan; Graduate School of Engineering, Tohoku University, Sendai, Japan.
| | - Hakuba Murota
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan; Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Nobuaki Monma
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan; Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Shigeo Sato
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan; Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Ayumi Hirano-Iwata
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan; Graduate School of Engineering, Tohoku University, Sendai, Japan; Advanced Institute for Materials Research, Tohoku University, Sendai, Japan; Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
3
|
Çarçak N, Onat F, Sitnikova E. Astrocytes as a target for therapeutic strategies in epilepsy: current insights. Front Mol Neurosci 2023; 16:1183775. [PMID: 37583518 PMCID: PMC10423940 DOI: 10.3389/fnmol.2023.1183775] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
Astrocytes are specialized non-neuronal glial cells of the central nervous system, contributing to neuronal excitability and synaptic transmission (gliotransmission). Astrocytes play a key roles in epileptogenesis and seizure generation. Epilepsy, as a chronic disorder characterized by neuronal hyperexcitation and hypersynchronization, is accompanied by substantial disturbances of glial cells and impairment of astrocytic functions and neuronal signaling. Anti-seizure drugs that provide symptomatic control of seizures primarily target neural activity. In epileptic patients with inadequate control of seizures with available anti-seizure drugs, novel therapeutic candidates are needed. These candidates should treat epilepsy with anti-epileptogenic and disease-modifying effects. Evidence from human and animal studies shows that astrocytes have value for developing new anti-seizure and anti-epileptogenic drugs. In this review, we present the key functions of astrocytes contributing to neuronal hyperexcitability and synaptic activity following an etiology-based approach. We analyze the role of astrocytes in both development (epileptogenesis) and generation of seizures (ictogenesis). Several promising new strategies that attempted to modify astroglial functions for treating epilepsy are being developed: (1) selective targeting of glia-related molecular mechanisms of glutamate transport; (2) modulation of tonic GABA release from astrocytes; (3) gliotransmission; (4) targeting the astrocytic Kir4.1-BDNF system; (5) astrocytic Na+/K+/ATPase activity; (6) targeting DNA hypo- or hypermethylation of candidate genes in astrocytes; (7) targeting astrocytic gap junction regulators; (8) targeting astrocytic adenosine kinase (the major adenosine-metabolizing enzyme); and (9) targeting microglia-astrocyte communication and inflammatory pathways. Novel disease-modifying therapeutic strategies have now been developed, such as astroglia-targeted gene therapy with a broad spectrum of genetic constructs to target astroglial cells.
Collapse
Affiliation(s)
- Nihan Çarçak
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Filiz Onat
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Evgenia Sitnikova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Lindquist BE, Timbie C, Voskobiynyk Y, Paz JT. Thalamocortical circuits in generalized epilepsy: Pathophysiologic mechanisms and therapeutic targets. Neurobiol Dis 2023; 181:106094. [PMID: 36990364 PMCID: PMC10192143 DOI: 10.1016/j.nbd.2023.106094] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
Generalized epilepsy affects 24 million people globally; at least 25% of cases remain medically refractory. The thalamus, with widespread connections throughout the brain, plays a critical role in generalized epilepsy. The intrinsic properties of thalamic neurons and the synaptic connections between populations of neurons in the nucleus reticularis thalami and thalamocortical relay nuclei help generate different firing patterns that influence brain states. In particular, transitions from tonic firing to highly synchronized burst firing mode in thalamic neurons can cause seizures that rapidly generalize and cause altered awareness and unconsciousness. Here, we review the most recent advances in our understanding of how thalamic activity is regulated and discuss the gaps in our understanding of the mechanisms of generalized epilepsy syndromes. Elucidating the role of the thalamus in generalized epilepsy syndromes may lead to new opportunities to better treat pharmaco-resistant generalized epilepsy by thalamic modulation and dietary therapy.
Collapse
Affiliation(s)
- Britta E Lindquist
- UCSF Department of Neurology, Division of Neurocritical Care, United States of America; UCSF Department of Neurology, Division of Pediatric Epilepsy, United States of America; UCSF Department of Neurology, United States of America
| | - Clare Timbie
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, Division of Pediatric Epilepsy, United States of America; UCSF Department of Neurology, United States of America
| | - Yuliya Voskobiynyk
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, United States of America
| | - Jeanne T Paz
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, United States of America; Kavli Institute for Fundamental Neuroscience, UCSF, United States of America.
| |
Collapse
|
5
|
Zhao J, Sun J, Zheng Y, Zheng Y, Shao Y, Li Y, Fei F, Xu C, Liu X, Wang S, Ruan Y, Liu J, Duan S, Chen Z, Wang Y. Activated astrocytes attenuate neocortical seizures in rodent models through driving Na +-K +-ATPase. Nat Commun 2022; 13:7136. [PMID: 36414629 PMCID: PMC9681834 DOI: 10.1038/s41467-022-34662-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
Epileptic seizures are widely regarded to occur as a result of the excitation-inhibition imbalance from a neuro-centric view. Although astrocyte-neuron interactions are increasingly recognized in seizure, elementary questions about the causal role of astrocytes in seizure remain unanswered. Here we show that optogenetic activation of channelrhodopsin-2-expressing astrocytes effectively attenuates neocortical seizures in rodent models. This anti-seizure effect is independent from classical calcium signaling, and instead related to astrocytic Na+-K+-ATPase-mediated buffering K+, which activity-dependently inhibits firing in highly active pyramidal neurons during seizure. Compared with inhibition of pyramidal neurons, astrocyte stimulation exhibits anti-seizure effects with several advantages, including a wider therapeutic window, large-space efficacy, and minimal side effects. Finally, optogenetic-driven astrocytic Na+-K+-ATPase shows promising therapeutic effects in a chronic focal cortical dysplasia epilepsy model. Together, we uncover a promising anti-seizure strategy with optogenetic control of astrocytic Na+-K+-ATPase activity, providing alternative ideas and a potential target for the treatment of intractable epilepsy.
Collapse
Affiliation(s)
- Junli Zhao
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jinyi Sun
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yang Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuying Shao
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yulan Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiuxiu Liu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shuang Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeping Ruan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinggen Liu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shumin Duan
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Wagner K, Unger L, Salman MM, Kitchen P, Bill RM, Yool AJ. Signaling Mechanisms and Pharmacological Modulators Governing Diverse Aquaporin Functions in Human Health and Disease. Int J Mol Sci 2022; 23:1388. [PMID: 35163313 PMCID: PMC8836214 DOI: 10.3390/ijms23031388] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
The aquaporins (AQPs) are a family of small integral membrane proteins that facilitate the bidirectional transport of water across biological membranes in response to osmotic pressure gradients as well as enable the transmembrane diffusion of small neutral solutes (such as urea, glycerol, and hydrogen peroxide) and ions. AQPs are expressed throughout the human body. Here, we review their key roles in fluid homeostasis, glandular secretions, signal transduction and sensation, barrier function, immunity and inflammation, cell migration, and angiogenesis. Evidence from a wide variety of studies now supports a view of the functions of AQPs being much more complex than simply mediating the passive flow of water across biological membranes. The discovery and development of small-molecule AQP inhibitors for research use and therapeutic development will lead to new insights into the basic biology of and novel treatments for the wide range of AQP-associated disorders.
Collapse
Affiliation(s)
- Kim Wagner
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lucas Unger
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Mootaz M. Salman
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Roslyn M. Bill
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
7
|
Sourbron J, Lagae L. Serotonin receptors in epilepsy: novel treatment targets? Epilepsia Open 2022; 7:231-246. [PMID: 35075810 PMCID: PMC9159250 DOI: 10.1002/epi4.12580] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the availability of over 30 antiseizure medications (ASMs), there is no “one size fits it all,” so there is a continuing search for novel ASMs. There are divergent data demonstrating that modulation of distinct serotonin (5‐hydroxytryptamine, 5‐HT) receptors subtypes could be beneficial in the treatment of epilepsy and its comorbidities, whereas only a few ASM, such as fenfluramine (FA), act via 5‐HT. There are 14 different 5‐HT receptor subtypes, and most epilepsy studies focus on one or a few of these subtypes, using different animal models and different ligands. We reviewed the available evidence of each 5‐HT receptor subtype using MEDLINE up to July 2021. Our search included medical subject heading (MeSH) and free terms of each “5‐HT subtype” separately and its relation to “epilepsy or seizures.” Most research underlines the antiseizure activity of 5‐HT1A,1D,2A,2C,3 agonism and 5‐HT6 antagonism. Consistently, FA, which has recently been approved for the treatment of seizures in Dravet syndrome, is an agonist of 5‐HT1D,2A,2C receptors. Even though each study focused on a distinct seizure/epilepsy type and generalization of different findings could lead to false interpretations, we believe that the available preclinical and clinical studies emphasize the role of serotonergic modulation, especially stimulation, as a promising avenue in epilepsy treatment.
Collapse
Affiliation(s)
- Jo Sourbron
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, Leuven, Belgium.,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Lieven Lagae
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Heuser K, Enger R. Astrocytic Ca 2+ Signaling in Epilepsy. Front Cell Neurosci 2021; 15:695380. [PMID: 34335188 PMCID: PMC8320018 DOI: 10.3389/fncel.2021.695380] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/16/2021] [Indexed: 01/10/2023] Open
Abstract
Epilepsy is one of the most common neurological disorders – estimated to affect at least 65 million worldwide. Most of the epilepsy research has so far focused on how to dampen neuronal discharges and to explain how changes in intrinsic neuronal activity or network function cause seizures. As a result, pharmacological therapy has largely been limited to symptomatic treatment targeted at neurons. Given the expanding spectrum of functions ascribed to the non-neuronal constituents of the brain, in both physiological brain function and in brain disorders, it is natural to closely consider the roles of astrocytes in epilepsy. It is now widely accepted that astrocytes are key controllers of the composition of the extracellular fluids, and may directly interact with neurons by releasing gliotransmitters. A central tenet is that astrocytic intracellular Ca2+ signals promote release of such signaling substances, either through synaptic or non-synaptic mechanisms. Accruing evidence suggests that astrocytic Ca2+ signals play important roles in both seizures and epilepsy, and this review aims to highlight the current knowledge of the roles of this central astrocytic signaling mechanism in ictogenesis and epileptogenesis.
Collapse
Affiliation(s)
- Kjell Heuser
- Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Rune Enger
- Letten Centre and GliaLab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
An inventory of basic research in temporal lobe epilepsy. Rev Neurol (Paris) 2021; 177:1069-1081. [PMID: 34176659 DOI: 10.1016/j.neurol.2021.02.390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/25/2022]
Abstract
Temporal lobe epilepsy is a severe neurological disease, characterized by seizure occurrence and invalidating cognitive co-morbidities, which affects up to 1% of the adults. Roughly one third of the patients are resistant to any conventional pharmacological treatments. The last option in that case is the surgical removal of the epileptic focus, with no guarantee for clinical symptom alleviation. This state of affairs requests the identification of cellular or molecular targets for novel therapeutic approaches with limited side effects. Here we review some generalities about the disease as well as some of the most recent discoveries about the cellular and molecular mechanisms of TLE, and the latest perspectives for novel treatments.
Collapse
|
10
|
Gobbo D, Scheller A, Kirchhoff F. From Physiology to Pathology of Cortico-Thalamo-Cortical Oscillations: Astroglia as a Target for Further Research. Front Neurol 2021; 12:661408. [PMID: 34177766 PMCID: PMC8219957 DOI: 10.3389/fneur.2021.661408] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
The electrographic hallmark of childhood absence epilepsy (CAE) and other idiopathic forms of epilepsy are 2.5-4 Hz spike and wave discharges (SWDs) originating from abnormal electrical oscillations of the cortico-thalamo-cortical network. SWDs are generally associated with sudden and brief non-convulsive epileptic events mostly generating impairment of consciousness and correlating with attention and learning as well as cognitive deficits. To date, SWDs are known to arise from locally restricted imbalances of excitation and inhibition in the deep layers of the primary somatosensory cortex. SWDs propagate to the mostly GABAergic nucleus reticularis thalami (NRT) and the somatosensory thalamic nuclei that project back to the cortex, leading to the typical generalized spike and wave oscillations. Given their shared anatomical basis, SWDs have been originally considered the pathological transition of 11-16 Hz bursts of neural oscillatory activity (the so-called sleep spindles) occurring during Non-Rapid Eye Movement (NREM) sleep, but more recent research revealed fundamental functional differences between sleep spindles and SWDs, suggesting the latter could be more closely related to the slow (<1 Hz) oscillations alternating active (Up) and silent (Down) cortical activity and concomitantly occurring during NREM. Indeed, several lines of evidence support the fact that SWDs impair sleep architecture as well as sleep/wake cycles and sleep pressure, which, in turn, affect seizure circadian frequency and distribution. Given the accumulating evidence on the role of astroglia in the field of epilepsy in the modulation of excitation and inhibition in the brain as well as on the development of aberrant synchronous network activity, we aim at pointing at putative contributions of astrocytes to the physiology of slow-wave sleep and to the pathology of SWDs. Particularly, we will address the astroglial functions known to be involved in the control of network excitability and synchronicity and so far mainly addressed in the context of convulsive seizures, namely (i) interstitial fluid homeostasis, (ii) K+ clearance and neurotransmitter uptake from the extracellular space and the synaptic cleft, (iii) gap junction mechanical and functional coupling as well as hemichannel function, (iv) gliotransmission, (v) astroglial Ca2+ signaling and downstream effectors, (vi) reactive astrogliosis and cytokine release.
Collapse
Affiliation(s)
- Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| |
Collapse
|
11
|
Okada M, Fukuyama K, Shiroyama T, Ueda Y. Brivaracetam prevents astroglial l-glutamate release associated with hemichannel through modulation of synaptic vesicle protein. Biomed Pharmacother 2021; 138:111462. [PMID: 33706129 DOI: 10.1016/j.biopha.2021.111462] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
The antiepileptic/anticonvulsive action of brivaracetam is considered to occur via modulation of synaptic vesicle protein 2A (SV2A); however, the pharmacological mechanisms of action have not been fully characterised. To explore the antiepileptic/anticonvulsive mechanism of brivaracetam associated with SV2A modulation, this study determined concentration-dependent effects of brivaracetam on astroglial L-glutamate release associated with connexin43 (Cx43), tumour-necrosis factor-α (TNFα) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/glutamate receptor of rat primary cultured astrocytes using ultra-high-performance liquid chromatography. Furthermore, interaction among TNFα, elevated extracellular K+ and brivaracetam on expression of SV2A and Cx43 was determined using capillary immunoblotting. TNFα and elevated extracellular K+ predominantly enhanced astroglial L-glutamate release associated with respective AMPA/glutamate receptor and hemichannel. These effects were enhanced by a synergistic effect of TNFα and elevated extracellular K+ in combination. The activation of astroglial L-glutamate release, and expression of SV2A and Cx43 in the plasma membrane was suppressed by subchronic brivaracetam administration but were unaffected by acute administration. These results suggest that migration of SV2A to the astroglial plasma membrane by hyperexcitability activates astroglial glutamatergic transmission, perhaps via hemichannel activation. Subchronic brivaracetam administration suppressed TNFα-induced activation of AMPA/glutamate receptor and hemichannel via inhibition of ectopic SV2A. These findings suggest that combined inhibition of vesicular and ectopic SV2A functions contribute to the antiepileptic/anticonvulsive mechanism of brivaracetam action.
Collapse
Affiliation(s)
- Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan.
| | - Kouji Fukuyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan.
| | - Takashi Shiroyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan.
| | - Yuto Ueda
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
12
|
Verhoog QP, Holtman L, Aronica E, van Vliet EA. Astrocytes as Guardians of Neuronal Excitability: Mechanisms Underlying Epileptogenesis. Front Neurol 2020; 11:591690. [PMID: 33324329 PMCID: PMC7726323 DOI: 10.3389/fneur.2020.591690] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are key homeostatic regulators in the central nervous system and play important roles in physiology. After brain damage caused by e.g., status epilepticus, traumatic brain injury, or stroke, astrocytes may adopt a reactive phenotype. This process of reactive astrogliosis is important to restore brain homeostasis. However, persistent reactive astrogliosis can be detrimental for the brain and contributes to the development of epilepsy. In this review, we will focus on physiological functions of astrocytes in the normal brain as well as pathophysiological functions in the epileptogenic brain, with a focus on acquired epilepsy. We will discuss the role of astrocyte-related processes in epileptogenesis, including reactive astrogliosis, disturbances in energy supply and metabolism, gliotransmission, and extracellular ion concentrations, as well as blood-brain barrier dysfunction and dysregulation of blood flow. Since dysfunction of astrocytes can contribute to epilepsy, we will also discuss their role as potential targets for new therapeutic strategies.
Collapse
Affiliation(s)
- Quirijn P. Verhoog
- Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Linda Holtman
- Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - Eleonora Aronica
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Erwin A. van Vliet
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
13
|
Astrocytic Connexin43 Channels as Candidate Targets in Epilepsy Treatment. Biomolecules 2020; 10:biom10111578. [PMID: 33233647 PMCID: PMC7699773 DOI: 10.3390/biom10111578] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
In epilepsy research, emphasis is put on exploring non-neuronal targets such as astrocytic proteins, since many patients remain pharmacoresistant to current treatments, which almost all target neuronal mechanisms. This paper reviews available data on astrocytic connexin43 (Cx43) signaling in seizures and epilepsy. Cx43 is a widely expressed transmembrane protein and the constituent of gap junctions (GJs) and hemichannels (HCs), allowing intercellular and extracellular communication, respectively. A plethora of research papers show altered Cx43 mRNA levels, protein expression, phosphorylation state, distribution and/or functional coupling in human epileptic tissue and experimental models. Human Cx43 mutations are linked to seizures as well, as 30% of patients with oculodentodigital dysplasia (ODDD), a rare genetic condition caused by mutations in the GJA1 gene coding for Cx43 protein, exhibit neurological symptoms including seizures. Cx30/Cx43 double knock-out mice show increased susceptibility to evoked epileptiform events in brain slices due to impaired GJ-mediated redistribution of K+ and glutamate and display a higher frequency of spontaneous generalized chronic seizures in an epilepsy model. Contradictory, Cx30/Cx43 GJs can traffic nutrients to high-energy demanding neurons and initiate astrocytic Ca2+ waves and hyper synchronization, thereby supporting proconvulsant effects. The general connexin channel blocker carbenoxolone and blockers from the fenamate family diminish epileptiform activity in vitro and improve seizure outcome in vivo. In addition, interventions with more selective peptide inhibitors of HCs display anticonvulsant actions. To conclude, further studies aiming to disentangle distinct roles of HCs and GJs are necessary and tools specifically targeting Cx43 HCs may facilitate the search for novel epilepsy treatments.
Collapse
|
14
|
Zhang H, Shen Z, Zhao Q, Yan L, Du L, Deng Z. Dynamic Transitions of Epilepsy Waveforms Induced by Astrocyte Dysfunction and Electrical Stimulation. Neural Plast 2020; 2020:8867509. [PMID: 33281896 PMCID: PMC7685866 DOI: 10.1155/2020/8867509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 11/17/2022] Open
Abstract
Experimental studies have shown that astrocytes participate in epilepsy through inducing the release of glutamate. Meanwhile, considering the disinhibition circuit among inhibitory neuronal populations with different time scales and the feedforward inhibition connection from thalamic relay nucleus to cortical inhibitory neuronal population, here, we propose a modified thalamocortical field model to systematically investigate the mechanism of epilepsy. Firstly, our results show that rich firing activities can be induced by astrocyte dysfunction, including high or low saturated state, high- or low-frequency clonic, spike-wave discharge (SWD), and tonic. More importantly, with the enhancement of feedforward inhibition connection, SWD and tonic oscillations will disappear. In other words, all these pathological waveforms can be suppressed or eliminated. Then, we explore the control effects after different external stimulations applying to thalamic neuronal population. We find that single-pulse stimulation can not only suppress but also induce pathological firing patterns, such as SWD, tonic, and clonic oscillations. And we further verify that deep brain stimulation can control absence epilepsy by regulating the amplitude and pulse width of stimulation. In addition, based on our modified model, 3 : 2 coordinated reset stimulation strategies with different intensities are compared and a more effective and safer stimulation mode is proposed. Our conclusions are expected to give more theoretical insights into the treatment of epilepsy.
Collapse
Affiliation(s)
- Honghui Zhang
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhuan Shen
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiangui Zhao
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Luyao Yan
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lin Du
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zichen Deng
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
15
|
Gaidin SG, Zinchenko VP, Sergeev AI, Teplov IY, Mal'tseva VN, Kosenkov AM. Activation of alpha‐2 adrenergic receptors stimulates GABA release by astrocytes. Glia 2020; 68:1114-1130. [DOI: 10.1002/glia.23763] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Sergei G. Gaidin
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Valery P. Zinchenko
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Alexander I. Sergeev
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Ilia Y. Teplov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Valentina N. Mal'tseva
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Artem M. Kosenkov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| |
Collapse
|
16
|
Abstract
Astrocytes, initially described as merely support cells, are now known as a heterogeneous population of cells actively involved in a variety of biological functions such as: neuronal migration and differentiation; regulation of cerebral blood flow; metabolic control of extracellular potassium concentration; and modulation of synapse formation and elimination; among others. Cerebellar glial cells have been shown to play a significant role in proliferation, differentiation, migration, and synaptogenesis. However, less evidence is available about the role of neuron-astrocyte interactions during cerebellar development and their impact on diseases of the cerebellum. In this review, we will focus on the mechanisms underlying cellular interactions, specifically neuron-astrocyte interactions, during cerebellar development, function, and disease. We will discuss how cerebellar glia, astrocytes, and Bergmann glia play a fundamental role in several steps of cerebellar development, such as granule cell migration, axonal growth, neuronal differentiation, and synapse formation, and in diseases associated with the cerebellum. We will focus on how astrocytes and thyroid hormones impact cerebellar development. Furthermore, we will provide evidence of how growth factors secreted by glial cells, such as epidermal growth factor and transforming growth factors, control cerebellar organogenesis. Finally, we will argue that glia are a key mediator of cerebellar development and that identification of molecules and pathways involved in neuron-glia interactions may contribute to a better understanding of cerebellar development and associated disorders.
Collapse
|
17
|
Therajaran P, Hamilton JA, O'Brien TJ, Jones NC, Ali I. Microglial polarization in posttraumatic epilepsy: Potential mechanism and treatment opportunity. Epilepsia 2020; 61:203-215. [PMID: 31943156 DOI: 10.1111/epi.16424] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022]
Abstract
Owing to the complexity of the pathophysiological mechanisms driving epileptogenesis following traumatic brain injury (TBI), effective preventive treatment approaches are not yet available for posttraumatic epilepsy (PTE). Neuroinflammation appears to play a critical role in the pathogenesis of the acquired epilepsies, including PTE, but despite a large preclinical literature demonstrating the ability of anti-inflammatory treatments to suppress epileptogenesis and chronic seizures, no anti-inflammatory treatment approaches have been clinically proven to date. TBI triggers robust inflammatory cascades, suggesting that they may be relevant for the pathogenesis of PTE. A major cell type involved in such cascades is the microglial cells-brain-resident immune cells that become activated after brain injury. When activated, these cells can oscillate between different phenotypes, and such polarization states are associated with the release of various pro- and anti-inflammatory mediators that may influence brain repair processes, and also differentially contribute to the development of PTE. As the molecular mechanisms and key signaling molecules associated with microglial polarization in brain are discovered, strategies are now emerging that can modulate this polarization, promoting this as a potential therapeutic strategy for PTE. In this review, we discuss the relevant literature regarding the polarization of brain-resident immune cells following TBI and attempt to put into perspective a role in epilepsy pathogenesis. Finally, we explore potential strategies that could polarize microglia/macrophages toward a neuroprotective phenotype to mitigate PTE development.
Collapse
Affiliation(s)
- Peravina Therajaran
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - John A Hamilton
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Terence J O'Brien
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Nigel C Jones
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Idrish Ali
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Fukushi I, Takeda K, Uchiyama M, Kurita Y, Pokorski M, Yokota S, Okazaki S, Horiuchi J, Mori Y, Okada Y. Blockade of astrocytic activation delays the occurrence of severe hypoxia-induced seizure and respiratory arrest in mice. J Comp Neurol 2019; 528:1257-1264. [PMID: 31769022 DOI: 10.1002/cne.24828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 01/10/2023]
Abstract
Seizures are induced when subjects are exposed to severe hypoxia. It is followed by ventilatory fall-off and eventual respiratory arrest, which may underlie the pathophysiology of death in patients with epilepsy and severe respiratory disorders. However, the mechanisms of hypoxia-induced seizures have not been fully understood. Because astrocytes are involved in various neurological disorders, we aimed to investigate whether astrocytes are operational in seizure generation and respiratory arrest in a severe hypoxic condition. We examined the effects of astrocytic activation blockade on responses of EEG and ventilation to severe hypoxia. Adult mice were divided into two groups; in one group (n = 24) only vehicle was injected, and in the other group (n = 24) arundic acid, an inhibitory modulator of astrocytic activation, was administered before initiation of recording. After recording EEG and ventilation by whole body plethysmography in room air, the gas in the recording chamber was switched to 5% oxygen (nitrogen balanced) until a seizure and ventilatory depression occurred, followed by prompt switch back to room air. Severe hypoxia initially increased ventilation, followed by a seizure and ventilatory suppression in all mice examined. Fourteen mice without arundic acid showed respiratory arrest during loading of hypoxia. However, 22 mice pretreated with arundic acid did not suffer from respiratory arrest. Time from the onset of hypoxia to the occurrence of seizures was significantly longer in the group with arundic acid than that in the group without arundic acid. We suggest that blockade of astrocytic activation delays the occurrence of seizures and prevents respiratory arrest.
Collapse
Affiliation(s)
- Isato Fukushi
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan.,Faculty of Health Sciences, Iryo Sosei University, Iwaki, Japan
| | - Kotaro Takeda
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan.,Faculty of Rehabilitation, School of Healthcare, Fujita Health University, Toyoake, Japan
| | - Makoto Uchiyama
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan.,Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yuki Kurita
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Mieczyslaw Pokorski
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan.,Faculty of Physiotherapy, Opole Medical School, Opole, Poland
| | - Shigefumi Yokota
- Department of Anatomy and Neuroscience, Shimane University School of Medicine, Izumo, Japan
| | - Shuntaro Okazaki
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan.,Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Jouji Horiuchi
- Department of Biomedical Engineering, Graduate School of Science and Engineering, Toyo University, Kawagoe, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yasumasa Okada
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan
| |
Collapse
|
19
|
Siracusa R, Fusco R, Cuzzocrea S. Astrocytes: Role and Functions in Brain Pathologies. Front Pharmacol 2019; 10:1114. [PMID: 31611796 PMCID: PMC6777416 DOI: 10.3389/fphar.2019.01114] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/30/2019] [Indexed: 12/16/2022] Open
Abstract
Astrocytes are a population of cells with distinctive morphological and functional characteristics that differ within specific areas of the brain. Postnatally, astrocyte progenitors migrate to reach their brain area and related properties. They have a regulatory role of brain functions that are implicated in neurogenesis and synaptogenesis, controlling blood-brain barrier permeability and maintaining extracellular homeostasis. Mature astrocytes also express some genes enriched in cell progenitors, suggesting they can retain proliferative potential. Considering heterogeneity of cell population, it is not surprising that their disorders are related to a wide range of different neuro-pathologies. Brain diseases are characterized by the active inflammatory state of the astrocytes, which is usually described as up-regulation of glial fibrillary acidic protein (GFAP). In particular, the loss of astrocytes function as a result of cellular senescence could have implications for the neurodegenerative disorders, such as Alzheimer disease and Huntington disease, and for the aging brain. Astrocytes can also drive the induction and the progression of the inflammatory state due to their Ca2+ signals and that it is strongly related to the disease severity/state. Moreover, they contribute to the altered neuronal activity in several frontal cortex pathologies such as ischemic stroke and epilepsy. There, we describe the current knowledge pertaining to astrocytes' role in brain pathologies and discuss the possibilities to target them as approach toward pharmacological therapies for neuro-pathologies.
Collapse
Affiliation(s)
- Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy.,Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
20
|
Wennberg R, Maurice C, Carlen PL, Garcia Dominguez L. Pilomotor seizures marked by infraslow activity and acetazolamide responsiveness. Ann Clin Transl Neurol 2019; 6:167-173. [PMID: 30656195 PMCID: PMC6331207 DOI: 10.1002/acn3.695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/02/2022] Open
Abstract
A patient with pilomotor seizures post anti‐LGI1 limbic encephalitis, refractory to immunotherapy and anti‐epileptic drugs, was investigated with electroencephalography and magnetoencephalography. Seizures occurred daily (14.9 ± 4.9/day), with catamenial exacerbation, inducible by hyperventilation. Anterior temporal ictal onsets were heralded (by ~15 sec) by high amplitude ipsilateral electromagnetic infraslow activity. The catamenial/ventilatory sensitivity and the infraslow activity (reflecting glial depolarization) suggested an ionic, CO2/pH‐related glioneuronal mechanism. Furosemide decreased seizure frequency by ~33%. Acetazolamide led to immediate seizure freedom, but lost efficacy with daily treatment. A cycling acetazolamide regimen (2 days on, 4 days off) plus low‐dose topiramate maintained >95% reduction (0.5 ± 0.9/day) in seizures.
Collapse
Affiliation(s)
- Richard Wennberg
- Krembil Brain InstituteDivision of NeurologyUniversity Health NetworkUniversity of TorontoTorontoCanada
- Mitchell Goldhar MEG UnitClinical Neurophysiology LaboratoryToronto Western HospitalUniversity of TorontoTorontoCanada
| | - Catherine Maurice
- Krembil Brain InstituteDivision of NeurologyUniversity Health NetworkUniversity of TorontoTorontoCanada
| | - Peter L. Carlen
- Krembil Brain InstituteDivision of NeurologyUniversity Health NetworkUniversity of TorontoTorontoCanada
| | - Luis Garcia Dominguez
- Krembil Brain InstituteDivision of NeurologyUniversity Health NetworkUniversity of TorontoTorontoCanada
- Mitchell Goldhar MEG UnitClinical Neurophysiology LaboratoryToronto Western HospitalUniversity of TorontoTorontoCanada
| |
Collapse
|
21
|
Zhao H, Sun P, Fan T, Yang X, Zheng T, Sun C. The effect of glutamate-induced excitotoxicity on DNA methylation in astrocytes in a new in vitro neuron-astrocyte-endothelium co-culture system. Biochem Biophys Res Commun 2018; 508:1209-1214. [PMID: 30558794 DOI: 10.1016/j.bbrc.2018.12.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/07/2018] [Indexed: 12/20/2022]
Abstract
Glutamate-induced excitotoxicity is a contributer to many neurological diseases. Astrocytes may represent a new target for treating glutamate-induced excitotoxicity. However, the in vitro culture system that mimics the in vivo microenvironment is lacking. This study aimed to establish a new in vitro co-culture system including neurons, astrocytes, and endothelial cells (NAE), and to investigate the effect of glutamate-induced excitotoxicity on DNA methylation in astrocytes. A NAE co-culture method was created using a Transwell chamber, in which neurons were seeded on the bottom of the lower chamber, endothelial cells were plated on the top membrane, and astrocytes were plated on the bottom membrane of the insert. Glutamate-induced toxicity was induced using glutamate and glycine, and examined using immunofluorescence and lactate dehydrogenase release assay. Global methylation in astrocytes was analyzed, and the expression of DNMT1 and DNMT3a was examined using Western blot analysis. Glutamate treatment induced less neuronal damage in the NAE system compared with the control group in which neurons and astrocytes were cultured alone. Global DNA methylation was increased and the expression of DNMT1 and DNMT3a in astrocytes was increased after glutamate treatment, which was blocked by application of the NMDAR inhibitor MK-801 and the DNMT inhibitor 5-azaC from the endothelial cells. The in vitro ANE culture system is effective for studying glutamate-induced excitotoxicity, and may be used for testing the passage of drugs across the blood-brain barrier. Inhibition of DNA methylation in astrocytes may be a new therapeutic strategy for treating glutamate-induced excitotoxicity.
Collapse
Affiliation(s)
- Hui Zhao
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Institute for Brain Disorders, Dalian Medical University, Dalian, 116044, China; Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024, China; Research Center for the Control Engineering of Translational Precision Medicine, Dalian University of Technology, Dalian, 116024, China; State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Pin Sun
- Shanghai Medical College, Fudan University, Shanghai, 200000, China
| | - Tieping Fan
- Neurointerventional Department, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, 116024, China
| | - Xiaohan Yang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Institute for Brain Disorders, Dalian Medical University, Dalian, 116044, China
| | - Tiezheng Zheng
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Institute for Brain Disorders, Dalian Medical University, Dalian, 116044, China
| | - Changkai Sun
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Institute for Brain Disorders, Dalian Medical University, Dalian, 116044, China; Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024, China; Research Center for the Control Engineering of Translational Precision Medicine, Dalian University of Technology, Dalian, 116024, China; State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
22
|
Abstract
Epilepsy affects all age groups and is one of the most common and most disabling neurological disorders. The accurate diagnosis of seizures is essential as some patients will be misdiagnosed with epilepsy, whereas others will receive an incorrect diagnosis. Indeed, errors in diagnosis are common, and many patients fail to receive the correct treatment, which often has severe consequences. Although many patients have seizure control using a single medication, others require multiple medications, resective surgery, neuromodulation devices or dietary therapies. In addition, one-third of patients will continue to have uncontrolled seizures. Epilepsy can substantially impair quality of life owing to seizures, comorbid mood and psychiatric disorders, cognitive deficits and adverse effects of medications. In addition, seizures can be fatal owing to direct effects on autonomic and arousal functions or owing to indirect effects such as drowning and other accidents. Deciphering the pathophysiology of epilepsy has advanced the understanding of the cellular and molecular events initiated by pathogenetic insults that transform normal circuits into epileptic circuits (epileptogenesis) and the mechanisms that generate seizures (ictogenesis). The discovery of >500 genes associated with epilepsy has led to new animal models, more precise diagnoses and, in some cases, targeted therapies.
Collapse
Affiliation(s)
- Orrin Devinsky
- Departments of Neurology, Neuroscience, Neurosurgery and Psychiatry, NYU School of Medicine, New York, NY, USA
| | - Annamaria Vezzani
- Laboratory of Experimental Neurology, Department of Neuroscience, IRCCS 'Mario Negri' Institute for Pharmacological Research, Milan, Italy
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.,Departments of Neurology and Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nathalie Jette
- Department of Neurology and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, and Department of Neurology, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Piero Perucca
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.,Departments of Neurology and Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Carrer A, Leparulo A, Crispino G, Ciubotaru CD, Marin O, Zonta F, Bortolozzi M. Cx32 hemichannel opening by cytosolic Ca2+ is inhibited by the R220X mutation that causes Charcot-Marie-Tooth disease. Hum Mol Genet 2018; 27:80-94. [PMID: 29077882 DOI: 10.1093/hmg/ddx386] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/17/2017] [Indexed: 11/15/2022] Open
Abstract
Mutations of the GJB1 gene encoding connexin 32 (Cx32) cause the X-linked form of Charcot-Marie-Tooth disease (CMTX1), a demyelinating peripheral neuropathy for which there is no cure. A growing body of evidence indicates that ATP release through Cx32 hemichannels in Schwann cells could be critical for nerve myelination, but it is unknown if CMTX1 mutations alter the cytosolic Ca2+-dependent gating mechanism that controls Cx32 hemichannel opening and ATP release. The current study uncovered that loss of the C-terminus in Cx32 (R220X mutation), which causes a severe CMTX1 phenotype, inhibits hemichannel opening during a canonical IP3-mediated increase in cytosolic Ca2+ in HeLa cells. Interestingly, the gating function of R220X hemichannels was completely restored by both the intracellular and extracellular application of a peptide that mimics the Cx32 cytoplasmic loop. All-atom molecular dynamics simulations suggest that loss of the C-terminus in the mutant hemichannel triggers abnormal fluctuations of the cytoplasmic loop which are prevented by binding to the mimetic peptide. Experiments that stimulated R220X hemichannel opening by cell depolarization displayed reduced voltage sensitivity with respect to wild-type hemichannels which was explained by loss of subconductance states at the single channel level. Finally, experiments of intercellular diffusion mediated by wild-type or R220X gap junction channels revealed similar unitary permeabilities to ions, signalling molecules (cAMP) or larger solutes (Lucifer yellow). Taken together, our findings support the hypothesis that paracrine signalling alteration due to Cx32 hemichannel dysfunction underlies CMTX1 pathogenesis and suggest a candidate molecule for novel studies investigating a therapeutic approach.
Collapse
Affiliation(s)
- Andrea Carrer
- Venetian Institute of Molecular Medicine (VIMM), Padua 35129, Italy
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padua 35131, Italy
| | - Alessandro Leparulo
- Venetian Institute of Molecular Medicine (VIMM), Padua 35129, Italy
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padua 35131, Italy
| | - Giulia Crispino
- Venetian Institute of Molecular Medicine (VIMM), Padua 35129, Italy
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padua 35131, Italy
| | | | - Oriano Marin
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- Italian National Research Council (CNR), Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy
| | - Mario Bortolozzi
- Venetian Institute of Molecular Medicine (VIMM), Padua 35129, Italy
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padua 35131, Italy
- Italian National Research Council (CNR), Institute of Protein Biochemistry, Naples 80131, Italy
| |
Collapse
|
24
|
Drugs to Alter Extracellular Concentration of Glutamate: Modulators of Glutamate Uptake Systems. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-1-4939-7228-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Pannexin-1 channels in epilepsy. Neurosci Lett 2017; 695:71-75. [PMID: 28886985 DOI: 10.1016/j.neulet.2017.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 07/20/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023]
Abstract
Pannexin-1 (Panx1) expression is raised in several animal seizure models and in resected human epileptic brain tissue, suggesting relevance to epilepsy. Multiple factors that are characteristic of seizures are thought to regulate Panx1 channel opening, including elevated levels of extracellular K+. Panx1, when open, 1) releases ATP, glutamate, and other metabolites into the extracellular medium, and 2) may depolarize the membrane due to a channel reversal potential around 0mV. Resultant ATP release from stimulated Panx1 can activate purinergic receptors, including P2X7 receptors. Glutamate and other signaling molecules released by Panx1 opening may have both excitatory and inhibitory actions on seizure generation. This review examines the critical and complex roles of Panx1 channels in epilepsy, which could provide a basis for future therapeutics.
Collapse
|
26
|
Han B, Li X, Hao J. The cholinergic anti-inflammatory pathway: An innovative treatment strategy for neurological diseases. Neurosci Biobehav Rev 2017; 77:358-368. [PMID: 28392244 DOI: 10.1016/j.neubiorev.2017.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/28/2017] [Accepted: 04/03/2017] [Indexed: 12/22/2022]
Abstract
Acetylcholine (ACh), as a classical neurotransmitter, regulates the neuronal network in response to internal and external stimuli. In recent decades, the biology of ACh has been endowed with unparalleled new insights, especially with respect to cholinergic anti-inflammatory properties in non-neuronal cells. In fact, a mechanism frequently referred to as the "cholinergic anti-inflammatory pathway" has been termed to describe interactions between the central nervous system (CNS) and the immune system via vagus nerve. As well documented, immune cells express choline acetyltransferase, a direct synthetase for ACh, and other corresponding cholinergic components. Alternatively, the ACh released from immune cells or cholinergic neurons modulates immune function in an autocrine/paracrine manner by acting on its receptors. Moreover, muscarinic or nicotinic ACh receptors on various immune cells and CNS glial cells administer the work of their respective agonists, causing functional and biochemical changes. In this review, we focus on the anti-inflammatory benefits of non-neuronal and neuronal ACh as a means of providing new insights into treating inflammation-related neurological diseases, as exemplified by those described herein.
Collapse
Affiliation(s)
- Bin Han
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Xiuping Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Junwei Hao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
27
|
Wang Q, Jie W, Liu JH, Yang JM, Gao TM. An astroglial basis of major depressive disorder? An overview. Glia 2017; 65:1227-1250. [DOI: 10.1002/glia.23143] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Qian Wang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Wei Jie
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Ji-Hong Liu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| |
Collapse
|
28
|
Brusilow WSA, Peters TJ. Therapeutic effects of methionine sulfoximine in multiple diseases include and extend beyond inhibition of glutamine synthetase. Expert Opin Ther Targets 2017; 21:461-469. [PMID: 28292200 DOI: 10.1080/14728222.2017.1303484] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Methionine sulfoximine (MSO), a well-characterized inhibitor of glutamine synthetase, displays significant therapeutic benefits in animal models for several human diseases. This amino acid might therefore be a viable candidate for drug development to treat diseases for which there are few effective therapies. Areas covered: We describe the effects of MSO on brain swelling occurring in overt hepatic encephalopathy resulting from liver failure, the effects of MSO on excitotoxic damage involved in amyotrophic lateral sclerosis (ALS) or resulting from stroke, and the effects of MSO on a model for an inflammatory immune response involved in a range of diseases. We conclude that these results imply the existence of another therapeutic target for MSO in addition to glutamine synthetase. Expert opinion: We summarize the various diseases for which MSO treatment might be a candidate for drug development. We discuss why MSO has limited enthusiasm in the scientific and medical communities for use in humans, with a rebuttal to those negative opinions. And we conclude that MSO should be considered a candidate drug to treat brain swelling involved in overt hepatic encephalopathy and diseases involving an inflammatory immune response.
Collapse
Affiliation(s)
- William S A Brusilow
- a Department of Biochemistry and Molecular Biology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Tyler J Peters
- a Department of Biochemistry and Molecular Biology , Wayne State University School of Medicine , Detroit , MI , USA
| |
Collapse
|
29
|
Blanco‐Suárez E, Caldwell ALM, Allen NJ. Role of astrocyte-synapse interactions in CNS disorders. J Physiol 2017; 595:1903-1916. [PMID: 27381164 PMCID: PMC5350444 DOI: 10.1113/jp270988] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/08/2016] [Indexed: 12/18/2022] Open
Abstract
Astrocytes comprise half of the cells in the brain. Although astrocytes have traditionally been described as playing a supportive role for neurons, they have recently been recognized as active participants in the development and plasticity of dendritic spines and synapses. Astrocytes can eliminate dendritic spines, induce synapse formation, and regulate neurotransmission and plasticity. Dendritic spine and synapse impairments are features of many neurological disorders, including autism spectrum disorder, schizophrenia, and Alzheimer's disease. In this review we will present evidence from multiple neurological disorders demonstrating that changes in astrocyte-synapse interaction contribute to the pathologies. Genomic analysis has connected altered astrocytic gene expression with synaptic deficits in a number of neurological disorders. Alterations in astrocyte-secreted factors have been implicated in the neuronal morphology and synaptic changes seen in neurodevelopmental disorders, while alteration in astrocytic glutamate uptake is a core feature of multiple neurodegenerative disorders. This evidence clearly demonstrates that maintaining astrocyte-synapse interaction is crucial for normal central nervous system functioning. Obtaining a better understanding of the role of astrocytes at synapses in health and disease will provide a new avenue for future therapeutic targeting.
Collapse
Affiliation(s)
- Elena Blanco‐Suárez
- Salk Institute for Biological StudiesMolecular Neuroscience Laboratory10010 North Torrey Pines RdLa JollaCA92037USA
| | - Alison L. M. Caldwell
- Salk Institute for Biological StudiesMolecular Neuroscience Laboratory10010 North Torrey Pines RdLa JollaCA92037USA
| | - Nicola J. Allen
- Salk Institute for Biological StudiesMolecular Neuroscience Laboratory10010 North Torrey Pines RdLa JollaCA92037USA
| |
Collapse
|
30
|
Svob Strac D, Pivac N, Smolders IJ, Fogel WA, De Deurwaerdere P, Di Giovanni G. Monoaminergic Mechanisms in Epilepsy May Offer Innovative Therapeutic Opportunity for Monoaminergic Multi-Target Drugs. Front Neurosci 2016; 10:492. [PMID: 27891070 PMCID: PMC5102907 DOI: 10.3389/fnins.2016.00492] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/13/2016] [Indexed: 12/22/2022] Open
Abstract
A large body of experimental and clinical evidence has strongly suggested that monoamines play an important role in regulating epileptogenesis, seizure susceptibility, convulsions, and comorbid psychiatric disorders commonly seen in people with epilepsy (PWE). However, neither the relative significance of individual monoamines nor their interaction has yet been fully clarified due to the complexity of these neurotransmitter systems. In addition, epilepsy is diverse, with many different seizure types and epilepsy syndromes, and the role played by monoamines may vary from one condition to another. In this review, we will focus on the role of serotonin, dopamine, noradrenaline, histamine, and melatonin in epilepsy. Recent experimental, clinical, and genetic evidence will be reviewed in consideration of the mutual relationship of monoamines with the other putative neurotransmitters. The complexity of epileptic pathogenesis may explain why the currently available drugs, developed according to the classic drug discovery paradigm of "one-molecule-one-target," have turned out to be effective only in a percentage of PWE. Although, no antiepileptic drugs currently target specifically monoaminergic systems, multi-target directed ligands acting on different monoaminergic proteins, present on both neurons and glia cells, may represent a new approach in the management of seizures, and their generation as well as comorbid neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic InstituteZagreb, Croatia
| | - Ilse J. Smolders
- Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit BrusselBrussels, Belgium
| | - Wieslawa A. Fogel
- Department of Hormone Biochemistry, Medical University of LodzLodz, Poland
| | | | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, University of MaltaMsida, Malta
| |
Collapse
|
31
|
Sprissler RS, Wagnon JL, Bunton-Stasyshyn RK, Meisler MH, Hammer MF. Altered gene expression profile in a mouse model of SCN8A encephalopathy. Exp Neurol 2016; 288:134-141. [PMID: 27836728 DOI: 10.1016/j.expneurol.2016.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/06/2016] [Accepted: 11/03/2016] [Indexed: 02/07/2023]
Abstract
SCN8A encephalopathy is a severe, early-onset epilepsy disorder resulting from de novo gain-of-function mutations in the voltage-gated sodium channel Nav1.6. To identify the effects of this disorder on mRNA expression, RNA-seq was performed on brain tissue from a knock-in mouse expressing the patient mutation p.Asn1768Asp (N1768D). RNA was isolated from forebrain, cerebellum, and brainstem both before and after seizure onset, and from age-matched wildtype littermates. Altered transcript profiles were observed only in forebrain and only after seizures. The abundance of 50 transcripts increased more than 3-fold and 15 transcripts decreased more than 3-fold after seizures. The elevated transcripts included two anti-convulsant neuropeptides and more than a dozen genes involved in reactive astrocytosis and response to neuronal damage. There was no change in the level of transcripts encoding other voltage-gated sodium, potassium or calcium channels. Reactive astrocytosis was observed in the hippocampus of mutant mice after seizures. There is considerable overlap between the genes affected in this genetic model of epilepsy and those altered by chemically induced seizures, traumatic brain injury, ischemia, and inflammation. The data support the view that gain-of-function mutations of SCN8A lead to pathogenic alterations in brain function contributing to encephalopathy.
Collapse
Affiliation(s)
- Ryan S Sprissler
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ 85721, USA
| | - Jacy L Wagnon
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Michael F Hammer
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ 85721, USA; Department of Neurology, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
32
|
Ahl M, Avdic U, Skoug C, Ali I, Chugh D, Johansson UE, Ekdahl CT. Immune response in the eye following epileptic seizures. J Neuroinflammation 2016; 13:155. [PMID: 27346214 PMCID: PMC4922060 DOI: 10.1186/s12974-016-0618-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/08/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Epileptic seizures are associated with an immune response in the brain. However, it is not known whether it can extend to remote areas of the brain, such as the eyes. Hence, we investigated whether epileptic seizures induce inflammation in the retina. METHODS Adult rats underwent electrically induced temporal status epilepticus, and the eyes were studied 6 h, 1, and 7 weeks later with biochemical and immunohistochemical analyses. An additional group of animals received CX3CR1 antibody intracerebroventricularly for 6 weeks after status epilepticus. RESULTS Biochemical analyses and immunohistochemistry revealed no increased cell death and unaltered expression of several immune-related cytokines and chemokines as well as no microglial activation, 6 h post-status epilepticus compared to non-stimulated controls. At 1 week, again, retinal cytoarchitecture appeared normal and there was no cell death or micro- or macroglial reaction, apart from a small decrease in interleukin-10. However, at 7 weeks, even if the cytoarchitecture remained normal and no ongoing cell death was detected, the numbers of microglia were increased ipsi- and contralateral to the epileptic focus. The microglia remained within the synaptic layers but often in clusters and with more processes extending into the outer nuclear layer. Morphological analyses revealed a decrease in surveying and an increase in activated microglia. In addition, increased levels of the chemokine KC/GRO and cytokine interleukin-1β were found. Furthermore, macroglial activation was noted in the inner retina. No alterations in numbers of phagocytic cells, infiltrating macrophages, or vascular pericytes were observed. Post-synaptic density-95 cluster intensity was reduced in the outer nuclear layer, reflecting seizure-induced synaptic changes without disrupted cytoarchitecture in areas with increased microglial activation. The retinal gliosis was decreased by a CX3CR1 immune modulation known to reduce gliosis within epileptic foci, suggesting a common immunological reaction. CONCLUSIONS Our results are the first evidence that epileptic seizures induce an immune response in the retina. It has a potential to become a novel non-invasive tool for detecting brain inflammation through the eyes.
Collapse
Affiliation(s)
- Matilda Ahl
- Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Lund University, BMC A11, Sölvegatan 17, SE-221 84, Lund, Sweden.,Lund Epilepsy Center, Lund University, SE-221 85, Lund, Sweden
| | - Una Avdic
- Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Lund University, BMC A11, Sölvegatan 17, SE-221 84, Lund, Sweden.,Lund Epilepsy Center, Lund University, SE-221 85, Lund, Sweden
| | - Cecilia Skoug
- Division of Ophthalmology, Department of Clinical Sciences, Lund University, SE-221 85, Lund, Sweden
| | - Idrish Ali
- Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Lund University, BMC A11, Sölvegatan 17, SE-221 84, Lund, Sweden.,Lund Epilepsy Center, Lund University, SE-221 85, Lund, Sweden
| | - Deepti Chugh
- Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Lund University, BMC A11, Sölvegatan 17, SE-221 84, Lund, Sweden.,Lund Epilepsy Center, Lund University, SE-221 85, Lund, Sweden
| | - Ulrica Englund Johansson
- Division of Ophthalmology, Department of Clinical Sciences, Lund University, SE-221 85, Lund, Sweden
| | - Christine T Ekdahl
- Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Lund University, BMC A11, Sölvegatan 17, SE-221 84, Lund, Sweden. .,Lund Epilepsy Center, Lund University, SE-221 85, Lund, Sweden.
| |
Collapse
|
33
|
Astrocytes in physiological aging and Alzheimer’s disease. Neuroscience 2016; 323:170-82. [DOI: 10.1016/j.neuroscience.2015.01.007] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/02/2015] [Accepted: 01/06/2015] [Indexed: 12/20/2022]
|
34
|
Yang J, Zhang X, Wu Y, Zhao B, Liu X, Pan Y, Liu Y, Ding Y, Qiu M, Wang YZ, Zhao G. Wnt/β-catenin signaling mediates the seizure-facilitating effect of postischemic reactive astrocytes after pentylenetetrazole-kindling. Glia 2016; 64:1083-91. [PMID: 27003605 DOI: 10.1002/glia.22984] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/23/2016] [Accepted: 03/02/2016] [Indexed: 12/19/2022]
Abstract
Ischemia not only leads to tissue damage, but also induces seizures, which in turn worsens the outcome of ischemia. Recent studies have revealed the impaired homeostatic functions of reactive astrocytes, which were thought to facilitate the development of seizures. However, how this phenotype of reactive astrocytes is regulated remains unclear. Here, using pentylenetetrazole (PTZ)-kindling model, we investigated the roles of reactive astrocytes and their intracellular Wnt/β-catenin signaling in the ischemia-increased seizure susceptibility. Our data showed that somatosensory cortical ischemia significantly increased the susceptibility to PTZ-induced seizure. Genetic ablation of Nestin-positive reactive astrocytes significantly decreased the incidence and severity of seizures. By using a Wnt signaling reporter mice line Topgal mice, we found that Wnt/β-catenin signaling was upregulated in reactive astrocytes after ischemia. Depletion of β-catenin in reactive astrocytes significantly decreased the susceptibility of seizures and the expression of c-Fos induced by PTZ in the ischemic cortex. Overexpression of β-catenin in reactive astrocytes, in contrast, significantly increased seizure susceptibility and the expression of c-Fos. Furthermore, the expression of aquaporin-4 (AQP-4) and inwardly rectifying K(+) channel 4.1 (Kir4.1), two molecules reportedly associated with seizure development, was oppositely affected in reactive astrocytes with β-catenin depletion or overexpression. Taken together, these data indicated that astrocytic Wnt/β-catenin signaling accounts, at least partially, for the ischemia-increased seizure susceptibility. Inhibiting Wnt/β-catenin signaling may be utilized in the future for preventing postischemic seizures.
Collapse
Affiliation(s)
- Jialei Yang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Neurobiology and Collaborative Innovation Center for Brain Science, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiufen Zhang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yin Wu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bo Zhao
- Department of Neurology, Anning Branch of Lanzhou General Hospital of Lanzhou Military Region, Lanzhou, China
| | - Xunyuan Liu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuanhang Pan
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yonghong Liu
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuqiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, China.,Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, China
| | - Mengsheng Qiu
- Institute of Developmental and Regenerative Biology, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ya-Zhou Wang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
35
|
Rial D, Lemos C, Pinheiro H, Duarte JM, Gonçalves FQ, Real JI, Prediger RD, Gonçalves N, Gomes CA, Canas PM, Agostinho P, Cunha RA. Depression as a Glial-Based Synaptic Dysfunction. Front Cell Neurosci 2016; 9:521. [PMID: 26834566 PMCID: PMC4722129 DOI: 10.3389/fncel.2015.00521] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/27/2015] [Indexed: 01/23/2023] Open
Abstract
Recent studies combining pharmacological, behavioral, electrophysiological and molecular approaches indicate that depression results from maladaptive neuroplastic processes occurring in defined frontolimbic circuits responsible for emotional processing such as the prefrontal cortex, hippocampus, amygdala and ventral striatum. However, the exact mechanisms controlling synaptic plasticity that are disrupted to trigger depressive conditions have not been elucidated. Since glial cells (astrocytes and microglia) tightly and dynamically interact with synapses, engaging a bi-directional communication critical for the processing of synaptic information, we now revisit the role of glial cells in the etiology of depression focusing on a dysfunction of the “quad-partite” synapse. This interest is supported by the observations that depressive-like conditions are associated with a decreased density and hypofunction of astrocytes and with an increased microglia “activation” in frontolimbic regions, which is expected to contribute for the synaptic dysfunction present in depression. Furthermore, the traditional culprits of depression (glucocorticoids, biogenic amines, brain-derived neurotrophic factor, BDNF) affect glia functioning, whereas antidepressant treatments (serotonin-selective reuptake inhibitors, SSRIs, electroshocks, deep brain stimulation) recover glia functioning. In this context of a quad-partite synapse, systems modulating glia-synapse bidirectional communication—such as the purinergic neuromodulation system operated by adenosine 5′-triphosphate (ATP) and adenosine—emerge as promising candidates to “re-normalize” synaptic function by combining direct synaptic effects with an ability to also control astrocyte and microglia function. This proposed triple action of purines to control aberrant synaptic function illustrates the rationale to consider the interference with glia dysfunction as a mechanism of action driving the design of future pharmacological tools to manage depression.
Collapse
Affiliation(s)
- Daniel Rial
- CNC - Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal; Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SCBrazil
| | - Cristina Lemos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Helena Pinheiro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Joana M Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Francisco Q Gonçalves
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Joana I Real
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Rui D Prediger
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC Brazil
| | - Nélio Gonçalves
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Catarina A Gomes
- CNC - Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal; Faculty of Medicine, University of CoimbraCoimbra, Portugal
| | - Paula M Canas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Paula Agostinho
- CNC - Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal; Faculty of Medicine, University of CoimbraCoimbra, Portugal
| | - Rodrigo A Cunha
- CNC - Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal; Faculty of Medicine, University of CoimbraCoimbra, Portugal
| |
Collapse
|
36
|
Jayakumar AR, Norenberg MD. Glutamine Synthetase: Role in Neurological Disorders. ADVANCES IN NEUROBIOLOGY 2016; 13:327-350. [PMID: 27885636 DOI: 10.1007/978-3-319-45096-4_13] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Glutamine synthetase (GS) is an ATP-dependent enzyme found in most species that synthesizes glutamine from glutamate and ammonia. In brain, GS is exclusively located in astrocytes where it serves to maintain the glutamate-glutamine cycle, as well as nitrogen metabolism. Changes in the activity of GS, as well as its gene expression, along with excitotoxicity, have been identified in a number of neurological conditions. The literature describing alterations in the activation and gene expression of GS, as well as its involvement in different neurological disorders, however, is incomplete. This review summarizes changes in GS gene expression/activity and its potential contribution to the pathogenesis of several neurological disorders, including hepatic encephalopathy, ischemia, epilepsy, Alzheimer's disease, amyotrophic lateral sclerosis, traumatic brain injury, Parkinson's disease, and astroglial neoplasms. This review also explores the possibility of targeting GS in the therapy of these conditions.
Collapse
Affiliation(s)
| | - Michael D Norenberg
- Laboratory of Neuropathology, Veterans Affairs Medical Center, Miami, FL, USA.
- Departments of Pathology, University of Miami School of Medicine, 016960, Miami, FL, 33101, USA.
- Departments of Biochemistry & Molecular Biology, University of Miami School of Medicine, Miami, FL, USA.
| |
Collapse
|
37
|
Abstract
We delineate perspectives for the design and discovery of antiepileptic drugs (AEDs) with fewer side effects by focusing on astroglial modulation of spatiotemporal seizure dynamics. It is now recognized that the major inhibitory neurotransmitter of the brain, γ-aminobutyric acid (GABA), can be released through the reversal of astroglial GABA transporters. Synaptic spillover and subsequent glutamate (Glu) uptake in neighboring astrocytes evoke replacement of extracellular Glu for GABA, driving neurons away from the seizure threshold. Attenuation of synaptic signaling by this negative feedback through the interplay of Glu and GABA transporters of adjacent astroglia can result in shortened seizures. By contrast, long-range activation of astroglia through gap junctions may promote recurrent seizures on the model of pharmacoresistant temporal lobe epilepsy. From their first detection to our current understanding, we identify various targets that shape both short- and long-range neuro-astroglia coupling, as these are manifest in epilepsy phenomena and in the associated research promotions of AED.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - Zsolt Szabó
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| |
Collapse
|
38
|
Fontana ACK. Current approaches to enhance glutamate transporter function and expression. J Neurochem 2015; 134:982-1007. [DOI: 10.1111/jnc.13200] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Andréia C. K. Fontana
- Department of Pharmacology and Physiology; Drexel University College of Medicine; Philadelphia Pennsylvania USA
| |
Collapse
|
39
|
Kékesi O, Ioja E, Szabó Z, Kardos J, Héja L. Recurrent seizure-like events are associated with coupled astroglial synchronization. Front Cell Neurosci 2015; 9:215. [PMID: 26150770 PMCID: PMC4471369 DOI: 10.3389/fncel.2015.00215] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 05/20/2015] [Indexed: 01/22/2023] Open
Abstract
Increasing evidence suggest that astrocytes significantly modulate neuronal function at the level of the tripartite synapse both in physiological and pathophysiological conditions. The global control of the astrocytic syncytium over neuronal networks, however, is still less recognized. Here we examined astrocytic signaling during epileptiform activity which is generally attributed to large-scale neuronal synchronization. We show that seizure-like events in the low-[Mg(2+)] in vitro epilepsy model initiate massive, long-range astrocytic synchronization which is spatiotemporally coupled to the synchronized neuronal activity reaching its maximum at the electrographic tonic/clonic transition. Cross-correlation analysis of neuronal and astrocytic Ca(2+) signaling demonstrates that high degree of synchronization arises not only among astrocytes, but also between neuronal and astrocyte populations, manifesting in astrocytic seizure-like events. We further show that astrocytic gap junction proteins contribute to astrocytic synchronization since their inhibition by carbenoxolone (CBX) or Cx43 antibody increased the interictal interval and in 41% of slices completely prevented recurrent seizure-like activity. In addition, CBX also induced unsynchronized Ca(2+) transients associated with decreasing incidence of epileptiform discharges afterwards. We propose therefore that local, unsynchronized astrocytic Ca(2+) transients inhibit, while long-range, synchronized Ca(2+) signaling contributes to the propagation of recurrent seizure-like events.
Collapse
Affiliation(s)
- Orsolya Kékesi
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Institute of Organic Chemistry, Functional Pharmacology Group Budapest, Hungary
| | - Enikö Ioja
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Institute of Organic Chemistry, Functional Pharmacology Group Budapest, Hungary
| | - Zsolt Szabó
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Institute of Organic Chemistry, Functional Pharmacology Group Budapest, Hungary
| | - Julianna Kardos
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Institute of Organic Chemistry, Functional Pharmacology Group Budapest, Hungary
| | - László Héja
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Institute of Organic Chemistry, Functional Pharmacology Group Budapest, Hungary
| |
Collapse
|
40
|
Yin P, Zhang XT, Li J, Yu L, Wang JW, Lei GF, Sun RP, Li BM. Maternal immune activation increases seizure susceptibility in juvenile rat offspring. Epilepsy Behav 2015; 47:93-7. [PMID: 25982885 DOI: 10.1016/j.yebeh.2015.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 11/15/2022]
Abstract
Epidemiological data suggest a relationship between maternal infection and a high incidence of childhood epilepsy in offspring. However, there is little experimental evidence that links maternal infection with later seizure susceptibility in juvenile offspring. Here, we asked whether maternal immune challenge during pregnancy can alter seizure susceptibility and seizure-associated brain damage in adolescence. Pregnant Sprague-Dawley rats were treated with lipopolysaccharide (LPS) or normal saline (NS) on gestational days 15 and 16. At postnatal day 21, seizure susceptibility to kainic acid (KA) was evaluated in male offspring. Four groups were studied, including normal control (NS-NS), prenatal infection (LPS-NS), juvenile seizure (NS-KA), and "two-hit" (LPS-KA) groups. Our results demonstrated that maternal LPS exposure caused long-term reactive astrogliosis and increased seizure susceptibility in juvenile rat offspring. Compared to the juvenile seizure group, animals in the "two-hit" group showed exaggerated astrogliosis, followed by worsened spatial learning ability in adulthood. In addition, prenatal immune challenge alone led to spatial learning impairment in offspring but had no effect on anxiety. These data suggest that prenatal immune challenge causes a long-term increase in juvenile seizure susceptibility and exacerbates seizure-induced brain injury, possibly by priming astroglia.
Collapse
Affiliation(s)
- Ping Yin
- Pediatric Department of Qilu Hospital, Shandong University, Jinan, China; Brain Science Research Institute, Shandong University, Jinan, China
| | - Xin-Ting Zhang
- Pediatric Department of Qilu Hospital, Shandong University, Jinan, China; Brain Science Research Institute, Shandong University, Jinan, China
| | - Jun Li
- Pediatric Department of Qilu Hospital, Shandong University, Jinan, China; Brain Science Research Institute, Shandong University, Jinan, China
| | - Lin Yu
- Women's Hospital, School of Medicine, Zhejiang University, China
| | - Ji-Wen Wang
- Pediatric Department of Qilu Hospital, Shandong University, Jinan, China; Brain Science Research Institute, Shandong University, Jinan, China
| | - Ge-Fei Lei
- Pediatric Department of Qilu Hospital, Shandong University, Jinan, China; Brain Science Research Institute, Shandong University, Jinan, China
| | - Ruo-Peng Sun
- Pediatric Department of Qilu Hospital, Shandong University, Jinan, China; Brain Science Research Institute, Shandong University, Jinan, China
| | - Bao-Min Li
- Pediatric Department of Qilu Hospital, Shandong University, Jinan, China; Brain Science Research Institute, Shandong University, Jinan, China.
| |
Collapse
|
41
|
Weissberg I, Wood L, Kamintsky L, Vazquez O, Milikovsky DZ, Alexander A, Oppenheim H, Ardizzone C, Becker A, Frigerio F, Vezzani A, Buckwalter MS, Huguenard JR, Friedman A, Kaufer D. Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction. Neurobiol Dis 2015; 78:115-25. [PMID: 25836421 DOI: 10.1016/j.nbd.2015.02.029] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/07/2015] [Accepted: 02/19/2015] [Indexed: 01/26/2023] Open
Abstract
Post-injury epilepsy (PIE) is a common complication following brain insults, including ischemic, and traumatic brain injuries. At present, there are no means to identify the patients at risk to develop PIE or to prevent its development. Seizures can occur months or years after the insult, do not respond to anti-seizure medications in over third of the patients, and are often associated with significant neuropsychiatric morbidities. We have previously established the critical role of blood-brain barrier dysfunction in PIE, demonstrating that exposure of brain tissue to extravasated serum albumin induces activation of inflammatory transforming growth factor beta (TGF-β) signaling in astrocytes and eventually seizures. However, the link between the acute astrocytic inflammatory responses and reorganization of neural networks that underlie recurrent spontaneous seizures remains unknown. Here we demonstrate in vitro and in vivo that activation of the astrocytic ALK5/TGF-β-pathway induces excitatory, but not inhibitory, synaptogenesis that precedes the appearance of seizures. Moreover, we show that treatment with SJN2511, a specific ALK5/TGF-β inhibitor, prevents synaptogenesis and epilepsy. Our findings point to astrocyte-mediated synaptogenesis as a key epileptogenic process and highlight the manipulation of the TGF-β-pathway as a potential strategy for the prevention of PIE.
Collapse
Affiliation(s)
- Itai Weissberg
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Lydia Wood
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140, USA
| | - Lyn Kamintsky
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Oscar Vazquez
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-3140, USA
| | - Dan Z Milikovsky
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Allyson Alexander
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Hannah Oppenheim
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140, USA
| | - Carolyn Ardizzone
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140, USA
| | - Albert Becker
- Department of Neuropathology, University of Bonn Medical Center, Bonn 53105, Germany
| | - Federica Frigerio
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Daniela Kaufer
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-3140, USA; Canadian Institute for Advanced Research (CIFAR) Program in Child and Brain Development Toronto, ON M5G 1Z8, Canada.
| |
Collapse
|
42
|
Szokol K, Heuser K, Tang W, Jensen V, Enger R, Bedner P, Steinhäuser C, Taubøll E, Ottersen OP, Nagelhus EA. Augmentation of Ca(2+) signaling in astrocytic endfeet in the latent phase of temporal lobe epilepsy. Front Cell Neurosci 2015; 9:49. [PMID: 25762896 PMCID: PMC4340203 DOI: 10.3389/fncel.2015.00049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/01/2015] [Indexed: 11/13/2022] Open
Abstract
Astrocytic endfeet are specialized cell compartments whose important homeostatic roles depend on their enrichment of water and ion channels anchored by the dystrophin associated protein complex (DAPC). This protein complex is known to disassemble in patients with mesial temporal lobe epilepsy and in the latent phase of experimental epilepsies. The mechanistic underpinning of this disassembly is an obvious target of future therapies, but remains unresolved. Here we show in a kainate model of temporal lobe epilepsy that astrocytic endfeet display an enhanced stimulation-evoked Ca(2+) signal that outlast the Ca(2+) signal in the cell bodies. While the amplitude of this Ca(2+) signal is reduced following group I/II metabotropic receptor (mGluR) blockade, the duration is sustained. Based on previous studies it has been hypothesized that the molecular disassembly in astrocytic endfeet is caused by dystrophin cleavage mediated by Ca(2+) dependent proteases. Using a newly developed genetically encoded Ca(2+) sensor, the present study bolsters this hypothesis by demonstrating long-lasting, enhanced stimulation-evoked Ca(2+) signals in astrocytic endfeet.
Collapse
Affiliation(s)
- Karolina Szokol
- Department of Neurology, Oslo University Hospital Oslo, Norway ; Centre for Molecular Medicine Norway, The Nordic EMBL Partnership, University of Oslo Oslo, Norway ; Letten Centre and GliaLab, Department of Physiology, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | - Kjell Heuser
- Department of Neurology, Oslo University Hospital Oslo, Norway ; Letten Centre and GliaLab, Department of Physiology, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | - Wannan Tang
- Centre for Molecular Medicine Norway, The Nordic EMBL Partnership, University of Oslo Oslo, Norway ; Letten Centre and GliaLab, Department of Physiology, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | - Vidar Jensen
- Centre for Molecular Medicine Norway, The Nordic EMBL Partnership, University of Oslo Oslo, Norway ; Letten Centre and GliaLab, Department of Physiology, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | - Rune Enger
- Department of Neurology, Oslo University Hospital Oslo, Norway ; Centre for Molecular Medicine Norway, The Nordic EMBL Partnership, University of Oslo Oslo, Norway ; Letten Centre and GliaLab, Department of Physiology, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | - Peter Bedner
- Institute of Cellular Neurosciences, University of Bonn Bonn, Germany
| | | | - Erik Taubøll
- Department of Neurology, Oslo University Hospital Oslo, Norway
| | | | - Erlend A Nagelhus
- Department of Neurology, Oslo University Hospital Oslo, Norway ; Centre for Molecular Medicine Norway, The Nordic EMBL Partnership, University of Oslo Oslo, Norway ; Letten Centre and GliaLab, Department of Physiology, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| |
Collapse
|