1
|
Imrie G, Gray MB, Raghuraman V, Farhy-Tselnicker I. Gene Expression at the Tripartite Synapse: Bridging the Gap Between Neurons and Astrocytes. ADVANCES IN NEUROBIOLOGY 2024; 39:95-136. [PMID: 39190073 DOI: 10.1007/978-3-031-64839-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Astrocytes, a major class of glial cells, are an important element at the synapse where they engage in bidirectional crosstalk with neurons to regulate numerous aspects of neurotransmission, circuit function, and behavior. Mutations in synapse-related genes expressed in both neurons and astrocytes are central factors in a vast number of neurological disorders, making the proteins that they encode prominent targets for therapeutic intervention. Yet, while the roles of many of these synaptic proteins in neurons are well established, the functions of the same proteins in astrocytes are largely unknown. This gap in knowledge must be addressed to refine therapeutic approaches. In this chapter, we integrate multiomic meta-analysis and a comprehensive overview of current literature to show that astrocytes express an astounding number of genes that overlap with the neuronal and synaptic transcriptomes. Further, we highlight recent reports that characterize the expression patterns and potential novel roles of these genes in astrocytes in both physiological and pathological conditions, underscoring the importance of considering both cell types when investigating the function and regulation of synaptic proteins.
Collapse
Affiliation(s)
- Gillian Imrie
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Madison B Gray
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Vishnuvasan Raghuraman
- Department of Biology, Texas A&M University, College Station, TX, USA
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA
| | - Isabella Farhy-Tselnicker
- Department of Biology, Texas A&M University, College Station, TX, USA.
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA.
- Center for Biological Clocks Research, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
2
|
Eggl MF, Chater TE, Petkovic J, Goda Y, Tchumatchenko T. Linking spontaneous and stimulated spine dynamics. Commun Biol 2023; 6:930. [PMID: 37696988 PMCID: PMC10495434 DOI: 10.1038/s42003-023-05303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023] Open
Abstract
Our brains continuously acquire and store memories through synaptic plasticity. However, spontaneous synaptic changes can also occur and pose a challenge for maintaining stable memories. Despite fluctuations in synapse size, recent studies have shown that key population-level synaptic properties remain stable over time. This raises the question of how local synaptic plasticity affects the global population-level synaptic size distribution and whether individual synapses undergoing plasticity escape the stable distribution to encode specific memories. To address this question, we (i) studied spontaneously evolving spines and (ii) induced synaptic potentiation at selected sites while observing the spine distribution pre- and post-stimulation. We designed a stochastic model to describe how the current size of a synapse affects its future size under baseline and stimulation conditions and how these local effects give rise to population-level synaptic shifts. Our study offers insights into how seemingly spontaneous synaptic fluctuations and local plasticity both contribute to population-level synaptic dynamics.
Collapse
Affiliation(s)
- Maximilian F Eggl
- University of Mainz Medical Center, Anselm-Franz-von-Bentzel-Weg 3, 55128, Mainz, Germany
| | - Thomas E Chater
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Janko Petkovic
- University of Mainz Medical Center, Anselm-Franz-von-Bentzel-Weg 3, 55128, Mainz, Germany
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
- Synapse Biology Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Tatjana Tchumatchenko
- University of Mainz Medical Center, Anselm-Franz-von-Bentzel-Weg 3, 55128, Mainz, Germany.
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
3
|
Hafner AS, Triesch J. Synaptic logistics: Competing over shared resources. Mol Cell Neurosci 2023; 125:103858. [PMID: 37172922 DOI: 10.1016/j.mcn.2023.103858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
High turnover rates of synaptic proteins imply that synapses constantly need to replace their constituent building blocks. This requires sophisticated supply chains and potentially exposes synapses to shortages as they compete for limited resources. Interestingly, competition in neurons has been observed at different scales. Whether it is competition of receptors for binding sites inside a single synapse or synapses fighting for resources to grow. Here we review the implications of such competition for synaptic function and plasticity. We identify multiple mechanisms that synapses use to safeguard themselves against supply shortages and identify a fundamental neurologistic trade-off governing the sizes of reserve pools of essential synaptic building blocks.
Collapse
Affiliation(s)
- Anne-Sophie Hafner
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands.
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany; Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
4
|
Law E, Li Y, Kahraman O, Haselwandter CA. Stochastic self-assembly of reaction-diffusion patterns in synaptic membranes. Phys Rev E 2021; 104:014403. [PMID: 34412234 DOI: 10.1103/physreve.104.014403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/14/2021] [Indexed: 11/07/2022]
Abstract
Synaptic receptor and scaffold molecules self-assemble into membrane protein domains, which play an important role in signal transmission across chemical synapses. Experiment and theory have shown that the formation of receptor-scaffold domains of the characteristic size observed in nerve cells can be understood from the receptor and scaffold reaction and diffusion processes suggested by experiments. We employ here kinetic Monte Carlo (KMC) simulations to explore the self-assembly of synaptic receptor-scaffold domains in a stochastic lattice model of receptor and scaffold reaction-diffusion dynamics. For reaction and diffusion rates within the ranges of values suggested by experiments we find, in agreement with previous mean-field calculations, self-assembly of receptor-scaffold domains of a size similar to that observed in experiments. Comparisons between the results of our KMC simulations and mean-field solutions suggest that the intrinsic noise associated with receptor and scaffold reaction and diffusion processes accelerates the self-assembly of receptor-scaffold domains, and confers increased robustness to domain formation. In agreement with experimental observations, our KMC simulations yield a prevalence of scaffolds over receptors in receptor-scaffold domains. Our KMC simulations show that receptor and scaffold reaction-diffusion dynamics can inherently give rise to plasticity in the overall properties of receptor-scaffold domains, which may be utilized by nerve cells to regulate the receptor number at chemical synapses.
Collapse
Affiliation(s)
- Everest Law
- Department of Physics and Astronomy and Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Yiwei Li
- Department of Physics and Astronomy and Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Osman Kahraman
- Department of Physics and Astronomy and Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Christoph A Haselwandter
- Department of Physics and Astronomy and Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
5
|
Kasai H, Ziv NE, Okazaki H, Yagishita S, Toyoizumi T. Spine dynamics in the brain, mental disorders and artificial neural networks. Nat Rev Neurosci 2021; 22:407-422. [PMID: 34050339 DOI: 10.1038/s41583-021-00467-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
In the brain, most synapses are formed on minute protrusions known as dendritic spines. Unlike their artificial intelligence counterparts, spines are not merely tuneable memory elements: they also embody algorithms that implement the brain's ability to learn from experience and cope with new challenges. Importantly, they exhibit structural dynamics that depend on activity, excitatory input and inhibitory input (synaptic plasticity or 'extrinsic' dynamics) and dynamics independent of activity ('intrinsic' dynamics), both of which are subject to neuromodulatory influences and reinforcers such as dopamine. Here we succinctly review extrinsic and intrinsic dynamics, compare these with parallels in machine learning where they exist, describe the importance of intrinsic dynamics for memory management and adaptation, and speculate on how disruption of extrinsic and intrinsic dynamics may give rise to mental disorders. Throughout, we also highlight algorithmic features of spine dynamics that may be relevant to future artificial intelligence developments.
Collapse
Affiliation(s)
- Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Noam E Ziv
- Technion Faculty of Medicine and Network Biology Research Labs, Technion City, Haifa, Israel
| | - Hitoshi Okazaki
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Sho Yagishita
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Taro Toyoizumi
- Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, Saitama, Japan.,Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
León A, Aparicio GI, Scorticati C. Neuronal Glycoprotein M6a: An Emerging Molecule in Chemical Synapse Formation and Dysfunction. Front Synaptic Neurosci 2021; 13:661681. [PMID: 34017241 PMCID: PMC8129562 DOI: 10.3389/fnsyn.2021.661681] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/07/2021] [Indexed: 12/27/2022] Open
Abstract
The cellular and molecular mechanisms underlying neuropsychiatric and neurodevelopmental disorders show that most of them can be categorized as synaptopathies-or damage of synaptic function and plasticity. Synaptic formation and maintenance are orchestrated by protein complexes that are in turn regulated in space and time during neuronal development allowing synaptic plasticity. However, the exact mechanisms by which these processes are managed remain unknown. Large-scale genomic and proteomic projects led to the discovery of new molecules and their associated variants as disease risk factors. Neuronal glycoprotein M6a, encoded by the GPM6A gene is emerging as one of these molecules. M6a has been involved in neuron development and synapse formation and plasticity, and was also recently proposed as a gene-target in various neuropsychiatric disorders where it could also be used as a biomarker. In this review, we provide an overview of the structure and molecular mechanisms by which glycoprotein M6a participates in synapse formation and maintenance. We also review evidence collected from patients carrying mutations in the GPM6A gene; animal models, and in vitro studies that together emphasize the relevance of M6a, particularly in synapses and in neurological conditions.
Collapse
Affiliation(s)
| | | | - Camila Scorticati
- Instituto de Investigaciones Biotecnológicas “Rodolfo A. Ugalde”, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBio-UNSAM-CONICET), Buenos Aires, Argentina
| |
Collapse
|
7
|
Regulation of synaptic nanodomain by liquid-liquid phase separation: A novel mechanism of synaptic plasticity. Curr Opin Neurobiol 2021; 69:84-92. [PMID: 33752045 DOI: 10.1016/j.conb.2021.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022]
Abstract
Advances in microscopy techniques have revealed the details of synaptic nanodomains as defined by the segregation of specific molecules on or beneath both presynaptic and postsynaptic membranes. However, it is yet to be clarified how such segregation is accomplished without demarcating membrane and how nanodomains respond to the neuronal activity. It was recently discovered that proteins at the synapse undergo liquid-liquid phase separation (LLPS), which not only contributes to the accumulation of synaptic proteins but also to further segregating the proteins into subdomains by forming phase-in-phase structures. More specifically, CaMKII, a postsynaptic multifunctional kinase that serves as a signaling molecule, acts as a synaptic cross-linker which segregates certain molecules through LLPS in a manner triggered by Ca2+. Nanodomain formation contributes to the establishment of trans-synaptic nanocolumns, which may be involved in the optimization of spatial arrangement of the transmitter release site and receptor, thereby serving as a new mechanism of synaptic plasticity.
Collapse
|
8
|
Activity Dependent and Independent Determinants of Synaptic Size Diversity. J Neurosci 2020; 40:2828-2848. [PMID: 32127494 DOI: 10.1523/jneurosci.2181-19.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 11/21/2022] Open
Abstract
The extraordinary diversity of excitatory synapse sizes is commonly attributed to activity-dependent processes that drive synaptic growth and diminution. Recent studies also point to activity-independent size fluctuations, possibly driven by innate synaptic molecule dynamics, as important generators of size diversity. To examine the contributions of activity-dependent and independent processes to excitatory synapse size diversity, we studied glutamatergic synapse size dynamics and diversification in cultured rat cortical neurons (both sexes), silenced from plating. We found that in networks with no history of activity whatsoever, synaptic size diversity was no less extensive than that observed in spontaneously active networks. Synapses in silenced networks were larger, size distributions were broader, yet these were rightward-skewed and similar in shape when scaled by mean synaptic size. Silencing reduced the magnitude of size fluctuations and weakened constraints on size distributions, yet these were sufficient to explain synaptic size diversity in silenced networks. Model-based exploration followed by experimental testing indicated that silencing-associated changes in innate molecular dynamics and fluctuation characteristics might negatively impact synaptic persistence, resulting in reduced synaptic numbers. This, in turn, would increase synaptic molecule availability, promote synaptic enlargement, and ultimately alter fluctuation characteristics. These findings suggest that activity-independent size fluctuations are sufficient to fully diversify glutamatergic synaptic sizes, with activity-dependent processes primarily setting the scale rather than the shape of size distributions. Moreover, they point to reciprocal relationships between synaptic size fluctuations, size distributions, and synaptic numbers mediated by the innate dynamics of synaptic molecules as they move in, out, and between synapses.SIGNIFICANCE STATEMENT Sizes of glutamatergic synapses vary tremendously, even when formed on the same neuron. This diversity is commonly thought to reflect the outcome of activity-dependent forms of synaptic plasticity, yet activity-independent processes might also play some part. Here we show that in neurons with no history of activity whatsoever, synaptic sizes are no less diverse. We show that this diversity is the product of activity-independent size fluctuations, which are sufficient to generate a full repertoire of synaptic sizes at correct proportions. By combining modeling and experimentation we expose reciprocal relationships between size fluctuations, synaptic sizes and synaptic counts, and show how these phenomena might be connected through the dynamics of synaptic molecules as they move in, out, and between synapses.
Collapse
|
9
|
Fossati M, Assendorp N, Gemin O, Colasse S, Dingli F, Arras G, Loew D, Charrier C. Trans-Synaptic Signaling through the Glutamate Receptor Delta-1 Mediates Inhibitory Synapse Formation in Cortical Pyramidal Neurons. Neuron 2019; 104:1081-1094.e7. [PMID: 31704028 PMCID: PMC6926483 DOI: 10.1016/j.neuron.2019.09.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/11/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Abstract
Fine orchestration of excitatory and inhibitory synaptic development is required for normal brain function, and alterations may cause neurodevelopmental disorders. Using sparse molecular manipulations in intact brain circuits, we show that the glutamate receptor delta-1 (GluD1), a member of ionotropic glutamate receptors (iGluRs), is a postsynaptic organizer of inhibitory synapses in cortical pyramidal neurons. GluD1 is selectively required for the formation of inhibitory synapses and regulates GABAergic synaptic transmission accordingly. At inhibitory synapses, GluD1 interacts with cerebellin-4, an extracellular scaffolding protein secreted by somatostatin-expressing interneurons, which bridges postsynaptic GluD1 and presynaptic neurexins. When binding to its agonist glycine or D-serine, GluD1 elicits non-ionotropic postsynaptic signaling involving the guanine nucleotide exchange factor ARHGEF12 and the regulatory subunit of protein phosphatase 1 PPP1R12A. Thus, GluD1 defines a trans-synaptic interaction regulating postsynaptic signaling pathways for the proper establishment of cortical inhibitory connectivity and challenges the dichotomy between iGluRs and inhibitory synaptic molecules.
Collapse
Affiliation(s)
- Matteo Fossati
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Nora Assendorp
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Olivier Gemin
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sabrina Colasse
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 75248 Paris Cedex 05, France
| | - Guillaume Arras
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 75248 Paris Cedex 05, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 75248 Paris Cedex 05, France
| | - Cécile Charrier
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| |
Collapse
|
10
|
Kilinc D. The Emerging Role of Mechanics in Synapse Formation and Plasticity. Front Cell Neurosci 2018; 12:483. [PMID: 30574071 PMCID: PMC6291423 DOI: 10.3389/fncel.2018.00483] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/27/2018] [Indexed: 12/26/2022] Open
Abstract
The regulation of synaptic strength forms the basis of learning and memory, and is a key factor in understanding neuropathological processes that lead to cognitive decline and dementia. While the mechanical aspects of neuronal development, particularly during axon growth and guidance, have been extensively studied, relatively little is known about the mechanical aspects of synapse formation and plasticity. It is established that a filamentous actin network with complex spatiotemporal behavior controls the dendritic spine shape and size, which is thought to be crucial for activity-dependent synapse plasticity. Accordingly, a number of actin binding proteins have been identified as regulators of synapse plasticity. On the other hand, a number of cell adhesion molecules (CAMs) are found in synapses, some of which form transsynaptic bonds to align the presynaptic active zone (PAZ) with the postsynaptic density (PSD). Considering that these CAMs are key components of cellular mechanotransduction, two critical questions emerge: (i) are synapses mechanically regulated? and (ii) does disrupting the transsynaptic force balance lead to (or exacerbate) synaptic failure? In this mini review article, I will highlight the mechanical aspects of synaptic structures-focusing mainly on cytoskeletal dynamics and CAMs-and discuss potential mechanoregulation of synapses and its relevance to neurodegenerative diseases.
Collapse
Affiliation(s)
- Devrim Kilinc
- INSERM U1167, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
11
|
Behavioral tagging: Plausible involvement of PKMζ, Arc and role of neurotransmitter receptor systems. Neurosci Biobehav Rev 2018; 94:210-218. [DOI: 10.1016/j.neubiorev.2018.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 12/21/2022]
|
12
|
Tusk SE, Delalez NJ, Berry RM. Subunit Exchange in Protein Complexes. J Mol Biol 2018; 430:4557-4579. [DOI: 10.1016/j.jmb.2018.06.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 01/09/2023]
|
13
|
Ziv NE. Maintaining the active zone: Demand, supply and disposal of core active zone proteins. Neurosci Res 2018; 127:70-77. [DOI: 10.1016/j.neures.2017.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/26/2017] [Indexed: 11/29/2022]
|
14
|
Synaptic Tenacity or Lack Thereof: Spontaneous Remodeling of Synapses. Trends Neurosci 2018; 41:89-99. [DOI: 10.1016/j.tins.2017.12.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/22/2017] [Accepted: 12/04/2017] [Indexed: 11/18/2022]
|
15
|
Chen Z, Chou SW, McDermott BM. Ribeye protein is intrinsically dynamic but is stabilized in the context of the ribbon synapse. J Physiol 2018; 596:409-421. [PMID: 29086422 DOI: 10.1113/jp271215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/26/2017] [Indexed: 01/16/2023] Open
Abstract
KEY POINTS The synaptic ribbon is an organelle that coordinates rapid and sustained vesicle release to enable hearing and balance. Ribeye a and b proteins are major constituents of the synaptic ribbon in hair cells. In this study, we use optically clear transgenic zebrafish to examine the potential dynamics of ribeye proteins in vivo. We demonstrate that ribeye proteins are inherently dynamic but are stabilized at the ribbons of hair cells in the ear and the lateral line system. ABSTRACT Ribeye protein is a major constituent of the synaptic ribbon, an organelle that coordinates rapid and sustained vesicle release to enable hearing and balance. The ribbon is considered to be a stable structure. However, under certain physiological conditions such as acoustic overexposure that results in temporary noise-induced hearing loss or perturbations of ion channels, ribbons may change shape or vanish altogether, suggesting greater plasticity than previously appreciated. The dynamic properties of ribeye proteins are unknown. Here we use transgenesis and imaging to explore the behaviours of ribeye proteins within the ribbon and also their intrinsic properties outside the context of the ribbon synapse in a control cell type, the skin cell. By fluorescence recovery after photobleaching (FRAP) on transgenic zebrafish larvae, we test whether ribeye proteins are dynamic in vivo in real time. In the skin, a cell type devoid of synaptic contacts, Ribeye a-mCherry exchanges with ribbon-like structures on a time scale of minutes (t1/2 = 3.2 min). In contrast, Ribeye a of the ear and lateral line and Ribeye b of the lateral line each exchange at ribbons of hair cells an order of magnitude slower (t1/2 of 125.6 min, 107.0 min and 95.3 min, respectively) than Ribeye a of the skin. These basal exchange rates suggest that long-term ribbon presence may require ribeye renewal. Our studies demonstrate that ribeye proteins are inherently dynamic but are stabilized at the ribbons of sensory cells in vivo.
Collapse
Affiliation(s)
- Zongwei Chen
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Shih-Wei Chou
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Brian M McDermott
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Biology, Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Neurosciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
16
|
Cooperative stochastic binding and unbinding explain synaptic size dynamics and statistics. PLoS Comput Biol 2017; 13:e1005668. [PMID: 28704399 PMCID: PMC5546711 DOI: 10.1371/journal.pcbi.1005668] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 08/07/2017] [Accepted: 06/30/2017] [Indexed: 11/28/2022] Open
Abstract
Synapses are dynamic molecular assemblies whose sizes fluctuate significantly over time-scales of hours and days. In the current study, we examined the possibility that the spontaneous microscopic dynamics exhibited by synaptic molecules can explain the macroscopic size fluctuations of individual synapses and the statistical properties of synaptic populations. We present a mesoscopic model, which ties the two levels. Its basic premise is that synaptic size fluctuations reflect cooperative assimilation and removal of molecules at a patch of postsynaptic membrane. The introduction of cooperativity to both assimilation and removal in a stochastic biophysical model of these processes, gives rise to features qualitatively similar to those measured experimentally: nanoclusters of synaptic scaffolds, fluctuations in synaptic sizes, skewed, stable size distributions and their scaling in response to perturbations. Our model thus points to the potentially fundamental role of cooperativity in dictating synaptic remodeling dynamics and offers a conceptual understanding of these dynamics in terms of central microscopic features and processes. Neurons communicate through specialized sites of cell–cell contact known as synapses. This vast set of connections is believed to be crucial for sensory processing, motor function, learning and memory. Experimental data from recent years suggest that synapses are not static structures, but rather dynamic assemblies of molecules that move in, out and between nearby synapses, with these dynamics driving changes in synaptic properties over time. Thus, in addition to changes directed by activity or other physiological signals, synapses also exhibit spontaneous changes that have particular dynamical and statistical signatures. Given the immense complexity of synapses at the molecular scale, how can one hope to understand the principles that govern these spontaneous changes and statistical signatures? Here we offer a mesoscopic modelling approach—situated between detailed microscopic and abstract macroscopic approaches—to advance this understanding. Our model, based on simplified biophysical assumptions, shows that spontaneous cooperative binding and unbinding of proteins at synaptic sites can give rise to dynamic and statistical signatures similar to those measured in experiments. Importantly, we find cooperativity to be indispensable in this regard. Our model thus offers a conceptual understanding of synaptic dynamics and statistical features in terms of a fundamental biological principle, namely cooperativity.
Collapse
|
17
|
Li Y, Kahraman O, Haselwandter CA. Stochastic lattice model of synaptic membrane protein domains. Phys Rev E 2017; 95:052406. [PMID: 28618626 DOI: 10.1103/physreve.95.052406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Indexed: 11/07/2022]
Abstract
Neurotransmitter receptor molecules, concentrated in synaptic membrane domains along with scaffolds and other kinds of proteins, are crucial for signal transmission across chemical synapses. In common with other membrane protein domains, synaptic domains are characterized by low protein copy numbers and protein crowding, with rapid stochastic turnover of individual molecules. We study here in detail a stochastic lattice model of the receptor-scaffold reaction-diffusion dynamics at synaptic domains that was found previously to capture, at the mean-field level, the self-assembly, stability, and characteristic size of synaptic domains observed in experiments. We show that our stochastic lattice model yields quantitative agreement with mean-field models of nonlinear diffusion in crowded membranes. Through a combination of analytic and numerical solutions of the master equation governing the reaction dynamics at synaptic domains, together with kinetic Monte Carlo simulations, we find substantial discrepancies between mean-field and stochastic models for the reaction dynamics at synaptic domains. Based on the reaction and diffusion properties of synaptic receptors and scaffolds suggested by previous experiments and mean-field calculations, we show that the stochastic reaction-diffusion dynamics of synaptic receptors and scaffolds provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the observed single-molecule trajectories, and spatial heterogeneity in the effective rates at which receptors and scaffolds are recycled at the cell membrane. Our work sheds light on the physical mechanisms and principles linking the collective properties of membrane protein domains to the stochastic dynamics that rule their molecular components.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Physics & Astronomy and Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Osman Kahraman
- Department of Physics & Astronomy and Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Christoph A Haselwandter
- Department of Physics & Astronomy and Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
18
|
Mosca TJ, Luginbuhl DJ, Wang IE, Luo L. Presynaptic LRP4 promotes synapse number and function of excitatory CNS neurons. eLife 2017; 6. [PMID: 28606304 PMCID: PMC5469616 DOI: 10.7554/elife.27347] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/08/2017] [Indexed: 12/24/2022] Open
Abstract
Precise coordination of synaptic connections ensures proper information flow within circuits. The activity of presynaptic organizing molecules signaling to downstream pathways is essential for such coordination, though such entities remain incompletely known. We show that LRP4, a conserved transmembrane protein known for its postsynaptic roles, functions presynaptically as an organizing molecule. In the Drosophila brain, LRP4 localizes to the nerve terminals at or near active zones. Loss of presynaptic LRP4 reduces excitatory (not inhibitory) synapse number, impairs active zone architecture, and abolishes olfactory attraction - the latter of which can be suppressed by reducing presynaptic GABAB receptors. LRP4 overexpression increases synapse number in excitatory and inhibitory neurons, suggesting an instructive role and a common downstream synapse addition pathway. Mechanistically, LRP4 functions via the conserved kinase SRPK79D to ensure normal synapse number and behavior. This highlights a presynaptic function for LRP4, enabling deeper understanding of how synapse organization is coordinated.
Collapse
Affiliation(s)
- Timothy J Mosca
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, United States.,Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - David J Luginbuhl
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Irving E Wang
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| |
Collapse
|
19
|
Formoso K, Garcia MD, Frasch AC, Scorticati C. Evidence for a role of glycoprotein M6a in dendritic spine formation and synaptogenesis. Mol Cell Neurosci 2016; 77:95-104. [DOI: 10.1016/j.mcn.2016.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/27/2016] [Accepted: 10/24/2016] [Indexed: 12/18/2022] Open
|
20
|
Dvorkin R, Ziv NE. Relative Contributions of Specific Activity Histories and Spontaneous Processes to Size Remodeling of Glutamatergic Synapses. PLoS Biol 2016; 14:e1002572. [PMID: 27776122 PMCID: PMC5077109 DOI: 10.1371/journal.pbio.1002572] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 09/27/2016] [Indexed: 11/18/2022] Open
Abstract
The idea that synaptic properties are defined by specific pre- and postsynaptic activity histories is one of the oldest and most influential tenets of contemporary neuroscience. Recent studies also indicate, however, that synaptic properties often change spontaneously, even in the absence of specific activity patterns or any activity whatsoever. What, then, are the relative contributions of activity history-dependent and activity history-independent processes to changes synapses undergo? To compare the relative contributions of these processes, we imaged, in spontaneously active networks of cortical neurons, glutamatergic synapses formed between the same axons and neurons or dendrites under the assumption that their similar activity histories should result in similar size changes over timescales of days. The size covariance of such commonly innervated (CI) synapses was then compared to that of synapses formed by different axons (non-CI synapses) that differed in their activity histories. We found that the size covariance of CI synapses was greater than that of non-CI synapses; yet overall size covariance of CI synapses was rather modest. Moreover, momentary and time-averaged sizes of CI synapses correlated rather poorly, in perfect agreement with published electron microscopy-based measurements of mouse cortex synapses. A conservative estimate suggested that ~40% of the observed size remodeling was attributable to specific activity histories, whereas ~10% and ~50% were attributable to cell-wide and spontaneous, synapse-autonomous processes, respectively. These findings demonstrate that histories of naturally occurring activity patterns can direct glutamatergic synapse remodeling but also suggest that the contributions of spontaneous, possibly stochastic, processes are at least as great.
Collapse
Affiliation(s)
- Roman Dvorkin
- Technion Faculty of Medicine, Network Biology Research Laboratories, Lorry Lokey Center for Life Sciences and Engineering, Technion, Haifa, Israel
| | - Noam E Ziv
- Technion Faculty of Medicine, Network Biology Research Laboratories, Lorry Lokey Center for Life Sciences and Engineering, Technion, Haifa, Israel.,Rappaport Family Institute for Research in the Medical Sciences, Haifa, Israel
| |
Collapse
|
21
|
Protein Crowding within the Postsynaptic Density Can Impede the Escape of Membrane Proteins. J Neurosci 2016; 36:4276-95. [PMID: 27076425 DOI: 10.1523/jneurosci.3154-15.2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/19/2016] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED Mechanisms regulating lateral diffusion and positioning of glutamate receptors within the postsynaptic density (PSD) determine excitatory synaptic strength. Scaffold proteins in the PSD are abundant receptor binding partners, yet electron microscopy suggests that the PSD is highly crowded, potentially restricting the diffusion of receptors regardless of binding. However, the contribution of macromolecular crowding to receptor retention remains poorly understood. We combined experimental and computational approaches to test the effect of synaptic crowding on receptor movement and positioning in Sprague Dawley rat hippocampal neurons. We modeled AMPA receptor diffusion in synapses where the distribution of scaffold proteins was determined from photoactivated localization microscopy experiments, and receptor-scaffold association and dissociation rates were adjusted to fit single-molecule tracking and fluorescence recovery measurements. Simulations predicted that variation of receptor size strongly influences the fractional synaptic area the receptor may traverse, and the proportion that may exchange in and out of the synapse. To test the model experimentally, we designed a set of novel transmembrane (TM) probes. A single-pass TM protein with one PDZ binding motif concentrated in the synapse as do AMPARs yet was more mobile there than the much larger AMPAR. Furthermore, either the single binding motif or an increase in cytoplasmic bulk through addition of a single GFP slowed synaptic movement of a small TM protein. These results suggest that both crowding and binding limit escape of AMPARs from the synapse. Moreover, tight protein packing within the PSD may modulate the synaptic dwell time of many TM proteins important for synaptic function. SIGNIFICANCE STATEMENT Small alterations to the distribution within synapses of key transmembrane proteins, such as receptors, can dramatically change synaptic strength. Indeed, many diseases are thought to unbalance neural circuit function in this manner. Processes that regulate this in healthy synapses are unclear, however. By combining computer simulations with imaging methods that examined protein dynamics at multiple scales in space and time, we showed that both steric effects and protein-protein binding each regulate the mobility of receptors in the synapse. Our findings extend our knowledge of the synapse as a crowded environment that counteracts molecular diffusion, and support the idea that both molecular collisions and biochemical binding can be involved in the regulation of neural circuit performance.
Collapse
|
22
|
Mechanisms controlling assembly and plasticity of presynaptic active zone scaffolds. Curr Opin Neurobiol 2016; 39:69-76. [DOI: 10.1016/j.conb.2016.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/08/2016] [Accepted: 04/15/2016] [Indexed: 11/18/2022]
|
23
|
Ivanova D, Dirks A, Fejtova A. Bassoon and piccolo regulate ubiquitination and link presynaptic molecular dynamics with activity-regulated gene expression. J Physiol 2016; 594:5441-8. [PMID: 26915533 DOI: 10.1113/jp271826] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/29/2016] [Indexed: 12/26/2022] Open
Abstract
Release of neurotransmitter is executed by complex multiprotein machinery, which is assembled around the presynaptic cytomatrix at the active zone. One well-established function of this proteinaceous scaffold is the spatial organization of synaptic vesicle cluster, the protein complexes that execute membrane fusion and compensatory endocytosis, and the transmembrane molecules important for alignment of pre- and postsynaptic structures. The presynaptic cytomatrix proteins function also in processes other than the formation of a static frame for assembly of the release apparatus and synaptic vesicle cycling. They actively contribute to the regulation of multiple steps in this process and are themselves an important subject of regulation during neuronal plasticity. We are only beginning to understand the mechanisms and signalling pathways controlling these regulations. They are mainly dependent on posttranslational modifications, including phosphorylation and small-molecules conjugation, such as ubiquitination. Ubiquitination of presynaptic proteins might lead to their degradation by proteasomes, but evidence is growing that this modification also affects their function independently of their degradation. Signalling from presynapse to nucleus, which works on a much slower time scale and more globally, emerged as an important mechanism for persistent usage-dependent and homeostatic neuronal plasticity. Recently, two new functions for the largest presynaptic scaffolding proteins bassoon and piccolo emerged. They were implied (1) in the regulation of specific protein ubiquitination and proteasome-mediated proteolysis that potentially contributes to short-term plasticity at the presynapse and (2) in the coupling of activity-induced molecular rearrangements at the presynapse with reprogramming of expression of neuronal activity-regulated genes.
Collapse
Affiliation(s)
- Daniela Ivanova
- RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Anika Dirks
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Anna Fejtova
- RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany. .,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| |
Collapse
|
24
|
Dieterich DC, Kreutz MR. Proteomics of the Synapse--A Quantitative Approach to Neuronal Plasticity. Mol Cell Proteomics 2016; 15:368-81. [PMID: 26307175 PMCID: PMC4739661 DOI: 10.1074/mcp.r115.051482] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/29/2015] [Indexed: 11/06/2022] Open
Abstract
The advances in mass spectrometry based proteomics in the past 15 years have contributed to a deeper appreciation of protein networks and the composition of functional synaptic protein complexes. However, research on protein dynamics underlying core mechanisms of synaptic plasticity in brain lag far behind. In this review, we provide a synopsis on proteomic research addressing various aspects of synaptic function. We discuss the major topics in the study of protein dynamics of the chemical synapse and the limitations of current methodology. We highlight recent developments and the future importance of multidimensional proteomics and metabolic labeling. Finally, emphasis is given on the conceptual framework of modern proteomics and its current shortcomings in the quest to gain a deeper understanding of synaptic plasticity.
Collapse
Affiliation(s)
- Daniela C Dieterich
- From the ‡Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany; Research Group Neuralomics, Leibniz Institute for Neurobiology Magdeburg, Germany; ¶Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| | - Michael R Kreutz
- §RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany; ¶Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| |
Collapse
|
25
|
Gundelfinger ED, Reissner C, Garner CC. Role of Bassoon and Piccolo in Assembly and Molecular Organization of the Active Zone. Front Synaptic Neurosci 2016; 7:19. [PMID: 26793095 PMCID: PMC4709825 DOI: 10.3389/fnsyn.2015.00019] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/14/2015] [Indexed: 01/05/2023] Open
Abstract
Bassoon and Piccolo are two very large scaffolding proteins of the cytomatrix assembled at the active zone (CAZ) where neurotransmitter is released. They share regions of high sequence similarity distributed along their entire length and seem to share both overlapping and distinct functions in organizing the CAZ. Here, we survey our present knowledge on protein-protein interactions and recent progress in understanding of molecular functions of these two giant proteins. These include roles in the assembly of active zones (AZ), the localization of voltage-gated Ca2+ channels (VGCCs) in the vicinity of release sites, synaptic vesicle (SV) priming and in the case of Piccolo, a role in the dynamic assembly of the actin cytoskeleton. Piccolo and Bassoon are also important for the maintenance of presynaptic structure and function, as well as for the assembly of CAZ specializations such as synaptic ribbons. Recent findings suggest that they are also involved in the regulation activity-dependent communication between presynaptic boutons and the neuronal nucleus. Together these observations suggest that Bassoon and Piccolo use their modular structure to organize super-molecular complexes essential for various aspects of presynaptic function.
Collapse
Affiliation(s)
- Eckart D Gundelfinger
- Department Neurochemistry and Molecular Biology, Leibniz Institute for NeurobiologyMagdeburg, Germany; Center for Behavioral Brain SciencesMagdeburg, Germany; Medical Faculty, Otto von Guericke UniversityMagdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE) Site MagdeburgMagdeburg, Germany
| | - Carsten Reissner
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms University Münster, Germany
| | - Craig C Garner
- German Center for Neurodegenerative Diseases (DZNE) Site BerlinBerlin, Germany; Charité Medical UniversityBerlin, Germany
| |
Collapse
|
26
|
Remodeling and Tenacity of Inhibitory Synapses: Relationships with Network Activity and Neighboring Excitatory Synapses. PLoS Comput Biol 2015; 11:e1004632. [PMID: 26599330 PMCID: PMC4658206 DOI: 10.1371/journal.pcbi.1004632] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/29/2015] [Indexed: 11/19/2022] Open
Abstract
Glutamatergic synapse size remodeling is governed not only by specific activity forms but also by apparently stochastic processes with well-defined statistics. These spontaneous remodeling processes can give rise to skewed and stable synaptic size distributions, underlie scaling of these distributions and drive changes in glutamatergic synapse size "configurations". Where inhibitory synapses are concerned, however, little is known on spontaneous remodeling dynamics, their statistics, their activity dependence or their long-term consequences. Here we followed individual inhibitory synapses for days, and analyzed their size remodeling dynamics within the statistical framework previously developed for glutamatergic synapses. Similar to glutamatergic synapses, size distributions of inhibitory synapses were skewed and stable; at the same time, however, sizes of individual synapses changed considerably, leading to gradual changes in synaptic size configurations. The suppression of network activity only transiently affected spontaneous remodeling dynamics, did not affect synaptic size configuration change rates and was not followed by the scaling of inhibitory synapse size distributions. Comparisons with glutamatergic synapses within the same dendrites revealed a degree of coupling between nearby inhibitory and excitatory synapse remodeling, but also revealed that inhibitory synapse size configurations changed at considerably slower rates than those of their glutamatergic neighbors. These findings point to quantitative differences in spontaneous remodeling dynamics of inhibitory and excitatory synapses but also reveal deep qualitative similarities in the processes that control their sizes and govern their remodeling dynamics.
Collapse
|
27
|
Haselwandter CA, Kardar M, Triller A, da Silveira RA. Self-assembly and plasticity of synaptic domains through a reaction-diffusion mechanism. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:032705. [PMID: 26465496 DOI: 10.1103/physreve.92.032705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Indexed: 06/05/2023]
Abstract
Signal transmission across chemical synapses relies crucially on neurotransmitter receptor molecules, concentrated in postsynaptic membrane domains along with scaffold and other postsynaptic molecules. The strength of the transmitted signal depends on the number of receptor molecules in postsynaptic domains, and activity-induced variation in the receptor number is one of the mechanisms of postsynaptic plasticity. Recent experiments have demonstrated that the reaction and diffusion properties of receptors and scaffolds at the membrane, alone, yield spontaneous formation of receptor-scaffold domains of the stable characteristic size observed in neurons. On the basis of these experiments we develop a model describing synaptic receptor domains in terms of the underlying reaction-diffusion processes. Our model predicts that the spontaneous formation of receptor-scaffold domains of the stable characteristic size observed in experiments depends on a few key reactions between receptors and scaffolds. Furthermore, our model suggests novel mechanisms for the alignment of pre- and postsynaptic domains and for short-term postsynaptic plasticity in receptor number. We predict that synaptic receptor domains localize in membrane regions with an increased receptor diffusion coefficient or a decreased scaffold diffusion coefficient. Similarly, we find that activity-dependent increases or decreases in receptor or scaffold diffusion yield a transient increase in the number of receptor molecules concentrated in postsynaptic domains. Thus, the proposed reaction-diffusion model puts forth a coherent set of biophysical mechanisms for the formation, stability, and plasticity of molecular domains on the postsynaptic membrane.
Collapse
Affiliation(s)
- Christoph A Haselwandter
- Departments of Physics & Astronomy and Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Antoine Triller
- IBENS, Institute of Biology at Ecole Normale Supérieure, Inserm U1024, CNRS UMR5197, 46 rue d'Ulm, 75005 Paris, France
| | - Rava Azeredo da Silveira
- Department of Physics, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
- Laboratoire de Physique Statistique, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Université Denis Diderot, France
| |
Collapse
|
28
|
Fluorescence recovery after photobleaching in material and life sciences: putting theory into practice. Q Rev Biophys 2015; 48:323-87. [PMID: 26314367 DOI: 10.1017/s0033583515000013] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AbstractFluorescence recovery after photobleaching (FRAP) is a versatile tool for determining diffusion and interaction/binding properties in biological and material sciences. An understanding of the mechanisms controlling the diffusion requires a deep understanding of structure–interaction–diffusion relationships. In cell biology, for instance, this applies to the movement of proteins and lipids in the plasma membrane, cytoplasm and nucleus. In industrial applications related to pharmaceutics, foods, textiles, hygiene products and cosmetics, the diffusion of solutes and solvent molecules contributes strongly to the properties and functionality of the final product. All these systems are heterogeneous, and accurate quantification of the mass transport processes at the local level is therefore essential to the understanding of the properties of soft (bio)materials. FRAP is a commonly used fluorescence microscopy-based technique to determine local molecular transport at the micrometer scale. A brief high-intensity laser pulse is locally applied to the sample, causing substantial photobleaching of the fluorescent molecules within the illuminated area. This causes a local concentration gradient of fluorescent molecules, leading to diffusional influx of intact fluorophores from the local surroundings into the bleached area. Quantitative information on the molecular transport can be extracted from the time evolution of the fluorescence recovery in the bleached area using a suitable model. A multitude of FRAP models has been developed over the years, each based on specific assumptions. This makes it challenging for the non-specialist to decide which model is best suited for a particular application. Furthermore, there are many subtleties in performing accurate FRAP experiments. For these reasons, this review aims to provide an extensive tutorial covering the essential theoretical and practical aspects so as to enable accurate quantitative FRAP experiments for molecular transport measurements in soft (bio)materials.
Collapse
|
29
|
Abstract
To create a presynaptic terminal, molecular signaling events must be orchestrated across a number of subcellular compartments. In the soma, presynaptic proteins need to be synthesized, packaged together, and attached to microtubule motors for shipment through the axon. Within the axon, transport of presynaptic packages is regulated to ensure that developing synapses receive an adequate supply of components. At individual axonal sites, extracellular interactions must be translated into intracellular signals that can incorporate mobile transport vesicles into the nascent presynaptic terminal. Even once the initial recruitment process is complete, the components and subsequent functionality of presynaptic terminals need to constantly be remodeled. Perhaps most remarkably, all of these processes need to be coordinated in space and time. In this review, we discuss how these dynamic cellular processes occur in neurons of the central nervous system in order to generate presynaptic terminals in the brain.
Collapse
Affiliation(s)
- Luke A D Bury
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Shasta L Sabo
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
30
|
Ackermann F, Waites CL, Garner CC. Presynaptic active zones in invertebrates and vertebrates. EMBO Rep 2015; 16:923-38. [PMID: 26160654 DOI: 10.15252/embr.201540434] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/19/2015] [Indexed: 11/09/2022] Open
Abstract
The regulated release of neurotransmitter occurs via the fusion of synaptic vesicles (SVs) at specialized regions of the presynaptic membrane called active zones (AZs). These regions are defined by a cytoskeletal matrix assembled at AZs (CAZ), which functions to direct SVs toward docking and fusion sites and supports their maturation into the readily releasable pool. In addition, CAZ proteins localize voltage-gated Ca(2+) channels at SV release sites, bringing the fusion machinery in close proximity to the calcium source. Proteins of the CAZ therefore ensure that vesicle fusion is temporally and spatially organized, allowing for the precise and reliable release of neurotransmitter. Importantly, AZs are highly dynamic structures, supporting presynaptic remodeling, changes in neurotransmitter release efficacy, and thus presynaptic forms of plasticity. In this review, we discuss recent advances in the study of active zones, highlighting how the CAZ molecularly defines sites of neurotransmitter release, endocytic zones, and the integrity of synapses.
Collapse
Affiliation(s)
- Frauke Ackermann
- German Center for Neurodegenerative Disease, Charité Medical University, Berlin, Germany
| | - Clarissa L Waites
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Craig C Garner
- German Center for Neurodegenerative Disease, Charité Medical University, Berlin, Germany
| |
Collapse
|
31
|
Michel K, Müller JA, Oprişoreanu AM, Schoch S. The presynaptic active zone: A dynamic scaffold that regulates synaptic efficacy. Exp Cell Res 2015; 335:157-64. [PMID: 25720549 DOI: 10.1016/j.yexcr.2015.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 02/10/2015] [Indexed: 12/30/2022]
Abstract
Before fusing with the presynaptic plasma membrane to release neurotransmitter into the synaptic cleft synaptic vesicles have to be recruited to and docked at a specialized area of the presynaptic nerve terminal, the active zone. Exocytosis of synaptic vesicles is restricted to the presynaptic active zone, which is characterized by a unique and highly interconnected set of proteins. The protein network at the active zone is integrally involved in this process and also mediates changes in release properties, for example in response to alterations in the level of neuronal network activity. In recent years the development of novel techniques has greatly advanced our understanding of the molecular identity of respective active zone components as well as of the ultrastructure of this membranous subcompartment and of the SV release machinery. Furthermore, active zones are now viewed as dynamic structures whose composition and size are correlated with synaptic efficacy. Therefore, the dynamic remodeling of the protein network at the active zone has emerged as one potential mechanism underlying acute and long-term synaptic plasticity. Here, we will discuss this recent progress and its implications for our view of the role of the AZ in synaptic function.
Collapse
Affiliation(s)
- Katrin Michel
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, 53105 Bonn, Germany
| | - Johannes Alexander Müller
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, 53105 Bonn, Germany
| | - Ana-Maria Oprişoreanu
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, 53105 Bonn, Germany
| | - Susanne Schoch
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, 53105 Bonn, Germany; Department of Epileptology University of Bonn Medical Center, 53105 Bonn, Germany.
| |
Collapse
|
32
|
Coles CH, Jones EY, Aricescu AR. Extracellular regulation of type IIa receptor protein tyrosine phosphatases: mechanistic insights from structural analyses. Semin Cell Dev Biol 2015; 37:98-107. [PMID: 25234613 PMCID: PMC4765084 DOI: 10.1016/j.semcdb.2014.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/02/2014] [Accepted: 09/05/2014] [Indexed: 01/06/2023]
Abstract
The receptor protein tyrosine phosphatases (RPTPs) exhibit a wide repertoire of cellular signalling functions. In particular, type IIa RPTP family members have recently been highlighted as hubs for extracellular interactions in neurons, regulating neuronal extension and guidance, as well as synaptic organisation. In this review, we will discuss the recent progress of structural biology investigations into the architecture of type IIa RPTP ectodomains and their interactions with extracellular ligands. Structural insights, in combination with biophysical and cellular studies, allow us to begin to piece together molecular mechanisms for the transduction and integration of type IIa RPTP signals and to propose hypotheses for future experimental validation.
Collapse
Affiliation(s)
- Charlotte H Coles
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| | - A Radu Aricescu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
33
|
Salvatico C, Specht CG, Triller A. Synaptic receptor dynamics: From theoretical concepts to deep quantification and chemistry in cellulo. Neuropharmacology 2015; 88:2-9. [DOI: 10.1016/j.neuropharm.2014.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 01/22/2023]
|
34
|
Rosenberg T, Gal-Ben-Ari S, Dieterich DC, Kreutz MR, Ziv NE, Gundelfinger ED, Rosenblum K. The roles of protein expression in synaptic plasticity and memory consolidation. Front Mol Neurosci 2014; 7:86. [PMID: 25429258 PMCID: PMC4228929 DOI: 10.3389/fnmol.2014.00086] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 10/24/2014] [Indexed: 01/07/2023] Open
Abstract
The amount and availability of proteins are regulated by their synthesis, degradation, and transport. These processes can specifically, locally, and temporally regulate a protein or a population of proteins, thus affecting numerous biological processes in health and disease states. Accordingly, malfunction in the processes of protein turnover and localization underlies different neuronal diseases. However, as early as a century ago, it was recognized that there is a specific need for normal macromolecular synthesis in a specific fragment of the learning process, memory consolidation, which takes place minutes to hours following acquisition. Memory consolidation is the process by which fragile short-term memory is converted into stable long-term memory. It is accepted today that synaptic plasticity is a cellular mechanism of learning and memory processes. Interestingly, similar molecular mechanisms subserve both memory and synaptic plasticity consolidation. In this review, we survey the current view on the connection between memory consolidation processes and proteostasis, i.e., maintaining the protein contents at the neuron and the synapse. In addition, we describe the technical obstacles and possible new methods to determine neuronal proteostasis of synaptic function and better explain the process of memory and synaptic plasticity consolidation.
Collapse
Affiliation(s)
- Tali Rosenberg
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel
| | | | - Daniela C Dieterich
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany ; Research Group Neuralomics, Leibniz Institute for Neurobiology Magdeburg, Germany ; Center for Behavioral Brain Sciences Magdeburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Noam E Ziv
- Network Biology Research Laboratories and Faculty of Medicine, Technion - Israel Institute of Technology Haifa, Israel
| | - Eckart D Gundelfinger
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Germany ; Center for Behavioral Brain Sciences Magdeburg, Germany ; Medical School, Otto von Guericke University Magdeburg, Germany
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel ; Center for Gene Manipulation in the Brain, University of Haifa Haifa, Israel
| |
Collapse
|
35
|
Statman A, Kaufman M, Minerbi A, Ziv NE, Brenner N. Synaptic size dynamics as an effectively stochastic process. PLoS Comput Biol 2014; 10:e1003846. [PMID: 25275505 PMCID: PMC4183425 DOI: 10.1371/journal.pcbi.1003846] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 07/18/2014] [Indexed: 11/18/2022] Open
Abstract
Long-term, repeated measurements of individual synaptic properties have revealed that synapses can undergo significant directed and spontaneous changes over time scales of minutes to weeks. These changes are presumably driven by a large number of activity-dependent and independent molecular processes, yet how these processes integrate to determine the totality of synaptic size remains unknown. Here we propose, as an alternative to detailed, mechanistic descriptions, a statistical approach to synaptic size dynamics. The basic premise of this approach is that the integrated outcome of the myriad of processes that drive synaptic size dynamics are effectively described as a combination of multiplicative and additive processes, both of which are stochastic and taken from distributions parametrically affected by physiological signals. We show that this seemingly simple model, known in probability theory as the Kesten process, can generate rich dynamics which are qualitatively similar to the dynamics of individual glutamatergic synapses recorded in long-term time-lapse experiments in ex-vivo cortical networks. Moreover, we show that this stochastic model, which is insensitive to many of its underlying details, quantitatively captures the distributions of synaptic sizes measured in these experiments, the long-term stability of such distributions and their scaling in response to pharmacological manipulations. Finally, we show that the average kinetics of new postsynaptic density formation measured in such experiments is also faithfully captured by the same model. The model thus provides a useful framework for characterizing synapse size dynamics at steady state, during initial formation of such steady states, and during their convergence to new steady states following perturbations. These findings show the strength of a simple low dimensional statistical model to quantitatively describe synapse size dynamics as the integrated result of many underlying complex processes.
Collapse
Affiliation(s)
- Adiel Statman
- Department of Chemical Engineering, Technion, Haifa, Israel
- Network Biology Research Laboratories, Lorry Lokey Center for Life Sciences and Engineering, Technion, Haifa, Israel
| | - Maya Kaufman
- Network Biology Research Laboratories, Lorry Lokey Center for Life Sciences and Engineering, Technion, Haifa, Israel
- Faculty of Medicine, Technion, Haifa, Israel
| | - Amir Minerbi
- Network Biology Research Laboratories, Lorry Lokey Center for Life Sciences and Engineering, Technion, Haifa, Israel
- Faculty of Medicine, Technion, Haifa, Israel
| | - Noam E. Ziv
- Network Biology Research Laboratories, Lorry Lokey Center for Life Sciences and Engineering, Technion, Haifa, Israel
- Faculty of Medicine, Technion, Haifa, Israel
| | - Naama Brenner
- Department of Chemical Engineering, Technion, Haifa, Israel
- Network Biology Research Laboratories, Lorry Lokey Center for Life Sciences and Engineering, Technion, Haifa, Israel
- * E-mail:
| |
Collapse
|