1
|
Liu J, Wang C, Qiu S, Sun W, Yang G, Yuan L. Toward Ultrasound Molecular Imaging of Endothelial Dysfunction in Diabetes: Targets, Strategies, and Challenges. ACS APPLIED BIO MATERIALS 2024; 7:1416-1428. [PMID: 38391247 DOI: 10.1021/acsabm.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Diabetes vasculopathy is a significant complication of diabetes mellitus (DM), and early identification and timely intervention can effectively slow the progression. Accumulating studies have shown that diabetes causes vascular complications directly or indirectly through a variety of mechanisms. Direct imaging of the endothelial molecular changes not only identifies the early stage of diabetes vasculopathy but also sheds light on the precise treatment. Targeted ultrasound contrast agent (UCA)-based ultrasound molecular imaging (UMI) can noninvasively detect the expression status of molecular biomarkers overexpressed in the vasculature, thereby being a potential strategy for the diagnosis and treatment response evaluation of DM. Amounts of efforts have been focused on identification of the molecular targets expressed in the vasculature, manufacturing strategies of the targeted UCA, and the clinical translation for the diagnosis and evaluation of therapeutic efficacy in both micro- and macrovasculopathy in DM. This review summarizes the latest research progress on endothelium-targeted UCA and discusses their promising future and challenges in diabetes vasculopathy theranostics.
Collapse
Affiliation(s)
- Jiahan Liu
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| | - Chen Wang
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| | - Shuo Qiu
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| | - Wenqi Sun
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| | - Guodong Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University Xi'an, Shaanxi 710032, China
| | - Lijun Yuan
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| |
Collapse
|
2
|
Graham ML, Li M, Gong AY, Deng S, Jin K, Wang S, Chen XM. Cryptosporidium parvum hijacks a host's long noncoding RNA U90926 to evade intestinal epithelial cell-autonomous antiparasitic defense. Front Immunol 2023; 14:1205468. [PMID: 37346046 PMCID: PMC10280636 DOI: 10.3389/fimmu.2023.1205468] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Cryptosporidium is a zoonotic apicomplexan parasite that infects the gastrointestinal epithelium and other mucosal surfaces in humans. It is an important opportunistic pathogen in AIDS patients and a leading cause of infectious diarrhea and diarrheal-related death in children worldwide. The intestinal epithelial cells provide the first line of defense against Cryptosporidium infection and play a central role in activating and regulating the host's antiparasitic response. Increasing evidence suggests that long noncoding RNAs (lncRNAs) participate in host-pathogen interactions and play a regulatory role in the pathogenesis of diseases but the underlying molecular mechanisms are not fully understood. We previously identified a panel of host lncRNAs that are upregulated in murine intestinal epithelial cells following Cryptosporidium infection, including U90926. We demonstrate here that U90926 is acting in a pro-parasitic manner in regulating intestinal epithelial cell-autonomous antiparasitic defense. Inhibition of U90926 resulted in a decreased infection burden of the parasite while overexpression of U90926 showed an increase in infection burden in cultured murine intestinal epithelial cells. Induction of U90926 suppressed transcription of epithelial defense genes involved in controlling Cryptosporidium infection through epigenetic mechanisms. Specifically, transcription of Aebp1, which encodes the Aebp1 protein, a potent modulator of inflammation and NF-κB signaling, was suppressed by U90926. Gain- or loss-of-function of Aebp1 in the host's epithelial cells caused reciprocal alterations in the infection burden of the parasite. Interestingly, Cryptosporidium carries the Cryptosporidium virus 1 (CSpV1), a double-stranded (ds) RNA virus coding two dsRNA fragments, CSpV1-dsRdRp and CSpV1-dsCA. Both CSpV1-dsRdRp and CSpV1-dsCA can be delivered into infected cells as previously reported. We found that cells transfected with in vitro transcribed CSpV1-dsCA or CSpV1-dsRdRp displayed an increased level of U90926, suggesting that CSpV1 is involved in the upregulation of U90926 during Cryptosporidium infection. Our study highlights a new strategy by Cryptosporidium to hijack a host lncRNA to suppress epithelial cell-autonomous antiparasitic defense and allow for a robust infection.
Collapse
Affiliation(s)
- Marion L. Graham
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - Min Li
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States
| | - Ai-Yu Gong
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - Silu Deng
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States
| | - Kehua Jin
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Shuhong Wang
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - Xian-Ming Chen
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
3
|
Chen H, Chen X. PCSK9 inhibitors for acute coronary syndrome: the era of early implementation. Front Cardiovasc Med 2023; 10:1138787. [PMID: 37200976 PMCID: PMC10185746 DOI: 10.3389/fcvm.2023.1138787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/17/2023] [Indexed: 05/20/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, a new cholesterol-lowering strategy, can decrease low-density lipoprotein cholesterol (LDL-C) levels by inhibiting PCSK9 and reducing the degradation of LDL receptors; thus, they are impacting the management of dyslipidemia to the prevention of cardiovascular events. Recent guidelines recommend PCSK9 inhibitors for patients who fail to achieve target lipids after ezetimibe/statin therapy. As PCSK9 inhibitors have been demonstrated to significantly and safely reduce LDL-C, discussions have begun to explore its optimal timing in coronary artery disease, especially in subjects with acute coronary syndrome (ACS). Also, their additional benefits, such as anti-inflammatory effects, plaque regression effects, and cardiovascular event prevention, have become the focus of recent research. Several studies, including EPIC-STEMI, suggest the lipid-lowering effects of early PCSK9 inhibitors in ACS patients, while some studies such as PACMAN-AMI suggest that early PCSK9 inhibitors can decelerate plaque progression and reduce short-term risks of cardiovascular events. Thus, PCSK9 inhibitors are entering the era of early implementation. In this review, we are committed to summarizing the multidimensional benefits of early implementation of PCSK9 inhibitors in ACS.
Collapse
|
4
|
Shadrin IY, Holmes DR, Behfar A. Left Internal Mammary Artery as an Endocrine Organ: Insights Into Graft Biology and Long-term Impact Following Coronary Artery Bypass Grafting. Mayo Clin Proc 2023; 98:150-162. [PMID: 36603943 DOI: 10.1016/j.mayocp.2022.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 03/30/2022] [Accepted: 10/05/2022] [Indexed: 01/04/2023]
Abstract
The left internal mammary artery (LIMA) is considered the criterion standard vessel for use in coronary artery bypass grafting. In recent decades, countless studies have documented its superiority over other arterial and venous coronary artery bypass grafting conduits, although the full mechanisms for this superiority remain unknown. A growing body of literature has unveiled the importance of extracellular vesicles known as exosomes in cardiovascular signaling and various pathologic states. In this review, we briefly compare the clinical longevity of the LIMA relative to other conduits, explore the effects of varying grafting techniques on clinical and angiographic outcomes, and provide physiologic insights into graft function on a cellular and molecular level. Finally, we explore exosome signaling as it pertains to atherosclerosis in support of the LIMA as an "endocrine organ."
Collapse
Affiliation(s)
- Ilya Y Shadrin
- Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - David R Holmes
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Atta Behfar
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
5
|
The structural basis of effective LOX-1 inhibition. Future Med Chem 2022; 14:731-743. [PMID: 35466695 DOI: 10.4155/fmc-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Along with other scavenger receptors, splice variants of LOX-1 play an important role in modulating numerous subcellular mechanisms such as normal cell development, differentiation and growth in response to physiological stimuli. Thus, LOX-1 activity is a key regulator in determining the severity of many genetic, metabolic, cardiovascular, renal, and neurodegenerative diseases and/or cancer. Increased expression of LOX-1 precipitates pathological disorders during the aging process. Therefore, it becomes important to develop novel LOX-1 inhibitors based on its ligand binding polarity and/or affinity and disrupt the uptake of its ligand: oxidized low-density lipoproteins (ox-LDL). In this review, we shed light on the presently studied and developed novel LOX-1 inhibitors that may have potential for treatment of diseases characterized by LOX-1 activation.
Collapse
|
6
|
Li L, Liu S, Tan J, Wei L, Wu D, Gao S, Weng Y, Chen J. Recent advance in treatment of atherosclerosis: Key targets and plaque-positioned delivery strategies. J Tissue Eng 2022; 13:20417314221088509. [PMID: 35356091 PMCID: PMC8958685 DOI: 10.1177/20417314221088509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of vascular wall, is a progressive pathophysiological process with lipids oxidation/depositing initiation and innate/adaptive immune responses. The coordination of multi systems covering oxidative stress, dysfunctional endothelium, diseased lipid uptake, cell apoptosis, thrombotic and pro-inflammatory responding as well as switched SMCs contributes to plaque growth. In this circumstance, inevitably, targeting these processes is considered to be effective for treating atherosclerosis. Arriving, retention and working of payload candidates mediated by targets in lesion direct ultimate therapeutic outcomes. Accumulating a series of scientific studies and clinical practice in the past decades, lesion homing delivery strategies including stent/balloon/nanoparticle-based transportation worked as the potent promotor to ensure a therapeutic effect. The objective of this review is to achieve a very brief summary about the effective therapeutic methods cooperating specifical targets and positioning-delivery strategies in atherosclerosis for better outcomes.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Sainan Liu
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Jianying Tan
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Lai Wei
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Dimeng Wu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Shuai Gao
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Yajun Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| |
Collapse
|
7
|
Wu NQ, Shi HW, Li JJ. Proprotein Convertase Subtilisin/Kexin Type 9 and Inflammation: An Updated Review. Front Cardiovasc Med 2022; 9:763516. [PMID: 35252378 PMCID: PMC8894439 DOI: 10.3389/fcvm.2022.763516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
The function of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9), a novel plasma protein, has mainly been involved in cholesterol metabolism in the liver, while, more interestingly, recent data have shown that PCSK9 also took part in the modulation of inflammation, which appeared to be another explanation for the reduction of cardiovascular risk by PCSK9 inhibition besides its significant effect on lowering lower-density lipoprotein cholesterol (LDL-C) concentration. Overall, a series of previous studies suggested an association of PCSK9 with inflammation. Firstly, PCSK9 is able to induce the secretion of proinflammatory cytokines in macrophages and in other various tissues and elevated serum PCSK9 levels could be observed in pro-inflammatory conditions, such as sepsis, acute coronary syndrome (ACS). Secondly, detailed signaling pathway studies indicated that PCSK9 positively regulated toll-like receptor 4 expression and inflammatory cytokines expression followed by nuclear factor-kappa B (NF-kB) activation, together with apoptosis and autophagy progression. Besides, PCSK9 enhanced and interacted with scavenger receptors (SRs) of inflammatory mediators like lectin-like oxidized-LDL receptor-1 (LOX-1) to promote inflammatory response. Additionally, several studies also suggested that the role of PCSK9 in atherogenesis was intertwined with inflammation and the interacting effect shown between PCSK9 and LOX-1 was involved in the inflammatory response of atherosclerosis. Finally, emerging clinical trials indicated that PCSK9 inhibitors could reduce more events in patients with ACS accompanied by increased inflammatory status, which might be involved in its attenuating impact on arterial plaque. Hence, further understanding of the relationship between PCSK9 and inflammation would be necessary to help prevent and manage the atherosclerotic cardiovascular disease (ASCVD) clinically. This review article will update the recent advances in the link of PCSK9 with inflammation.
Collapse
|
8
|
Chen DY, Sawamura T, Dixon RAF, Sánchez-Quesada JL, Chen CH. Autoimmune Rheumatic Diseases: An Update on the Role of Atherogenic Electronegative LDL and Potential Therapeutic Strategies. J Clin Med 2021; 10:1992. [PMID: 34066436 PMCID: PMC8124242 DOI: 10.3390/jcm10091992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/20/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis has been linked with an increased risk of atherosclerotic cardiovascular disease (ASCVD). Autoimmune rheumatic diseases (AIRDs) are associated with accelerated atherosclerosis and ASCVD. However, the mechanisms underlying the high ASCVD burden in patients with AIRDs cannot be explained only by conventional risk factors despite disease-specific factors and chronic inflammation. Nevertheless, the normal levels of plasma low-density lipoprotein (LDL) cholesterol observed in most patients with AIRDs do not exclude the possibility of increased LDL atherogenicity. By using anion-exchange chromatography, human LDL can be divided into five increasingly electronegative subfractions, L1 to L5, or into electropositive and electronegative counterparts, LDL (+) and LDL (-). Electronegative L5 and LDL (-) have similar chemical compositions and can induce adverse inflammatory reactions in vascular cells. Notably, the percentage of L5 or LDL (-) in total LDL is increased in normolipidemic patients with AIRDs. Electronegative L5 and LDL (-) are not recognized by the normal LDL receptor but instead signal through the lectin-like oxidized LDL receptor 1 (LOX-1) to activate inflammasomes involving interleukin 1β (IL-1β). Here, we describe the detailed mechanisms of AIRD-related ASCVD mediated by L5 or LDL (-) and discuss the potential targeting of LOX-1 or IL-1β signaling as new therapeutic modalities for these diseases.
Collapse
Affiliation(s)
- Der-Yuan Chen
- Translational Medicine Center, China Medical University Hospital, Taichung 404, Taiwan;
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
- Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan
| | - Richard A. F. Dixon
- Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, TX 77030, USA;
| | - José Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Biomedical Research Institute IIB Sant Pau, 08041 Barcelona, Spain;
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), 08041 Barcelona, Spain
| | - Chu-Huang Chen
- Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA
- New York Heart Research Foundation, Mineola, NY 11501, USA
| |
Collapse
|
9
|
Ding Z, Pothineni NVK, Goel A, Lüscher TF, Mehta JL. PCSK9 and inflammation: role of shear stress, pro-inflammatory cytokines, and LOX-1. Cardiovasc Res 2020; 116:908-915. [PMID: 31746997 DOI: 10.1093/cvr/cvz313] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/06/2019] [Accepted: 11/16/2019] [Indexed: 12/11/2022] Open
Abstract
PCSK9 degrades low-density lipoprotein cholesterol (LDL) receptors and subsequently increases serum LDL cholesterol. Clinical trials show that inhibition of PCSK9 efficiently lowers LDL cholesterol levels and reduces cardiovascular events. PCSK9 inhibitors also reduce the extent of atherosclerosis. Recent studies show that PCSK9 is secreted by vascular endothelial cells, smooth muscle cells, and macrophages. PCSK9 induces secretion of pro-inflammatory cytokines in macrophages, liver cells, and in a variety of tissues. PCSK9 regulates toll-like receptor 4 expression and NF-κB activation as well as development of apoptosis and autophagy. PCSK9 also interacts with oxidized-LDL receptor-1 (LOX-1) in a mutually facilitative fashion. These observations suggest that PCSK9 is inter-twined with inflammation with implications in atherosclerosis and its major consequence-myocardial ischaemia. This relationship provides a basis for the use of PCSK9 inhibitors in prevention of atherosclerosis and related clinical events.
Collapse
Affiliation(s)
- Zufeng Ding
- Division of Cardiology, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Naga Venkata K Pothineni
- Division of Cardiology, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Akshay Goel
- Division of Cardiology, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Jawahar L Mehta
- Division of Cardiology, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
10
|
Lee AS, Wang YC, Chang SS, Lo PH, Chang CM, Lu J, Burns AR, Chen CH, Kakino A, Sawamura T, Chang KC. Detection of a High Ratio of Soluble to Membrane-Bound LOX-1 in Aspirated Coronary Thrombi From Patients With ST-Segment-Elevation Myocardial Infarction. J Am Heart Assoc 2020; 9:e014008. [PMID: 31928155 PMCID: PMC7033847 DOI: 10.1161/jaha.119.014008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background The circulating level of soluble lectin‐like oxidized low‐density lipoprotein receptor‐1 (sLOX‐1) is a valuable biomarker of acute myocardial infarction (AMI). The most electronegative low‐density lipoprotein, L5, signals through LOX‐1 to trigger atherogenesis. We examined the characteristics of LOX‐1 and the role of L5 in aspirated coronary thrombi of AMI patients. Methods and Results Intracoronary thrombi were aspirated by performing interventional thrombosuction in patients with ST‐segment–elevation myocardial infarction (STEMI; n=32) or non–ST‐segment–elevation myocardial infarction (n=12). LOX‐1 level and the ratio of sLOX‐1 to membrane‐bound LOX‐1 were higher in thrombi of STEMI patients than in those of non–ST‐segment–elevation myocardial infarction patients. In all aspirated thrombi, LOX‐1 colocalized with apoB100. When we explored the role of L5 in AMI, deconvolution microscopy showed that particles of L5 but not L1 (the least electronegative low‐density lipoprotein) quickly formed aggregates prone to retention in thrombi. Treating human monocytic THP‐1 cells with L5 or L1 showed that L5 induced cellular adhesion and promoted the differentiation of monocytes into macrophages in a dose‐dependent manner. In a second cohort of AMI patients, the L5 percentage and plasma concentration of sLOX‐1 were higher in STEMI patients (n=33) than in non–ST‐segment–elevation myocardial infarction patients (n=25), and sLOX‐1 level positively correlated with L5 level in AMI patients. Conclusions The level of LOX‐1 and the ratio of sLOX‐1 to membrane‐bound LOX‐1 in aspirated thrombi, as well as the circulating level of sLOX‐1 were higher in STEMI patients than in non–ST‐segment–elevation myocardial infarction patients. L5 may play a role in releasing a high level of sLOX‐1 into the circulation of STEMI patients.
Collapse
Affiliation(s)
- An-Sheng Lee
- Department of Medicine Mackay Medical College New Taipei City Taiwan.,Cardiovascular Research Laboratory China Medical University Hospital Taichung Taiwan
| | - Yu-Chen Wang
- Cardiovascular Research Laboratory China Medical University Hospital Taichung Taiwan.,Division of Cardiovascular Medicine Asia University Hospital Taichung Taiwan.,Department of Biotechnology Asia University Taichung Taiwan.,Division of Cardiovascular Medicine China Medical University Hospital Taichung Taiwan
| | - Shih-Sheng Chang
- Division of Cardiovascular Medicine China Medical University Hospital Taichung Taiwan
| | - Ping-Hang Lo
- Division of Cardiovascular Medicine China Medical University Hospital Taichung Taiwan
| | - Chia-Ming Chang
- Cardiovascular Research Laboratory China Medical University Hospital Taichung Taiwan
| | - Jonathan Lu
- Vascular and Medicinal Research Texas Heart Institute Houston TX.,InVitro Cell Research LLC Englewood NJ
| | - Alan R Burns
- College of Optometry University of Houston Houston TX
| | - Chu-Huang Chen
- Vascular and Medicinal Research Texas Heart Institute Houston TX.,New York Heart Research Foundation Mineola NY
| | - Akemi Kakino
- Department of Life Innovation Institute for Biomedical Sciences Shinshu University Matsumoto Japan.,Department of Molecular Pathophysiology Shinshu University School of Medicine Matsumoto Japan
| | - Tatsuya Sawamura
- Department of Life Innovation Institute for Biomedical Sciences Shinshu University Matsumoto Japan.,Department of Molecular Pathophysiology Shinshu University School of Medicine Matsumoto Japan
| | - Kuan-Cheng Chang
- Cardiovascular Research Laboratory China Medical University Hospital Taichung Taiwan.,Division of Cardiovascular Medicine China Medical University Hospital Taichung Taiwan.,Graduate Institute of Biomedical Sciences China Medical University Taichung Taiwan
| |
Collapse
|
11
|
Hofmann A, Brunssen C, Wolk S, Reeps C, Morawietz H. Soluble LOX-1: A Novel Biomarker in Patients With Coronary Artery Disease, Stroke, and Acute Aortic Dissection? J Am Heart Assoc 2020; 9:e013803. [PMID: 31902328 PMCID: PMC6988168 DOI: 10.1161/jaha.119.013803] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Anja Hofmann
- Division of Vascular Endothelium and Microcirculation Department of Medicine III Medical Faculty Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden Technische Universität Dresden Dresden Germany.,Division of Vascular and Endovascular Surgery Department for Visceral-, Thoracic and Vascular Surgery Medical Faculty Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden Technische Universität Dresden Dresden Germany
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation Department of Medicine III Medical Faculty Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden Technische Universität Dresden Dresden Germany
| | - Steffen Wolk
- Division of Vascular and Endovascular Surgery Department for Visceral-, Thoracic and Vascular Surgery Medical Faculty Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden Technische Universität Dresden Dresden Germany
| | - Christian Reeps
- Division of Vascular and Endovascular Surgery Department for Visceral-, Thoracic and Vascular Surgery Medical Faculty Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden Technische Universität Dresden Dresden Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation Department of Medicine III Medical Faculty Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden Technische Universität Dresden Dresden Germany
| |
Collapse
|
12
|
Wang Y, Hong Y, Zhang C, Shen Y, Pan YS, Chen RZ, Zhang Q, Chen YH. Picroside II attenuates hyperhomocysteinemia-induced endothelial injury by reducing inflammation, oxidative stress and cell apoptosis. J Cell Mol Med 2018; 23:464-475. [PMID: 30394648 PMCID: PMC6307770 DOI: 10.1111/jcmm.13949] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 09/03/2018] [Indexed: 12/27/2022] Open
Abstract
Picroside II (P‐II), one of the main active components of scrophularia extract, which have anti‐oxidative, anti‐inflammatory effects, but its effect on hyperhomocysteinemia (HHcy) induced endothelial injury remains to be determined. Here, we test whether P‐II protects HHcy‐induced endothelial dysfunction against oxidative stress, inflammation and cell apoptosis. In vitro study using HUVECs, and in hyperhomocysteinemia mouse models, we found that HHcy decreased endothelial SIRT1 expression and increased LOX‐1 expression, subsequently causing reactive oxygen species generation, up‐regulation of NADPH oxidase activity and NF‐κB activation, thereby promoting pro‐inflammatory response and cell apoptosis. Blockade of Sirt1 with Ex527 or siRNASIRT1 increased LOX‐1 expression, whereas overexpression of SIRT1 decreased LOX‐1 expression markedly. P‐II treatment significantly increased SIRT1 expression and reduced LOX‐1 expression, and protected against endothelial cells from Hcy‐induced oxidative injury, inflammation and apoptosis. However, blockade of SIRT1 or overexpression of LOX‐1 attenuated the therapeutic effects of P‐II. In conclusion, our results suggest that P‐II prevents the Hcy induced endothelial damage probably through regulating the SIRT1/LOX‐1 signaling pathway.
Collapse
Affiliation(s)
- Yunkai Wang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yajun Hong
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chunyu Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunli Shen
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ye Shen Pan
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rui Zhen Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi Zhang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Han Chen
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Hofmann A, Brunssen C, Morawietz H. Contribution of lectin-like oxidized low-density lipoprotein receptor-1 and LOX-1 modulating compounds to vascular diseases. Vascul Pharmacol 2017; 107:S1537-1891(17)30171-4. [PMID: 29056472 DOI: 10.1016/j.vph.2017.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/29/2017] [Accepted: 10/11/2017] [Indexed: 12/31/2022]
Abstract
The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is the major receptor for binding and uptake of oxidized low-density lipoprotein (oxLDL) in endothelial cells. LOX-1 is also expressed in macrophages, smooth muscle cells and platelets. Following internalization of oxLDL, LOX-1 initiates a vicious cycle from activation of pro-inflammatory signaling pathways, thus promoting an increased reactive oxygen species formation and secretion of pro-inflammatory cytokines. LOX-1 plays a pivotal role in the development of endothelial dysfunction, foam cell and advanced lesions formation as well as in myocardial ischemia. Furthermore, it is known that LOX-1 plays a pivotal role in mitochondrial DNA damage, vascular cell apoptosis, and autophagy. A large number of studies provide evidence of a LOX-1's role in endothelial dysfunction, hypertension, diabetes, and obesity. In addition, novel insights into LOX-1 ligands and the activated signaling pathways have been gained. Recent studies have shown an interaction of LOX-1 with microRNA's, thus providing novel tools to regulate LOX-1 function. Because LOX-1 is increased in atherosclerotic plaques and contributes to endothelial dysfunction, several compounds were tested in vivo and in vitro to modulate the LOX-1 expression in therapeutic approaches.
Collapse
Affiliation(s)
- Anja Hofmann
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
14
|
Su Q, Wang Y, Yang X, Li XD, Qi YF, He XJ, Wang YJ. Inhibition of Endoplasmic Reticulum Stress Apoptosis by Estrogen Protects Human Umbilical Vein Endothelial Cells Through the PI3 Kinase-Akt Signaling Pathway. J Cell Biochem 2017; 118:4568-4574. [PMID: 28485890 DOI: 10.1002/jcb.26120] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 05/08/2017] [Indexed: 01/05/2023]
Abstract
We aimed to investigate whether the cardioprotective effect of estrogen is mediated by inhibiting the apoptosis induced by endoplasmic reticulum stress (ERS) and to explore the underlying signaling pathway responsible for this effect. The effect of estrogen on ERS apoptosis, the mechanism responsible for that effect, and the ERS signaling pathways were examined in human umbilical vein endothelial cells (HUVECs) and measured using Western blot, Hoechst stains and caspase-3 activity assay. In vitro, 10-8 mol/l estrogen directly inhibited the up-regulation of the ERS marker glucose-regulated protein 78 (GRP78) and ERS apoptosis marker C/EBP homologous protein (CHOP). ERS was induced using the ERS inducer tunicamycin (TM, 10 µmol/l) or dithiothreitol (DTT, 2 mmol/l) in HUVECs. Estrogen can also decrease the apoptosis cells mediated by ERS, based on the results of Hoechst stains. Protein expression in the three main ERS signaling pathways was upregulated in TM- or DTT-induced HUVEC ERS. Increases in p-PERK/PERK were the most obvious, and estrogen significantly inhibited the upregulation of p-PERK/PERK, p-IRE1/IRE1, and ATF6. These inhibitory effects were abolished by specific estrogen receptor antagonists (ICI182, 780, and G15) and inhibitors of the E2 post-receptor signaling pathway, including phosphoinositide 3-kinase (PI3K) inhibitor LY294002, p38-mitogen activated protein kinase (p38-MAPK) inhibitor SB203580, c-Jun N-terminal kinase (JNK) inhibitor SP600125 and extracellular signal-regulated kinases1/2 (ERK1/2) inhibitor U0126; of these inhibitors, LY294002 was the most effective. Further experiments showed that when the PI3K pathway was blocked, the inhibitory effect of estrogen on ERS apoptosis was reduced. Estrogen can prevent HUVEC apoptosis by inhibiting the ERS apoptosis triggered by the PERK pathway, which may protect vascular endothelial cells and the cardiovascular system. The main mechanism responsible for ERS inhibition is the activation of the PI3K-Akt pathway for the activated estrogen receptor. J. Cell. Biochem. 118: 4568-4574, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Qing Su
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Xin Yang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Xiao-Dong Li
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiao-Jing He
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yan-Jie Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100000, China
| |
Collapse
|
15
|
De Vos J, Mathijs I, Xavier C, Massa S, Wernery U, Bouwens L, Lahoutte T, Muyldermans S, Devoogdt N. Specific targeting of atherosclerotic plaques in ApoE(-/-) mice using a new Camelid sdAb binding the vulnerable plaque marker LOX-1. Mol Imaging Biol 2015; 16:690-8. [PMID: 24687730 DOI: 10.1007/s11307-014-0731-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Molecular imaging has the potential to provide quantitative information about specific biological aspects of developing atherosclerotic lesions. This requires the generation of reliable, highly specific plaque tracers. This study reports a new camelid single-domain antibody fragment (sdAb) targeting the Lectin-like oxidized low-density lipoprotein receptor (LOX-1), a biomarker for the detection and molecular phenotyping of vulnerable atherosclerotic plaques. PROCEDURES A camelid sdAb was generated and selected for high affinity binding to LOX-1. Ex vivo biodistribution and in vivo single photon emission computed tomography (SPECT)/computed tomography (CT) imaging studies were performed in wild-type mice and in fat-fed atherosclerotic apolipoprotein E-deficient mice with (99m)Tc-labeled sdAbs. Gamma-counting and autoradiography analyses were performed on dissected aorta segments with different degrees of plaque burden. The specificity of the LOX-1-targeting sdAb was evaluated by blocking with unlabeled sdAb or by comparison with a nontargeting (99m)Tc-labeled control sdAb. RESULTS We generated a sdAb binding LOX-1 with a KD of 280 pM ± 62 pM affinity. After (99m)Tc-labeling, the tracer had radiochemical purity higher then 99 % and retained specificity in in vitro binding studies. Tracer blood clearance was fast with concomitant high kidney retention. At 3 h after injection, uptake in tissues other than plaques was low and not different than background, suggesting a restricted expression pattern of LOX-1. Conversely, uptake in aortic segments increased with plaque content and was due to specific LOX-1 binding. In vivo SPECT/CT imaging 160 min after injection in atherosclerotic mice confirmed specific targeting of LOX-1-expressing aortic plaques. CONCLUSIONS The LOX-sdAb specifically targets LOX-1-expressing atherosclerotic plaques within hours after injection. The possibility to image LOX-1 rapidly after administration combined with the favourable biodistribution of a sdAb are beneficial for molecular phenotyping of atherosclerotic plaques and the generation of a future prognostic tracer.
Collapse
Affiliation(s)
- Jens De Vos
- Laboratory of Cellular and Molecular Immunology (CMIM), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium,
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Preidl RHM, Möbius P, Weber M, Amann K, Neukam FW, Schlegel A, Wehrhan F. Expression of transforming growth factor beta 1-related signaling proteins in irradiated vessels. Strahlenther Onkol 2014; 191:518-24. [PMID: 25487696 DOI: 10.1007/s00066-014-0797-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/14/2014] [Indexed: 01/13/2023]
Abstract
AIM Microvascular free tissue transfer is a standard method in head and neck reconstructive surgery. However, previous radiotherapy of the operative region is associated with an increased incidence in postoperative flap-related complications and complete flap loss. As transforming growth factor beta (TGF-β) 1 and galectin-3 are well known markers in the context of fibrosis and lectin-like oxidized low-density lipoprotein 1 (LOX-1) supports vascular atherosclerosis, the aim of this study was to evaluate the expression of TGF-β1 and related markers as well as LOX-1 in irradiated vessels. MATERIALS AND METHODS To evaluate the expression of galectin-3, Smad 2/3, TGF-β1, and LOX-1, 20 irradiated and 20 nonirradiated arterial vessels were used for immunohistochemical staining. We semiquantitatively assessed the ratio of stained cells/total number of cells (labeling index). RESULTS Expression of galectin-3, Smad 2/3, and TGF-β1 was significantly increased in previously irradiated vessels compared with nonirradiated controls. Furthermore, LOX-1 was expressed significantly higher in irradiated compared with nonirradiated vessels. CONCLUSION Fibrosis-related proteins like galectin-3, Smad 2/3, and TGF-β1 are upregulated after radiotherapy and support histopathological changes leading to vasculopathy of the irradiated vessels. Furthermore, postoperative complications in irradiated patients can be explained by increased endothelial dysfunction caused by LOX-1 in previously irradiated patients. Consequently, not only TGF-β1 but also galectin-3 inhibitors may decrease complications after microsurgical tissue transfer.
Collapse
Affiliation(s)
- Raimund H M Preidl
- Department of Oral and Maxillofacial Surgery, University of Erlangen- Nürnberg, Glückstraße 11, 91054, Erlangen, Germany,
| | | | | | | | | | | | | |
Collapse
|
17
|
Cappelletti A, Zanussi M, Mazzavillani M, Magni V, Calori G, Godino C, Ferrari M, Margonato A. Association of LOXIN, a new functional splicing isoform of the OLR1 gene, with severity and prognostic localization of critical coronary artery stenoses. J Cardiovasc Med (Hagerstown) 2014; 15:391-6. [PMID: 24743687 DOI: 10.2459/jcm.0b013e3283624251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AIMS To evaluate the association between LOXIN, a new functional protective splicing isoform of the oxidized LDL receptor 1 (OLR1) gene, and the severity of coronary artery stenoses. METHODS We analyzed 100 consecutive patients with coronary artery disease (CAD) and 100 controls, all evaluated by a new molecular biology test using highly specific allele primers able to identify the single nucleotide variation (IVS4-14 A>G) in the OLR1 gene (Loxin Test - Technogenetics). All the patients and the controls underwent coronary angiography and, for quantitative evaluation, we used both vessel and stenosis score, and SYNTAX score to evaluate the severity of CAD. Moreover, we defined the prognostic localization of CAD as a critical stenosis (>50%) of the left main and/or proximal segment of left anterior descending artery (LAD). Finally, we evaluated a correlation with the presence of diabetes mellitus, dyslipidemia, hypertension, smoking and family history of CAD. RESULTS In this selected population, even though the 'AA nonrisk haplotype' is more frequent in the controls, we did not find any statistically significant correlation between the severity of CAD or the prognostic localization of critical stenosis and the difference of IVS4-14 A>G OLR1 genotype (P > 0.05). CAD patients showed significantly higher frequencies of dyslipidemia and smoking (P < 0.05) than controls, but no significant association was found between overall risk factors and the OLR1 polymorphism. CONCLUSION In this selected population, we did not find any correlation of LOXIN with the severity or prognostic localization of CAD on left main and/or proximal LAD.
Collapse
Affiliation(s)
- Alberto Cappelletti
- aDepartment of Cardiology, San Raffaele Scientific Institute bUnit of Genomics for Diagnosis of Human Pathologies, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Shaw DJ, Seese R, Ponnambalam S, Ajjan R. The role of lectin-like oxidised low-density lipoprotein receptor-1 in vascular pathology. Diab Vasc Dis Res 2014; 11:410-8. [PMID: 25216847 DOI: 10.1177/1479164114547704] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The lectin-like oxidised low-density lipoprotein receptor-1 (LOX-1) is a vascular scavenger receptor that plays a central role in the pathogenesis of atherothrombotic disease, which remains the main cause of mortality in the Western population. Recent evidence indicates that targeting LOX-1 represents a credible strategy for the management vascular disease and the current review explores the role of this molecule in the diagnosis and treatment of atherosclerosis. LOX-1-mediated pro-atherogenic effects can be inhibited by anti-LOX-1 monoclonal antibodies and procyanidins, whereas downregulation of LOX-1 expression has been achieved by antisense oligonucleotides and a specific pyrrole-imidazole polyamide. Furthermore, LOX-1 can be utilised for plaque imaging using monoclonal antibodies and even the selective delivery of anti-atherosclerotic agents employing immunoliposome techniques. Also, plasma levels of the circulating soluble form of LOX-1 levels are elevated in atherosclerosis and therefore may constitute an additional diagnostic biomarker of vascular pathology.
Collapse
Affiliation(s)
- Daniel James Shaw
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK
| | - Rachel Seese
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK
| | - Sreenivasan Ponnambalam
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK
| | - Ramzi Ajjan
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK
| |
Collapse
|
19
|
Reprint of “Heated vegetable oils and cardiovascular disease risk factors”. Vascul Pharmacol 2014; 62:38-46. [DOI: 10.1016/j.vph.2014.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/08/2014] [Accepted: 02/15/2014] [Indexed: 01/31/2023]
|
20
|
Ferrari G, Quackenbush J, Strobeck J, Hu L, Johnson CK, Mak A, Shaw RE, Sayles K, Brizzio ME, Zapolanski A, Grau JB. Comparative genome-wide transcriptional analysis of human left and right internal mammary arteries. Genomics 2014; 104:36-44. [PMID: 24858532 DOI: 10.1016/j.ygeno.2014.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/26/2014] [Accepted: 04/28/2014] [Indexed: 01/09/2023]
Abstract
In coronary artery bypass grafting (CABG), the combined use of left and right internal mammary arteries (LIMA and RIMA) - collectively known as bilateral IMAs (BIMAs) provides a survival advantage over the use of LIMA alone. However, gene expression in RIMA has never been compared to that in LIMA. Here we report a genome-wide transcriptional analysis of BIMA to investigate the expression profiles of these conduits in patients undergoing CABG. As expected, in comparing the BIMAs to the aorta, we found differences in pathways and processes associated with atherosclerosis, inflammation, and cell signaling - pathways which provide biological support for the observation that BIMA grafts deliver long-term benefits to the patients and protect against continued atherosclerosis. These data support the widespread use of BIMAs as the preferred conduits in CABG.
Collapse
Affiliation(s)
- Giovanni Ferrari
- The Valley Columbia Heart Center, 223 North Van Dien Avenue Ridgewood, NJ 07450, USA; University of Pennsylvania, Department of Surgery, Glenolden, PA 19036, USA
| | - John Quackenbush
- Center for Cancer Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - John Strobeck
- The Valley Columbia Heart Center, 223 North Van Dien Avenue Ridgewood, NJ 07450, USA
| | - Lan Hu
- Center for Cancer Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Christopher K Johnson
- The Valley Columbia Heart Center, 223 North Van Dien Avenue Ridgewood, NJ 07450, USA
| | - Andrew Mak
- The Valley Columbia Heart Center, 223 North Van Dien Avenue Ridgewood, NJ 07450, USA
| | - Richard E Shaw
- The Valley Columbia Heart Center, 223 North Van Dien Avenue Ridgewood, NJ 07450, USA
| | - Kathleen Sayles
- The Valley Columbia Heart Center, 223 North Van Dien Avenue Ridgewood, NJ 07450, USA
| | - Mariano E Brizzio
- The Valley Columbia Heart Center, 223 North Van Dien Avenue Ridgewood, NJ 07450, USA; Columbia University College of Physicians and Surgeons, Department of Surgery, New York, NY 10032, USA
| | - Alex Zapolanski
- The Valley Columbia Heart Center, 223 North Van Dien Avenue Ridgewood, NJ 07450, USA; Columbia University College of Physicians and Surgeons, Department of Surgery, New York, NY 10032, USA
| | - Juan B Grau
- The Valley Columbia Heart Center, 223 North Van Dien Avenue Ridgewood, NJ 07450, USA; Columbia University College of Physicians and Surgeons, Department of Surgery, New York, NY 10032, USA.
| |
Collapse
|
21
|
Ng CY, Leong XF, Masbah N, Adam SK, Kamisah Y, Jaarin K. Heated vegetable oils and cardiovascular disease risk factors. Vascul Pharmacol 2014; 61:1-9. [PMID: 24632108 DOI: 10.1016/j.vph.2014.02.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/08/2014] [Accepted: 02/15/2014] [Indexed: 11/19/2022]
Abstract
Cardiovascular disease (CVD) is one of the leading major causes of morbidity and mortality worldwide. It may result from the interactions between multiple genetic and environmental factors including sedentary lifestyle and dietary habits. The quality of dietary oils and fats has been widely recognised to be inextricably linked to the pathogenesis of CVD. Vegetable oil is one of the essential dietary components in daily food consumption. However, the benefits of vegetable oil can be deteriorated by repeated heating that leads to lipid oxidation. The practice of using repeatedly heated cooking oil is not uncommon as it will reduce the cost of food preparation. Thermal oxidation yields new functional groups which may be potentially hazardous to cardiovascular health. Prolonged consumption of the repeatedly heated oil has been shown to increase blood pressure and total cholesterol, cause vascular inflammation as well as vascular changes which predispose to atherosclerosis. The harmful effect of heated oils is attributed to products generated from lipid oxidation during heating process. In view of the potential hazard of oxidation products, therefore this review article will provide an insight and awareness to the general public on the consumption of repeatedly heated oils which is detrimental to health.
Collapse
Affiliation(s)
- Chun-Yi Ng
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Xin-Fang Leong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; Department of Clinical Oral Biology, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norliana Masbah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Khadijah Adam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kamsiah Jaarin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
22
|
Favero G, Paganelli C, Buffoli B, Rodella LF, Rezzani R. Endothelium and its alterations in cardiovascular diseases: life style intervention. BIOMED RESEARCH INTERNATIONAL 2014; 2014:801896. [PMID: 24719887 PMCID: PMC3955677 DOI: 10.1155/2014/801896] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/11/2014] [Indexed: 01/07/2023]
Abstract
The endothelium, which forms the inner cellular lining of blood vessels and lymphatics, is a highly metabolically active organ that is involved in many physiopathological processes, including the control of vasomotor tone, barrier function, leukocyte adhesion, and trafficking and inflammation. In this review, we summarized and described the following: (i) endothelial cell function in physiological conditions and (ii) endothelial cell activation and dysfunction in the main cardiovascular diseases (such as atherosclerosis, and hypertension) and to diabetes, cigarette smoking, and aging physiological process. Finally, we presented the currently available evidence that supports the beneficial effects of physical activity and various dietary compounds on endothelial functions.
Collapse
Affiliation(s)
- Gaia Favero
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Corrado Paganelli
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Barbara Buffoli
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Luigi Fabrizio Rodella
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Rita Rezzani
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
23
|
The essential role of p38 MAPK in mediating the interplay of oxLDL and IL-10 in regulating endothelial cell apoptosis. Eur J Cell Biol 2013; 92:150-9. [DOI: 10.1016/j.ejcb.2013.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 11/17/2022] Open
|
24
|
6-Shogaol Protects against Oxidized LDL-Induced Endothelial Injruries by Inhibiting Oxidized LDL-Evoked LOX-1 Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:503521. [PMID: 23533490 PMCID: PMC3590502 DOI: 10.1155/2013/503521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/14/2013] [Indexed: 11/20/2022]
Abstract
Endothelial dysfunction and oxLDL are believed to be early and critical events in atherogenesis. 6-Shogaol is the major bioactive compound present in Zingiber officinale and possesses the anti-atherosclerotic effect. However, the mechanisms remain poorly understood. The goal of this study was to investigate the effects of 6-shogaol on oxLDL-induced Human umbilical vein endothelial cells (HUVECs) injuries and its possible molecular mechanisms. Hence, we studied the effects of 6-shogaol on cell apoptosis, cellular reactive oxygen species (ROS), NF-κB activation, Bcl-2 expression, and caspase -3, -8, -9 activities. In addition, E-selectin, MCP-1, and ICAM-1 were determined by ELISA. Our study show that oxLDL increased LOX-1 expression, ROS levels, NF-κB, caspases-9 and -3 activation and decreased Bcl-2 expression in HUVECs. These alterations were attenuated by 6-shogaol. Cotreatment with 6-shogaol and siRNA of LOX-1 synergistically reduced oxLDL-induced caspases -9, -3 activities and cell apoptosis. Overexpression of LOX-1 attenuated the protection by 6-shogaol and suppressed the effects of 6-shogaol on oxLDL-induced oxidative stress. In addition, oxLDL enhanced the activation of NF-κB and expression of adhesion molecules. Pretreatment with 6-shogaol, however, exerted significant cytoprotective effects in all events. Our data indicate that 6-shogaol might be a potential natural antiapoptotic agent for the treatment of atherosclerosis.
Collapse
|
25
|
Pirillo A, Uboldi P, Ferri N, Corsini A, Kuhn H, Catapano AL. Upregulation of lectin-like oxidized low density lipoprotein receptor 1 (LOX-1) expression in human endothelial cells by modified high density lipoproteins. Biochem Biophys Res Commun 2012; 428:230-3. [PMID: 23073138 DOI: 10.1016/j.bbrc.2012.10.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 01/09/2023]
Abstract
Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) is the main endothelial receptor for oxidized low density lipoprotein (OxLDL). LOX-1 is highly expressed in endothelial cells of atherosclerotic lesions, but also in macrophages and smooth muscle cells. LOX-1 expression is upregulated by several inflammatory cytokines (such as TNF-α), by oxidative stress, and by pathological conditions, such as dyslipidemia, hypertension, and diabetes. High density lipoprotein (HDL) possess several atheroprotective properties; however under pathological conditions associated with inflammation and oxidative stress, HDL become dysfunctional and exhibit pro-inflammatory properties. In vitro, HDL can be modified by 15-lipoxygenase, an enzyme overexpressed in the atherosclerotic lesions. Here we report that, after modification with 15-lipoxygenase, HDL(3) lose their ability to inhibit TNFα-induced LOX-1 expression in endothelial cells; in addition, 15LO-modified HDL(3) induce LOX-1 mRNA and protein expression and bind to LOX-1 with increased affinity compared to native HDL(3). Altogether these findings confirm that 15LO-modified HDL(3) possess a pro-atherogenic role.
Collapse
Affiliation(s)
- Angela Pirillo
- Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy.
| | | | | | | | | | | |
Collapse
|
26
|
Li Y, Duan Z, Gao D, Huang S, Yuan H, Niu X. The new role of LOX-1 in hypertension induced neuronal apoptosis. Biochem Biophys Res Commun 2012; 425:735-40. [PMID: 22885180 DOI: 10.1016/j.bbrc.2012.07.143] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 07/26/2012] [Indexed: 02/07/2023]
Abstract
Lectin-like oxidized low-density lipoprotein (oxLDL) receptor-1 (LOX-1) was originally identified as a receptor for oxLDL predominantly expressed in endothelial cells. Recently up-regulation of LOX-1 has been implicated in oxidative stress and cell apoptosis in many cell types. However, LOX-1 expression in neurons or regulation of neuronal apoptosis by LOX-1 has not been reported. To investigate the possible roles of LOX-1 in hypertension induced brain damage, we examined the distribution of LOX-1 in cortex and hippocampus and compared its expression in 32-week-old SHR and WKY rats. Immunofluorescence revealed that LOX-1 positive cells were located principally at the cortex involved in sensory information processing and were mainly expressed in neurons. We also found up-regulated mRNA expression of LOX-1, Bax and caspase-3 and down-regulated mRNA expression of Bcl-2 in SHR group. Compared with WKY group, SHR group showed increased LOX-1 positive cells and TUNEL positive cells. Furthermore, double-labeling method indicated that LOX-1 expression was colocalized with TUNEL positive cells, which means that LOX-1 expression was involved in hypertension related cell apoptosis. These findings indicated that LOX-1 expression was up-regulated in the cortex of SHR and its expression has implication in neuronal apoptosis. Elevated Bax/Bcl-2 ratio may be involved under this event.
Collapse
Affiliation(s)
- Yali Li
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | |
Collapse
|
27
|
Yoshimoto R, Fujita Y, Kakino A, Iwamoto S, Takaya T, Sawamura T. The discovery of LOX-1, its ligands and clinical significance. Cardiovasc Drugs Ther 2012; 25:379-91. [PMID: 21805404 PMCID: PMC3204104 DOI: 10.1007/s10557-011-6324-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
LOX-1 is an endothelial receptor for oxidized low-density lipoprotein (oxLDL), a key molecule in the pathogenesis of atherosclerosis.The basal expression of LOX-1 is low but highly induced under the influence of proinflammatory and prooxidative stimuli in vascular endothelial cells, smooth muscle cells, macrophages, platelets and cardiomyocytes. Multiple lines of in vitro and in vivo studies have provided compelling evidence that LOX-1 promotes endothelial dysfunction and atherogenesis induced by oxLDL. The roles of LOX-1 in the development of atherosclerosis, however, are not simple as it had been considered. Evidence has been accumulating that LOX-1 recognizes not only oxLDL but other atherogenic lipoproteins, platelets, leukocytes and CRP. As results, LOX-1 not only mediates endothelial dysfunction but contributes to atherosclerotic plaque formation, thrombogenesis, leukocyte infiltration and myocardial infarction, which determine mortality and morbidity from atherosclerosis. Moreover, our recent epidemiological study has highlighted the involvement of LOX-1 in human cardiovascular diseases. Further understandings of LOX-1 and its ligands as well as its versatile functions will direct us to ways to find novel diagnostic and therapeutic approaches to cardiovascular disease.
Collapse
Affiliation(s)
- Ryo Yoshimoto
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Angiogenesis is defined as the formation of new blood vessels sprouting from pre-existing vessels. It plays an important role not only in physiological situations such as embryonic vascular development and wound healing, but also in pathological conditions including atherogenesis and evolution and spread of certain tumors. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), a receptor for oxidized low density lipoprotein (ox-LDL), is mainly expressed in endothelial cells. It has diverse physiological functions and it could be a link between atherogenesis and tumorigenesis. The risk factors for atherosclerosis like hypertension, diabetes mellitus and hyperlipidemia are associated with LOX-1. Dyslipidemia and obesity are also being recognized as risk factor for certain tumors. LOX-1 is also found to be important for maintaining the transformed state in developmentally diverse cancer cell lines and for tumor growth. There is emerging evidence that LOX-1 plays an important role in the angiogenesis process. In this review, we outline the roles of angiogenesis in atherogenesis and tumorigenesis, and describe the role of LOX-1 as a potential molecular target for blocking angiogenesis.
Collapse
|
29
|
Abstract
Atherosclerosis is the first cause of death in industrialized countries. Together with traditional risk factors (male gender, hypercholesterolemia, hypertension, diabetes, smoking and age), non-traditional risk factors have also been described as predisposing to this disease. Among these, oxidized low density lipoproteins (OxLDL) have been described in correlation to many proatherogenic processes. Many of the effects of OxLDL are mediated by the lectin like oxidized low density lipoprotein receptor 1 (LOX-1), expressed on endothelial cells, macrophages, SMCs and platelets. LOX-1 is encoded by the lectin like oxidized low density lipoprotein receptor 1 (OLR1) gene, located in the p12.3-p13.2 region of human chromosome 12. Variations on this gene have been studied extensively both at the functional and epidemiological level. Despite the fact that functional roles for two variants have been demonstrated, the epidemiological studies have provided inconsistent and inconclusive results. Of particular interest, it has been demonstrated that a linkage disequilibirum block of SNPs located in the intronic sequence of the OLR1 gene modulates the alternative splicing of OLR1 mRNA, leading to different ratios of LOX-1 full receptor and LOXIN, an isoform lacking part of the functional domain. As demonstrated, LOXIN acts by blocking the negative effective of LOX-1 activation. Here we review the state of the art regarding LOX-1, LOXIN, and the functional effects that are associated with the interaction of these molecules.
Collapse
Affiliation(s)
- Ruggiero Mango
- Dipartimento di Medicina Interna, Università di Roma Tor Vergata, Rome, Italy
| | | | | | | |
Collapse
|
30
|
Grau JB, Ferrari G, Mak AWC, Shaw RE, Brizzio ME, Mindich BP, Strobeck J, Zapolanski A. Propensity matched analysis of bilateral internal mammary artery versus single left internal mammary artery grafting at 17-year follow-up: validation of a contemporary surgical experience. Eur J Cardiothorac Surg 2012; 41:770-5; discussion 776. [PMID: 22290908 DOI: 10.1093/ejcts/ezr213] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVES Bilateral internal mammary arteries (BIMA) remains widely underutilized in coronary artery bypass grafting (CABG). Although prior research has demonstrated a long-term benefit of the use of BIMA over left internal mammary artery (LIMA)-only, validation of these results is lacking in a contemporary surgical experience. We compared complications and survival at 17-year follow-up in a large series of consecutive CABG patients from a single institution that underwent BIMA grafting with a propensity-matched group where LIMA only was used. METHODS Propensity scores representing the estimated probabilities of patients receiving either BIMA or LIMA alone were developed based on 22 observed baseline covariates in a logistic regression model with procedure group as the dependent variable. The nearest-neighbour-matching algorithm with Greedy 5-1 Digit Matching was used to produce two patient cohorts of 928 patients each balanced for baseline factors. We compared 30-day morbidity and mortality, as well as long-term survival at 5-year intervals up to 17-year follow-up. RESULTS In-hospital and 30-day mortality was 0.8% for the BIMA group and 1.1% for the LIMA-saphenous vein grafting (SVG). No significant difference was found in complications, mortality and/or length-of-stay between these two groups. Off-pump was done in 48.9% of BIMA cases and 51.3% of LIMA cases. Regardless of the types of grafts used, on-pump patients were more likely to have postoperative permanent strokes and longer postoperative lengths of stay. Use of the BIMA over LIMA-only had a statistically significant impact conferring a 10% survival advantage at 10-year and 18% at 15-year follow-up. The Kaplan-Meier survival curves comparing off-/on-pump BIMA and off-/on-pump LIMA-SVG patients demonstrated a 22% survival advantage for off-pump BIMA patients when compared with on-pump LIMA-SVG patients at 15-year follow-up. CONCLUSIONS Perioperative complications do not increase with the use of BIMAs. Long-term survival is optimized with off-pump CABG and BIMA grafting. The low morbidity and mortality rates in this series are likely due to the continuous evolution of technology and the adoption of less invasive options for CABG patients. A more widespread use of BIMAs in CABG patients would continue to improve the overall excellent short- and long-term results of this operation.
Collapse
Affiliation(s)
- Juan B Grau
- The Valley Columbia Heart Center, Columbia University College of Physicians and Surgeons, Ridgewood, New Jersey 07450, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Andersson IJ, Sankaralingam S, Davidge ST. Restraint stress up-regulates lectin-like oxidized low-density lipoprotein receptor-1 in aorta of apolipoprotein E-deficient mice. Stress 2010; 13:454-60. [PMID: 20666645 DOI: 10.3109/10253891003758901] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Psychological stress is a risk factor for cardiovascular disease including atherosclerosis, but the mechanisms are unknown. The vascular lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is involved in vascular pathology and early atherogenesis. We hypothesized that LOX-1 is up-regulated by psychological stress via the formation of oxygen-derived free radicals, and that treatment with EUK-8 (a superoxide dismutase and catalase mimetic) prevents production of oxygen-derived free radicals and leads to reduced expression of LOX-1 in the vascular wall. As a model for psychological stress, we exposed male apolipoprotein E-deficient mice to repeated restraint stress by placement in a conical tube for 2 h per day for 14 consecutive days. Stressed and control mice were treated with EUK-8 (n = 4-5) or vehicle (n = 4-5). Reactive oxygen species and peroxynitrite levels, as detected by oxidative fluorescence microscopy, were increased in the aortic root of mice exposed to stress compared to those of controls by 212 +/- 22% (mean +/- SEM; p < 0.001) and 110 +/- 6% (p < 0.001), respectively. LOX-1, as detected by immunohistochemistry, was increased by 443 +/- 63% in stressed mice compared to control mice (p < 0.001). EUK-8 reduced reactive oxygen species, peroxynitrite, and LOX-1 levels in stressed mice compared to vehicle-treated stressed mice. To conclude, LOX-1 induced by reactive oxygen species and/or peroxynitrite could be one mechanism by which stress promotes cardiovascular disease.
Collapse
MESH Headings
- Animals
- Antioxidants/pharmacology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Body Weight/physiology
- Corticosterone/blood
- Data Interpretation, Statistical
- Ethylenediamines/pharmacology
- Immunohistochemistry
- Mice
- Mice, Knockout
- Nitric Oxide/metabolism
- Organometallic Compounds/pharmacology
- Oxidative Stress/physiology
- Peroxynitrous Acid/metabolism
- Reactive Oxygen Species/metabolism
- Restraint, Physical
- Scavenger Receptors, Class E/biosynthesis
- Scavenger Receptors, Class E/genetics
- Stress, Psychological/metabolism
- Stress, Psychological/pathology
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Irene J Andersson
- Department of Obstetrics and Gynecology, Women and Children's Health Research Institute, Mazankowski Alberta Heart Institute, Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
33
|
Li D, Patel AR, Klibanov AL, Kramer CM, Ruiz M, Kang BY, Mehta JL, Beller GA, Glover DK, Meyer CH. Molecular imaging of atherosclerotic plaques targeted to oxidized LDL receptor LOX-1 by SPECT/CT and magnetic resonance. Circ Cardiovasc Imaging 2010; 3:464-72. [PMID: 20442371 DOI: 10.1161/circimaging.109.896654] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The oxidized low-density lipoprotein receptor (LDLR) LOX-1 plays a crucial role in atherosclerosis. We sought to detect and assess atherosclerotic plaque in vivo by using single-photon emission computed tomography/computed tomography and magnetic resonance imaging and a molecular probe targeted at LOX-1. METHODS AND RESULTS Apolipoprotein E(-/-) mice fed a Western diet and LDLR(-/-) and LDLR(-/-)/LOX-1(-/-) mice fed an atherogenic diet were used. Imaging probes consisted of liposomes decorated with anti-LOX-1 antibodies or nonspecific immunoglobulin G, (111)indium or gadolinium, and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine fluorescence markers. In vivo imaging was performed 24 hours after intravenous injection (150 microL) of LOX-1 or nonspecific immunoglobulin G probes labeled with either (111)indium (600 muCi) or gadolinium (0.075 mmol/kg), followed by aortic excision for phosphor imaging and Sudan IV staining, or fluorescence imaging and hematoxylin/eosin staining. The LOX-1 probe also colocalized with specific cell types, apoptosis, and matrix metalloproteinase-9 expression in frozen aortic sections. Single-photon emission computed tomography/computed tomography imaging of the LOX-1 probe showed aortic arch "hot spots" in apolipoprotein E(-/-) mice (n=8), confirmed by phosphor imaging. Magnetic resonance imaging showed significant Gd enhancement in atherosclerotic plaques in LDLR(-/-) mice with the LOX-1 (n=7) but not with the nonspecific immunoglobulin G (n=5) probe. No signal enhancement was observed in LDLR(-/-)/LOX-1(-/-) mice injected with the LOX-1 probe (n=5). These results were confirmed by ex vivo fluorescence imaging. The LOX-1 probe bound preferentially to the plaque shoulder, a region with vulnerable plaque features, including extensive LOX-1 expression, macrophage accumulation, apoptosis, and matrix metalloproteinase-9 expression. CONCLUSIONS LOX-1 can be used as a target for molecular imaging of atherosclerotic plaque in vivo. Furthermore, the LOX-1 imaging signal is associated with markers of rupture-prone atherosclerotic plaque.
Collapse
Affiliation(s)
- Dayuan Li
- Cardiovascular Division, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mattaliano MD, Wooters J, Shih HH, Paulsen JE. ROCK2 associates with lectin-like oxidized LDL receptor-1 and mediates oxidized LDL-induced IL-8 production. Am J Physiol Cell Physiol 2010; 298:C1180-7. [DOI: 10.1152/ajpcell.00483.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Oxidatively modified low-density lipoprotein (OxLDL) is a contributing factor of endothelial dysfunction, an early cellular event during atherogenesis. In endothelial cells, OxLDL has been shown to stimulate proinflammatory responses, increase lipid accumulation, and induce the expression of adhesion and extracellular matrix degrading molecules. The primary receptor for OxLDL on endothelial cells has been identified as a member of the scavenger receptor family called lectin-like OxLDL receptor-1 (LOX-1). A number of studies on LOX-1 have implicated its role in multiple cardiovascular diseases including atherosclerosis. To better understand the molecular mechanisms underlying the role of LOX-1 in endothelial cells, we identified interacting proteins in an affinity-purified LOX-1 receptor complex from human aortic endothelial HAECT cells by mass spectrometry. Two molecules involved in Rho signaling pathway, ARHGEF1 and ROCK2, were identified, and their associations with LOX-1 were confirmed in reciprocal immunoprecipitation studies. Particularly, ROCK2 was found to dynamically associate with LOX-1 in the presence of OxLDL. In addition, OxLDL treatment stimulated ROCK2 catalytic activity, and ROCK2 inhibition attenuated NF-κB activation and IL-8 production resulting from OxLDL activation of LOX-1. In summary, a functional proteomics approach has enabled us to identify novel LOX-1 interactors that potentially contribute to the cellular and signaling functions of LOX-1.
Collapse
Affiliation(s)
| | - Joe Wooters
- Biological Technologies, Wyeth Research, Cambridge, Massachusetts
| | - Heather H. Shih
- Biological Technologies, Wyeth Research, Cambridge, Massachusetts
| | - Janet E. Paulsen
- Biological Technologies, Wyeth Research, Cambridge, Massachusetts
| |
Collapse
|
35
|
Saito A, Fujimura M, Inoue T, Shimizu H, Tominaga T. Relationship between lectin-like oxidized low-density lipoprotein receptor 1 expression and preoperative echogenic findings of vulnerable carotid plaque. Acta Neurochir (Wien) 2010; 152:589-95. [PMID: 20033826 DOI: 10.1007/s00701-009-0573-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 12/01/2009] [Indexed: 12/31/2022]
Abstract
PURPOSE Lectin-like oxidized low-density lipoprotein 1 (LOX1) is an important cell surface receptor for the progression of atherosclerosis. Our purpose is to clarify the relationships of LOX1 and atherosclerotic factors for the vulnerability of carotid plaque and preoperative echogenic findings. METHODS We examined LOX1 expression, matrix metalloproteinase (MMP)-2,9, and tissue inhibitor of MMP (TIMP)-2 by immunohistochemical analysis using carotid endarterectomy specimens obtained from 14 patients. Groups were divided into stable plaque group A and vulnerable plaque group B by preoperative echogenic findings of carotid plaques. Endothelial immunoreactivity was calculated, and the immunohistochemical findings were compared. RESULTS LOX1 was remarkably expressed, especially in smooth muscle cells in vulnerable plaque and colocalized in MMP-9 positive cells and apoptotic cells. All LOX1, MMP-2,9, and TIMP2 were remarkably expressed in the subendothelial layer in group B compared with group A. The endothelial LOX1 index was 63.75 +/- 4.92 in group A and 83.0 +/- 5.02 in group B (p = 0.02). The endothelial MMP-2 index was 24.38 +/- 5.50 in group A and 32.83 +/- 6.79 in group B (p = 0.01). The endothelial MMP-9 index was 46.13 +/- 6.31 in group A and 59.17 +/- 2.14 in group B (p = 0.002). The endothelial TIMP-2 index had no significant difference between two groups (p = 0.14). CONCLUSION LOX-1 may play an important role in the progression of vulnerable carotid plaque and might regulate vulnerable plaque formation in cooperation with MMPs and TIMP-2. Endothelial MMP-2 might suppress TIMP-2 activation in vulnerable plaques.
Collapse
|
36
|
Navarra T, Del Turco S, Berti S, Basta G. The lectin-like oxidized low-density lipoprotein receptor-1 and its soluble form: cardiovascular implications. J Atheroscler Thromb 2009; 17:317-31. [PMID: 20009416 DOI: 10.5551/jat.3228] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) is a multiligand receptor, whose repertoire of ligands includes oxidized low-density lipoprotein, advanced glycation endproducts, platelets, neutrophils, apoptotic/aged cells and bacteria. Sustained expression of LOX-1 by critical target cells, including endothelial cells, smooth muscle cells and macrophages in proximity to these ligands, sets the stage for chronic cellular activation and tissue damage suggesting the interaction of cellular LOX-1 with its ligands to contribute to the formation and development of atherosclerotic plaques. Studies with transgenic and knockout mouse models have elucidated in part the role of LOX-1 in the pathogenesis of atherosclerosis and cardiac remodeling. Recently, a circulating soluble form of LOX-1 (sLOX-1), corresponding solely to its extracellular domain, has been identified in human serum. Circulating levels of sLOX-1 are increased in inflammatory and atherosclerotic conditions and are associated with acute coronary syndrome, with the severity of coronary artery disease, and with serum biomarkers for oxidative stress and inflammation, suggesting that they could be a useful marker for vascular injury. However, many interesting questions have not yet been answered and in this review, we provide an updated overview of the literature on this receptor and on likely future directions.
Collapse
|
37
|
|
38
|
Billiet L, Furman C, Cuaz-Pérolin C, Paumelle R, Raymondjean M, Simmet T, Rouis M. Thioredoxin-1 and its natural inhibitor, vitamin D3 up-regulated protein 1, are differentially regulated by PPARalpha in human macrophages. J Mol Biol 2008; 384:564-76. [PMID: 18848838 DOI: 10.1016/j.jmb.2008.09.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 09/05/2008] [Accepted: 09/22/2008] [Indexed: 01/04/2023]
Abstract
Macrophage-derived reactive oxygen species contribute to the initiation and development of atherosclerosis. The cellular balance between oxidative and reductive states depends on the endogenous antioxidant capacity, with the thioredoxin-1 (Trx-1) system playing a major role. Peroxisome proliferator-activated receptor-alpha (PPARalpha) is expressed by human macrophages and exhibits anti-inflammatory properties. Here we show that the selective PPARalpha activator GW647 significantly increased the Trx-1 mRNA and protein expression in human macrophages as determined by quantitative polymerase chain reaction and Western immunoblotting. Consistently, the Trx-1 activity was significantly increased by PPARalpha activation. By contrast, PPARalpha activation led to the down-regulation of vitamin D(3) up-regulated protein 1 (VDUP-1), the physiological inhibitor of Trx-1. Analysis of the Trx-1 and VDUP-1 promoters with gene reporter assays, mutational analysis, gel shift assays and chromatin immunoprecipitation analyses revealed the presence of a functional response element specific for PPARalpha in the Trx-1 promoter and the presence of a functional activator protein 1 (AP-1) site in the VDUP-1 promoter. The interference of PPARalpha/retinoid X receptor alpha with the AP-1 transcription factor elements c-Jun/c-Fos resulted in the inhibition of AP-1 binding and down-regulation of the VDUP-1 gene expression. Finally, PPARalpha activation reduced the lidocaine-induced caspase-3 activity and apoptosis, which might be due to the VDUP-1-mediated regulation of the Bax/Bcl-2 ratio. Together these data indicate that stimulation of PPARalpha in human macrophages might reduce arterial inflammation through differential regulation of the Trx-1 and VDUP-1 gene expression.
Collapse
Affiliation(s)
- Ludivine Billiet
- UMR-7079, Université Pierre et Marie Curie/CNRS, Bâtiment A, 5ème étage/Case courrier 256, 7, Quai St-Bernard, 75252 Paris Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
39
|
A combination of Lox-1 and Nox1 regulates TLR9-mediated foam cell formation. Cell Signal 2008; 20:2266-75. [PMID: 18817866 DOI: 10.1016/j.cellsig.2008.08.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 08/21/2008] [Accepted: 08/21/2008] [Indexed: 12/25/2022]
Abstract
The formation of foam cells is the hallmark of early atherosclerotic lesions, and the uptake of modified low-density lipoprotein (LDL) by macrophage scavenger receptors is thought to be a key process in their formation. In this study, we examined the role of lectin-like oxLDL receptor-1 (Lox-1) and NADPH oxidase 1 (Nox1) in toll-like receptor 9 (TLR9)-mediated foam cell formation. TLR9 activation of Raw264.7 cells or mouse primary peritoneal macrophages by CpG ODN treatment enhanced Lox-1 gene and protein expression. In addition, CpG ODN-induced Nox1 mRNA expression, which in turn increased foam cell formation. The inhibition of CpG ODN-induced reactive oxygen species (ROS) generation by treatment with antioxidants, as well as with knockdown of Nox1 using siRNA, suppressed the formation of foam cells. The induction of Lox-1 and Nox1 by CpG ODN was regulated via the TLR9-p38 MAPK signaling pathway. CpG ODN also increased NFkappaB activity, and a potent inhibitor of NFkappaB that significantly blocked CpG-induced Nox1 expression, suggesting that Nox1 regulation is mediated through an NFkappaB-dependent mechanism. Taken together, these results suggest that a combination of Lox-1 and Nox1 plays a key role in the TLR9-mediated formation of foam cells via the p38 MAPK pathway.
Collapse
|
40
|
Hu C, Dandapat A, Mehta JL. Angiotensin II Induces Capillary Formation From Endothelial Cells Via the LOX-1–Dependent Redox-Sensitive Pathway. Hypertension 2007; 50:952-7. [PMID: 17893372 DOI: 10.1161/hypertensionaha.107.096446] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin II (Ang II) induces angiogenesis by stimulating reactive oxygen species–dependent vascular endothelial growth factor (VEGF) expression. Ang II via type 1 receptor upregulates the expression of LOX-1, a lectin-like receptor for oxidized low-density lipoprotein. LOX-1 activation, in turn, upregulates Ang II type 1 receptor expression. We postulated that interruption of the feedback loop between Ang II and LOX-1 might attenuate Ang II–induced VEGF expression and capillary formation. In vitro experiments showed that Ang II (1 nmol/L) induced the expression of LOX-1 and VEGF and enhanced capillary formation from human coronary endothelial cells in Matrigel assay. Ang II–mediated expression of LOX-1 and VEGF, capillary formation, intracellular reactive oxygen species generation, and phosphorylation of p38 as well as p44/42 mitogen-activated protein kinases, were suppressed by anti–LOX-1 antibody, nicotinamide-adenine dinucleotide phosphate oxidase inhibitor apocynin and the Ang II type 1 receptor blocker losartan, but not by the Ang II type 2 receptor blocker PD123319. Expression of VEGF and capillary formation induced by Ang II were also inhibited by the p44/42 mitogen-activated protein kinase inhibitor U0126 and the p38 mitogen-activated protein kinase inhibitor SB203580. In ex vivo experiments, Ang II stimulated capillary sprouting from aortic rings from wild-type mice, and this phenomenon was significantly attenuated by pretreatment of aortic rings with anti–LOX-1 antibody, apocynin, and losartan, but not by PD123319. Importantly, Ang II–induced capillary sprouting was minimal from aortic rings from LOX-1 null mice compared with wild-type mice. These findings suggest that small concentrations of Ang II promote capillary formation by inducing the expression of VEGF via Ang II type 1 receptor/LOX-1–mediated stimulation of the reactive oxygen species-mitogen-activated protein kinase pathway.
Collapse
Affiliation(s)
- Changping Hu
- Department of Internal Medicine and Physiology and Biophysics, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR 72205-7199, USA
| | | | | |
Collapse
|
41
|
Vohra RS, Murphy JE, Walker JH, Ponnambalam S, Homer-Vanniasinkam S. Atherosclerosis and the Lectin-like OXidized low-density lipoprotein scavenger receptor. Trends Cardiovasc Med 2007; 16:60-4. [PMID: 16473764 DOI: 10.1016/j.tcm.2005.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 12/08/2005] [Accepted: 12/09/2005] [Indexed: 12/17/2022]
Abstract
The Lectin-like OXidized low-density lipoprotein scavenger receptor (LOX-1) is implicated in vascular inflammation and atherosclerotic plaque initiation, progression, and destabilization. LOX-1 levels are elevated upon recognition of oxidized low-density lipoprotein, a key pro-atherogenic substance in the vasculature. Recent evidence indicates this gene product is a biomarker of inflammation and disease status. We review and assess the role of LOX-1 in atherosclerotic plaque formation, physiologic regulation, and as a biomarker and target in cardiovascular disease diagnosis and prevention.
Collapse
Affiliation(s)
- Ravinder S Vohra
- Leeds Vascular Institute, The General Infirmary at Leeds, Great George Street, Leeds LS1 3EX, UK
| | | | | | | | | |
Collapse
|
42
|
Mehta JL, Sanada N, Hu CP, Chen J, Dandapat A, Sugawara F, Satoh H, Inoue K, Kawase Y, Jishage KI, Suzuki H, Takeya M, Schnackenberg L, Beger R, Hermonat PL, Thomas M, Sawamura T. Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet. Circ Res 2007; 100:1634-42. [PMID: 17478727 DOI: 10.1161/circresaha.107.149724] [Citation(s) in RCA: 346] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Atherosclerosis is associated with oxidative stress and inflammation, and upregulation of LOX-1, an endothelial receptor for oxidized LDL (oxLDL). Here, we describe generation of LOX-1 knockout (KO) mice in which binding of oxLDL to aortic endothelium was reduced and endothelium-dependent vasorelaxation preserved after treatment with oxLDL (P<0.01 versus wild-type mice). To address whether endothelial functional preservation might lead to reduction in atherogenesis, we crossed LOX-1 KO mice with LDLR KO mice and fed these mice 4% cholesterol/10% cocoa butter diet for 18 weeks. Atherosclerosis was found to cover 61+/-2% of aorta in the LDLR KO mice, but only 36+/-3% of aorta in the double KO mice. Luminal obstruction and intima thickness were significantly reduced in the double KO mice (versus LDLR KO mice). Expression of redox-sensitive NF-kappaB and the inflammatory marker CD68 in LDLR KO mice was increased (P<0.01 versus wild-type mice), but not in the double KO mice. On the other hand, antiinflammatory cytokine IL-10 expression and superoxide dismutase activity were low in the LDLR KO mice (P<0.01 versus wild-type mice), but not in the double KO mice. Endothelial nitric oxide synthase expression was also preserved in the double KO mice. The proinflammatory signal MAPK P38 was activated in the LDLR KO mice, and LOX-1 deletion reduced this signal. In conclusion, LOX-1 deletion sustains endothelial function leading to a reduction in atherogenesis in association with reduction in proinflammatory and prooxidant signals.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Aorta/metabolism
- Aorta/pathology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Cells, Cultured
- Cholesterol, Dietary
- Crosses, Genetic
- Disease Models, Animal
- Disease Progression
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Inflammation/genetics
- Inflammation/pathology
- Interleukin-10/metabolism
- Lipids/blood
- Lipoproteins, LDL/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NF-kappa B/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Oxidative Stress/genetics
- Receptors, LDL/genetics
- Scavenger Receptors, Class E/biosynthesis
- Scavenger Receptors, Class E/genetics
- Superoxide Dismutase/metabolism
- Vasodilation/genetics
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Jawahar L Mehta
- Cardiovascular Medicine, Gene Therapy Program, University of Arkansas for Medical Sciences, Little Rock, AR 72205.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Shi L, Ding W, Li D, Wang Z, Jiang H, Zhang J, Tang C. Proliferation and anti-apoptotic effects of human urotensin II on human endothelial cells. Atherosclerosis 2006; 188:260-4. [PMID: 16343502 DOI: 10.1016/j.atherosclerosis.2005.10.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 10/16/2005] [Accepted: 10/27/2005] [Indexed: 02/07/2023]
Abstract
BACKGROUND Human urotensin II (hU-II) is a potent vasoconstrictor, highly expressed in cardiac tissues and blood vessels. Recent studies indicate that hU-II participates in vascular and myocardial remodeling after injury. This study was designed to study the role of hU-II in cell DNA synthesis and apoptosis in human umbilical vein endothelial cells (HUVECs) and underlying intracellular signaling mechanisms. METHODS AND RESULTS Cultured HUVECs were incubated with hU-II (10(-10)-10(-8)M) for 24h. Cell DNA synthesis was examined by 3H thymidine incorporation. Apoptosis was detected by flow cytometry and TUNEL. hU-II increased the 3H thymidine incorporation into DNA in a concentration-dependent manner. hU-II inhibited endothelial apoptosis induced by serum withdrawal (5.74+/-0.64% versus 13.20+/-1.96%, P<0.01) and TNFalpha (6.76+/-0.70% versus 13.80+/-1.02%, P<0.01). The data from flow cytometry and TUNEL are consistent. Further studies showed that hU-II caused the phosphorylation of mitogen-activated protein kinasep42/44 (MAPKp42/44) in a concentration-dependent manner and this effect of hU-II was inhibited by pretreatment of cells with the MEK inhibitor (PD98059, 10muM). In addition, the use of PD98059 also attenuated 3H thymidine incorporation and anti-apoptotic effect elicited by hU-II (both P<0.01 versus hU-II alone). CONCLUSIONS Our observations provide evidence that hU-II promotes cell proliferation and inhibits apoptosis in HUVECs, and MAPKp42/44 activation may play a signal transduction role in this process.
Collapse
Affiliation(s)
- Libin Shi
- Division of Cardiology, Department of Internal Medicine, Peking University First Hospital, Xishiqudaji #8, West district, Beijing 100034, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Toba H, Shimizu T, Miki S, Inoue R, Yoshimura A, Tsukamoto R, Sawai N, Kobara M, Nakata T. Calcium [corrected] channel blockers reduce angiotensin II-induced superoxide generation and inhibit lectin-like oxidized low-density lipoprotein receptor-1 expression in endothelial cells. Hypertens Res 2006; 29:105-16. [PMID: 16755144 DOI: 10.1291/hypres.29.105] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Calcium channel blockers have been shown to limit the progression of atherosclerosis and decrease the incidence of cardiovascular events. To investigate vasoprotective effects beyond the blood pressure-lowering effects of these agents, amlodipine (10(-6) mol/) and manidipine (10(-6) mol/l) were used to pretreat angiotensin (Ang) II-stimulated rat cultured aortic endothelial cells. A 3-h period of Ang II treatment enhanced superoxide generation and the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase protein, as detected by dihydroethidium staining and Western blotting, respectively. Pretreatment with amlodipine or manidipine attenuated the increased production of superoxide and the overexpression of NADPH oxidase. The enhanced expression of heme oxygenase-1 (HO-1) mRNA induced by Ang II was further increased by amlodipine, whereas pretreatment with manidipine led to a reduction in the expression of HO-1. Furthermore, Ang II increased vascular cell adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), and monocyte chemoattractant protein-1 (MCP-1) mRNA levels, as determined by reverse transcription (RT)-polymerase chain reaction (PCR). Pretreatment with either amlodipine or manidipine decreased the overexpression of VCAM-1, ICAM-1, and MCP-1. We also demonstrated that amlodipine or manidipine prevented the Ang II-induced increase in lectin-like oxidized low-density lipoprotein receptor1 (LOX-1) content, thereby restoring control levels. These observations showed that amlodipine and manidipine reduced superoxide generation by the inhibition of the overexpression of NADPH oxidase in Ang II-stimulated endothelial cells. Such antioxidant effects of these agents might in turn have led to a decrease in the expression of VCAM-1, ICAM-1 and MCP-1. The salutary effects of calcium channel blockers in atherogenesis include the inhibition of the expression of LOX-1.
Collapse
Affiliation(s)
- Hiroe Toba
- Department of Clinical Pharmacology, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashima-ku, Kyoto 607-8414, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mehta JL, Rasouli N, Sinha AK, Molavi B. Oxidative stress in diabetes: A mechanistic overview of its effects on atherogenesis and myocardial dysfunction. Int J Biochem Cell Biol 2006; 38:794-803. [PMID: 16442834 DOI: 10.1016/j.biocel.2005.12.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 11/08/2005] [Accepted: 12/13/2005] [Indexed: 10/25/2022]
Abstract
Diabetes is a major risk factor for atherosclerosis. Atherogenesis involves endothelial dysfunction, activation and injury, inflammation, and smooth muscle cell migration and proliferation. Platelet activation in the narrowed arteries is the most proximate event in the culmination of an acute event such as acute myocardial infraction and stroke. Hyperglycemia is associated with all these adverse events in the process of genesis of atherosclerosis. The effect of diabetes (hyperglycemia) is mediated in large part by the state of enhanced oxidative stress, which is not counter-balanced by endogenous antioxidants. This paper reviews the ignition of oxidative stress in diabetes and the mediation of events leading to atherogenesis.
Collapse
Affiliation(s)
- Jawahar L Mehta
- Division of Cardiovascular Medicine, University of Arkansas for Medical Sciences and Central Arkansas Veterans Health Care System, Little Rock, 72205-7199, USA.
| | | | | | | |
Collapse
|
46
|
McEwen JE, Zimniak P, Mehta JL, Shmookler Reis RJ. Molecular pathology of aging and its implications for senescent coronary atherosclerosis. Curr Opin Cardiol 2005; 20:399-406. [PMID: 16093759 DOI: 10.1097/01.hco.0000175517.50181.89] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW This review highlights common mechanisms of organismal aging and inflammatory coronary atherosclerosis. RECENT FINDINGS A substantial body of evidence now indicates that aging is largely due to molecular damage inflicted by reactive oxygen species, electrophiles, and other reactive endobiotic and xenobiotic metabolites. Our understanding of genetic pathways regulating longevity began 12 years ago with the discovery that a developmental-arrest program in the nematode Caenorhabditis elegans also has marked effects on adult lifespan. This pathway, closely related to the insulin and insulinlike growth factor-signaling pathways of mammals, modulates longevity and stress resistance in several model organisms. Insulin-like signaling also has an impact on redox signaling, antioxidant defenses, and metabolic generation of oxidative stress. Recently, additional signaling pathways--involving Sirtuins, AMP kinase, Jun N-terminal kinase 1, and other master regulatory proteins--have been implicated in longevity and stress-resistance mechanisms. The inflammatory process involves acute production of reactive oxygen species by specialized cells responding to infection, exposure to toxins or allergens, cell damage, hypoxia, ischemia/reperfusion, and other factors, initiating signaling through several of these pathways. Free radical chain reactions arise from lipid oxidation and generate oxidized low-density lipoprotein, a powerful inflammatory signal and potentiator of atherosclerosis. Oxidized low-density lipoprotein accumulates in atherosclerotic arteries, particularly in rupture-prone regions. Inflammation involving oxidative stress, by way of the production of reactive oxygen species, is a hallmark of coronary atherosclerosis. SUMMARY Common pathways underlie both organismal aging and tissue-autonomous senescent pathologic processes, such as coronary atherosclerosis. The mechanisms discovered in model organisms may lead to pharmacotherapeutic interventions.
Collapse
Affiliation(s)
- Joan E McEwen
- Geriatric Research and Education Clinical Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | | | | |
Collapse
|
47
|
Chen K, Chen J, Liu Y, Xie J, Li D, Sawamura T, Hermonat PL, Mehta JL. Adhesion molecule expression in fibroblasts: alteration in fibroblast biology after transfection with LOX-1 plasmids. Hypertension 2005; 46:622-7. [PMID: 16116044 DOI: 10.1161/01.hyp.0000179045.95915.b0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The endothelial lectinlike, oxidatively (ox-) modified LDL receptor LOX-1 is a critical player in the pathogenesis of atherosclerosis and myocardial ischemia. Ox-LDL binding of LOX-1 results in the expression of various adhesion molecules, which attract monocytes to endothelial cells, an initial step in atherogenesis. We wished to examine the role of the ox-LDL/LOX-1 signaling pathway in fibroblasts, which naturally express low levels of LOX-1. Rat cardiac fibroblasts were transfected with either cytomegalovirus (CMV)-LOX-1wt (amino acids [aa] 1 to 273) or CMV-LOX-1(1-261) (an ox-LDL-binding negative mutant, aa 1 to 261) plasmid. Western blots showed that LOX-1 protein expression was increased significantly in cells transfected with CMV-LOX-1wt or CMV-LOX-1(1-261) plasmid (P<0.01 vs control). Fibroblasts transfected with CMV-LOX-1wt showed ox-LDL binding, whereas fibroblasts without transfection and those transfected with CMV-LOX-1(1-261) did not bind ox-LDL. Compared with untransfected cells, ox-LDL treatment (50 microg/mL, 24 hours) markedly induced the expression of the leukocyte adhesion molecules intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM)-1 as well as matrix metalloproteinase (MMP)-1 in cells transfected with CMV-LOX-1wt (P<0.05) but not in cells transfected with CMV-LOX-1(1-261). Concurrently, ox-LDL treatment enhanced the phosphorylation of p38 mitogen-activated protein kinase (MAPK) (P<0.05 vs control) in CMV-LOX-1wt-transfected cells. These data suggest that in cardiac fibroblasts, ox-LDL binds to LOX-1 and activates p38 MAPK, followed by the expression of ICAM-1, VCAM-1, and MMP-1. Thus, fibroblasts transform into an endothelial phenotype on transfection with CMV-LOX-1wt and subsequent exposure to ox-LDL. This study provides a useful model system (plasmid-transfected fibroblasts) to study the molecular biology of LOX-1.
Collapse
Affiliation(s)
- Kui Chen
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The 2 major general concepts about the cell biology of atherogenesis, growth of smooth muscle cells, and lipid accumulation in macrophages, ie, foam cell formation, have not been able to satisfactorily explain the genesis of acute coronary syndromes. Rather, the basic pathology behind the acute atherothrombotic events relates to erosion and rupture of unstable coronary plaques. At the cellular level, we now understand that a switch from cellular growth to cellular death, notably apoptosis, could be involved in turning at least some types of atherosclerotic plaques unstable. Because intimal cells require a proper matrix environment for normal function and survival, the vulnerability of an atherosclerotic plaque may critically depend on the integrity of the pericellular matrix of the plaque cells. In vitro studies have revealed that plaque-infiltrating inflammatory cells, such as macrophages, T-lymphocytes, and mast cells, by secreting a variety of proteases capable of degrading pericellular matrix components, induce death of endothelial cells and smooth muscle cells, and so provide a mechanistic explanation for inflammation-dependent plaque erosion and rupture. Thus, a novel link between inflammation and acute coronary syndromes is emerging. For a more explicit understanding of the role of proteases released by inflammatory cells in the conversion of a clinically silent plaque into a dangerous and potentially killing plaque, animal models of plaque erosion and rupture need to be established.
Collapse
|
49
|
Abstract
Apoptosis-inducing factor (AIF), which exerts its effect via a caspase-independent pathway, has been suggested to be a mediator of cell injury. We have recently identified the expression of AIF in human coronary artery endothelial cells (HCAECs). The present study was designed to determine the pathophysiological role of AIF in oxidized low-density lipoprotein (ox-LDL)-induced apoptosis of HCAECs. The cells were cultured and treated with ox-LDL (40 microg/ml) for 24 h. Ox-LDL increased AIF expression, caused apoptosis of HCAECs (determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining and large-scale DNA fragmentation), and induced translocation of AIF from the cytoplasm to the nucleus (fluorescence immunocytochemistry). Pretreatment of HCAECs with a caspase inhibitor (ZVAD-fmk) did not influence AIF-mediated apoptosis in response to ox-LDL. We developed a specific antisense oligonucleotide targeted to the 5'-TCG CCG AAA TGT TCC GGT GTG GA-3' portion of the human AIF mRNA sequence (AIF-AS) to bind a complementary sequence overlapping the translational start site. Pretreatment of cells with the AIF-AS for 24 h resulted in suppression of ox-LDL-upregulated AIF protein, as measured by immunoblot analysis. AIF-AS also reduced apoptosis and AIF translocation (P < 0.01 vs. ox-LDL alone). Next, we constructed a recombinant AIF plasmid by inserting whole-length AIF cDNA into the expression vector pcDNA3.1 with a cytomegalovirus promoter. HCAECs transfected with plasmid showed a two- to fourfold increase in AIF expression, extensive apoptosis, and translocation of AIF from the cytoplasm to the nucleus. These results from two approaches indicate that AIF plays an important role in ox-LDL-induced endothelial injury.
Collapse
Affiliation(s)
- Wenguang Zhang
- Div. of Cardiovascular Medicine, Univ. of Arkansas for Medical Sciences, 4301 W. Markham St., No. 532, Little Rock, AR 72205, USA
| | | | | |
Collapse
|
50
|
Mehta JL, Hu B, Chen J, Li D. Pioglitazone inhibits LOX-1 expression in human coronary artery endothelial cells by reducing intracellular superoxide radical generation. Arterioscler Thromb Vasc Biol 2003; 23:2203-8. [PMID: 12958047 DOI: 10.1161/01.atv.0000094411.98127.5f] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE LOX-1, a novel lectin-like receptor for oxidized LDL (ox-LDL), is expressed in response to ox-LDL, angiotensin II (Ang II), tumor necrosis factor (TNF)-alpha, and other stress stimuli. It is highly expressed in atherosclerotic tissues. Peroxisome proliferator-activated receptor (PPAR)-gamma ligands, such as pioglitazone, exert antiatherosclerotic effects. This study examined the regulation of LOX-1 expression in human coronary artery endothelial cells (HCAECs) by pioglitazone. METHODS AND RESULTS Fourth generation HCAECs were treated with ox-LDL, Ang II, or TNF-alpha with or without pioglitazone pretreatment. All 3 stimuli upregulated LOX-1 expression (mRNA and protein). Pioglitazone, in a concentration-dependent manner, reduced LOX-1 expression (P<0.01 versus ox-LDL, Ang II, or TNF-alpha alone). Ox-LDL, Ang II, and TNF-alpha each enhanced intracellular superoxide radical generation, and pioglitazone pretreatment reduced superoxide generation (P<0.01 versus ox-LDL, Ang II, or TNF-alpha). Furthermore, all 3 stimuli upregulated the expression of the transcription factors nuclear factor-kappaB and activator protein-1 (determined by electrophoretic mobility shift assay), and pioglitazone pretreatment reduced this expression (P<0.01 versus ox-LDL, Ang II, or TNF-alpha). To determine the biological significance of pioglitazone-mediated downregulation of LOX-1, we studied monocyte adhesion to ox-LDL-treated HCAECs. Pioglitazone reduced the adhesion of monocytes to activated HCAECs in a fashion similar to that produced by antisense to LOX-1 mRNA. CONCLUSIONS These observations suggest that the PPAR-gamma ligand pioglitazone reduces intracellular superoxide radical generation and subsequently reduces the expression of transcription factors, expression of the LOX-1 gene, and monocyte adhesion to activated endothelium. The salutary effect of PPAR-gamma ligands in atherogenesis may involve the inhibition of LOX-1 and the adhesion of monocytes to endothelium.
Collapse
Affiliation(s)
- Jawahar L Mehta
- Division of Cardiovascular Medicine, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, 4301 W Markham St, No. 532, Little Rock, AR 72205, USA.
| | | | | | | |
Collapse
|