1
|
Choi DH, Lee SM, Park BN, Lee MH, Yang DE, Son YK, Kim SE, An WS. Omega-3 Fatty Acids Modify Drp1 Expression and Activate the PINK1-Dependent Mitophagy Pathway in the Kidney and Heart of Adenine-Induced Uremic Rats. Biomedicines 2024; 12:2107. [PMID: 39335620 PMCID: PMC11429207 DOI: 10.3390/biomedicines12092107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Mitochondrial homeostasis is controlled by biogenesis, dynamics, and mitophagy. Mitochondrial dysfunction plays a central role in cardiovascular and renal disease and omega-3 fatty acids (FAs) are beneficial for cardiovascular disease. We investigated whether omega-3 fatty acids (FAs) regulate mitochondrial biogenesis, dynamics, and mitophagy in the kidney and heart of adenine-induced uremic rats. Eighteen male Sprague Dawley rats were divided into normal control, adenine control, and adenine with omega-3 FA groups. Using Western blot analysis, the kidney and heart expression of mitochondrial homeostasis-related molecules, including peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), dynamin-related protein 1 (Drp1), and phosphatase and tensin homolog-induced putative kinase 1 (PINK1) were investigated. Compared to normal, serum creatinine and heart weight/body weight in adenine control were increased and slightly improved in the omega-3 FA group. Compared to the normal controls, the expression of PGC-1α and PINK1 in the kidney and heart of the adenine group was downregulated, which was reversed after omega-3 FA supplementation. Drp1 was upregulated in the kidney but downregulated in the heart in the adenine group. Drp1 expression in the heart recovered in the omega-3 FA group. Mitochondrial DNA (mtDNA) was decreased in the kidney and heart of the adenine control group but the mtDNA of the heart was recovered in the omega-3 FA group. Drp1, which is related to mitochondrial fission, may function oppositely in the uremic kidney and heart. Omega-3 FAs may be beneficial for mitochondrial homeostasis by activating mitochondrial biogenesis and PINK1-dependent mitophagy in the kidney and heart of uremic rats.
Collapse
Affiliation(s)
- Dong Ho Choi
- Department of Internal Medicine, Good Moon Hwa Hospital, Busan 48735, Republic of Korea
| | - Su Mi Lee
- Department of Internal Medicine, Dong-A University, Busan 49201, Republic of Korea; (S.M.L.); (B.N.P.); (D.E.Y.); (Y.K.S.); (S.E.K.)
| | - Bin Na Park
- Department of Internal Medicine, Dong-A University, Busan 49201, Republic of Korea; (S.M.L.); (B.N.P.); (D.E.Y.); (Y.K.S.); (S.E.K.)
| | - Mi Hwa Lee
- Department of Anatomy and Cell Biology, Dong-A University, Busan 49201, Republic of Korea;
| | - Dong Eun Yang
- Department of Internal Medicine, Dong-A University, Busan 49201, Republic of Korea; (S.M.L.); (B.N.P.); (D.E.Y.); (Y.K.S.); (S.E.K.)
| | - Young Ki Son
- Department of Internal Medicine, Dong-A University, Busan 49201, Republic of Korea; (S.M.L.); (B.N.P.); (D.E.Y.); (Y.K.S.); (S.E.K.)
| | - Seong Eun Kim
- Department of Internal Medicine, Dong-A University, Busan 49201, Republic of Korea; (S.M.L.); (B.N.P.); (D.E.Y.); (Y.K.S.); (S.E.K.)
| | - Won Suk An
- Department of Internal Medicine, Dong-A University, Busan 49201, Republic of Korea; (S.M.L.); (B.N.P.); (D.E.Y.); (Y.K.S.); (S.E.K.)
- Medical Science Research Center, Dong-A University, Busan 49201, Republic of Korea
| |
Collapse
|
2
|
Yan R, Sun Y, Yang Y, Zhang R, Jiang Y, Meng Y. Mitochondria and NLRP3 inflammasome in cardiac hypertrophy. Mol Cell Biochem 2024; 479:1571-1582. [PMID: 37589860 DOI: 10.1007/s11010-023-04812-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/14/2023] [Indexed: 08/18/2023]
Abstract
Cardiac hypertrophy is the main adaptive response of the heart to chronic loads; however, prolonged or excessive hypertrophy promotes myocardial interstitial fibrosis, systolic dysfunction, and cardiomyocyte death, especially aseptic inflammation mediated by NLRP3 inflammasome, which can aggravate ventricular remodeling and myocardial damage, which is an important mechanism for the progression of heart failure. Various cardiac overloads can cause mitochondrial damage. In recent years, the mitochondria have been demonstrated to be involved in the inflammatory response during the development of cardiac hypertrophy in vitro and in vivo. As the NLRP3 inflammasome and mitochondria are regulators of inflammation and cardiac hypertrophy, we explored the potential functions of the NLRP3 inflammasome and mitochondrial dysfunction in cardiac hypertrophy. In particular, we proposed that the induction of mitochondrial dysfunction in cardiomyocytes may promote NLRP3-dependent inflammation during myocardial hypertrophy. Further in-depth studies could prompt valuable discoveries regarding the underlying molecular mechanisms of cardiac hypertrophy, reveal novel anti-inflammatory therapies for cardiac hypertrophy, and provide more desirable therapeutic outcomes for patients with cardiac hypertrophy.
Collapse
Affiliation(s)
- Ruyu Yan
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, NO.990 Qinghua Street, Changchun, Jilin, China
- Department of Pathology, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Yuxin Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yifan Yang
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, NO.990 Qinghua Street, Changchun, Jilin, China
| | - Rongchao Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yujiao Jiang
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, NO.990 Qinghua Street, Changchun, Jilin, China
| | - Yan Meng
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, NO.990 Qinghua Street, Changchun, Jilin, China.
| |
Collapse
|
3
|
Scudese E, Vue Z, Katti P, Marshall AG, Demirci M, Vang L, López EG, Neikirk K, Shao B, Le H, Stephens D, Hall DD, Rostami R, Rodman T, Kabugi K, Harris C, Shao J, Mungai M, AshShareef ST, Hicsasmaz I, Manus S, Wanjalla C, Whiteside A, Dasari R, Williams C, Damo SM, Gaddy JA, Glancy B, Dantas EHM, Kinder A, Kadam A, Tomar D, Scartoni F, Baffi M, McReynolds MR, Phillips MA, Cooper A, Murray SA, Quintana AM, Exil V, Kirabo A, Mobley BC, Hinton A. 3D Mitochondrial Structure in Aging Human Skeletal Muscle: Insights into MFN-2 Mediated Changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.13.566502. [PMID: 38168206 PMCID: PMC10760012 DOI: 10.1101/2023.11.13.566502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Age-related atrophy of skeletal muscle, is characterized by loss of mass, strength, endurance, and oxidative capacity during aging. Notably, bioenergetics and protein turnover studies have shown that mitochondria mediate this decline in function. Although exercise has been the only therapy to mitigate sarcopenia, the mechanisms that govern how exercise serves to promote healthy muscle aging are unclear. Mitochondrial aging is associated with decreased mitochondrial capacity, so we sought to investigate how aging affects mitochondrial structure and potential age-related regulators. Specifically, the three-dimensional (3D) mitochondrial structure associated with morphological changes in skeletal muscle during aging requires further elucidation. We hypothesized that aging causes structural remodeling of mitochondrial 3D architecture representative of dysfunction, and this effect is mitigated by exercise. We used serial block-face scanning electron microscopy to image human skeletal tissue samples, followed by manual contour tracing using Amira software for 3D reconstruction and subsequent analysis of mitochondria. We then applied a rigorous in vitro and in vivo exercise regimen during aging. Across 5 human cohorts, we correlate differences in magnetic resonance imaging, mitochondria 3D structure, exercise parameters, and plasma immune markers between young (under 50 years) and old (over 50 years) individuals. We found that mitochondria we less spherical and more complex, indicating age-related declines in contact site capacity. Additionally, aged samples showed a larger volume phenotype in both female and male humans, indicating potential mitochondrial swelling. Concomitantly, muscle area, exercise capacity, and mitochondrial dynamic proteins showed age-related losses. Exercise stimulation restored mitofusin 2 (MFN2), one such of these mitochondrial dynamic proteins, which we show is required for the integrity of mitochondrial structure. Furthermore, we show that this pathway is evolutionarily conserved as Marf, the MFN2 ortholog in Drosophila, knockdown alters mitochondrial morphology and leads to the downregulation of genes regulating mitochondrial processes. Our results define age-related structural changes in mitochondria and further suggest that exercise may mitigate age-related structural decline through modulation of mitofusin 2.
Collapse
Affiliation(s)
- Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
- Laboratory of Biosciences of Human Motricity (LABIMH) of the Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Sport Sciences and Exercise Laboratory (LaCEE), Catholic University of Petrópolis (UCP), Brazil
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Prassana Katti
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, AP, 517619, India
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrea G. Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Mert Demirci
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Edgar Garza López
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Han Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Dominique Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Duane D. Hall
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Rahmati Rostami
- Department of Genetic Medicine, Joan & Sanford I. Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Taylor Rodman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Chanel Harris
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Jianqiang Shao
- Central Microscopy Research Facility, Iowa City, IA 52242, USA
| | - Margaret Mungai
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Salma T. AshShareef
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Innes Hicsasmaz
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Sasha Manus
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Celestine Wanjalla
- Division of Infection Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Aaron Whiteside
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, 45435, USA
| | - Revathi Dasari
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, AP, 517619, India
| | - Clintoria Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, 45435, USA
| | - Steven M. Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, 37208, USA
| | - Jennifer A. Gaddy
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Tennessee Valley Healthcare Systems, U.S. Department of Veterans Affairs, Nashville, TN, 37212, USA
| | - Brian Glancy
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- NIAMS, NIH, Bethesda, MD, 20892, USA
| | - Estélio Henrique Martin Dantas
- Laboratory of Biosciences of Human Motricity (LABIMH) of the Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Doctor’s Degree Program in Nursing and Biosciences - PpgEnfBio, Federal University of the State of Rio de Janeiro - UNIRIO, Rio de Janeiro, RJ, Brazil
- Laboratory of Human Motricity Biosciences - LABIMH, Federal University of the State of Rio de Janeiro - UNIRIO, RJ, Brazil
- Brazilian Paralympic Academy – APB
- Doctor’s Degree Program in Health and Environment - PSA, Tiradentes University - UNIT, Aracaju, SE, Brazil
| | - André Kinder
- Artur Sá Earp Neto University Center - UNIFASE-FMP, Petrópolis Medical School, Brazil
| | - Ashlesha Kadam
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Dhanendra Tomar
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Fabiana Scartoni
- Laboratory of Biosciences of Human Motricity (LABIMH) of the Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Matheus Baffi
- Sport Sciences and Exercise Laboratory (LaCEE), Catholic University of Petrópolis (UCP), Brazil
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA, 16801, USA
| | - Mark A. Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Anthonya Cooper
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Sandra A. Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Anita M. Quintana
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, USA
| | - Vernat Exil
- Department of Pediatrics, Div. of Cardiology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Annet Kirabo
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bret C. Mobley
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
4
|
Shokri F, Zarei M, Komaki A, Raoufi S, Ramezani-Aliakbari F. Effect of diminazene on cardiac hypertrophy through mitophagy in rat models with hyperthyroidism induced by levothyroxine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1151-1162. [PMID: 37632551 DOI: 10.1007/s00210-023-02680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
Hyperthyroidism is associated with the alteration in molecular pathways involved in the regulation of mitochondrial mass and apoptosis, which contribute to the development of cardiac hypertrophy. Diminazene (DIZE) is an animal anti-infection drug that has shown promising effects on improving cardiovascular disease. The aim of the present study was to investigate the therapeutic effect of DIZE on cardiac hypertrophy and the signaling pathways involved in this process in the hyperthyroid rat model. Twenty male Wistar rats were equally divided into four groups: control, hyperthyroid, DIZE, and hyperthyroid + DIZE. After 28 days of treatment, serum thyroxine (T4) and thyroid stimulating hormone (TSH) level, cardiac hypertrophy indices, cardiac damage markers, cardiac malondialdehyde (MDA), and superoxide dismutase (SOD) level, the mRNA expression level of mitochondrial and apoptotic genes were evaluated. Hyperthyroidism significantly decreased the cardiac expression level of SIRT1/PGC1α and its downstream involved in the regulation of mitochondrial biogenesis, mitophagy, and antioxidant enzyme activities including TFAM, PINK1/MFN2, Drp1, and Nrf2, respectively, as well as stimulated mitochondrial-dependent apoptosis by reducing Bcl-2 expression and increasing Bax expression. Treatment with DIZE significantly reversed the downregulation of SIRT1, PGC1α, PINK1, MFN2, Drp1, and Nrf2 but did not significantly change the TFAM expression. Moreover, DIZE suppressed apoptosis by normalizing the cardiac expression levels of Bax and Bcl-2. DIZE is effective in attenuating hyperthyroidism-induced cardiac hypertrophy by modulating the mitophagy-related pathway, suppressing apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Farid Shokri
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Zarei
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Safoura Raoufi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Ramezani-Aliakbari
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
5
|
Yan CY, Ye Y, Mu HL, Wu T, Huang WS, Wu YP, Sun WY, Liang L, Duan WJ, Ouyang SH, Huang RT, Wang R, Sun XX, Kurihara H, Li YF, He RR. Prenatal hormone stress triggers embryonic cardiac hypertrophy outcome by ubiquitin-dependent degradation of mitochondrial mitofusin 2. iScience 2024; 27:108690. [PMID: 38235340 PMCID: PMC10792244 DOI: 10.1016/j.isci.2023.108690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/01/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Prenatal stress has been extensively documented as a contributing factor to adverse cardiac development and function in fetuses and infants. The release of glucocorticoids (GCs), identified as a significant stressor, may be a potential factor inducing cardiac hypertrophy. However, the underlying mechanism remains largely unknown. Herein, we discovered that corticosterone (CORT) overload induced cardiac hypertrophy in embryonic chicks and fetal mice in vivo, as well as enlarged cardiomyocytes in vitro. The impaired mitochondria dynamics were observed in CORT-exposed cardiomyocytes, accompanied by dysfunction in oxidative phosphorylation and ATP production. This phenomenon was found to be linked to decreased mitochondrial fusion protein mitofusin 2 (MFN2). Subsequently, we found that CORT facilitated the ubiquitin-proteasome-system-dependent degradation of MFN2 with an enhanced binding of appoptosin to MFN2, serving as the underlying cause. Collectively, our findings provide a comprehensive understanding of the mechanisms by which exposure to stress hormones induces cardiac hypertrophy in fetuses.
Collapse
Affiliation(s)
- Chang-Yu Yan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Yue Ye
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Han-Lu Mu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Tong Wu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Wen-Shan Huang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Yan-Ping Wu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Wan-Yang Sun
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Lei Liang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Wen-Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Shu-Hua Ouyang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Rui-Ting Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Rong Wang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xin-Xin Sun
- Jiujiang Maternal and Child Health Hospital, Jiujiang 332000, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
6
|
Rostamzadeh F, Najafipour H, Aminizadeh S, Jafari E. Therapeutic effects of the combination of moderate-intensity endurance training and MitoQ supplementation in rats with isoproterenol-induced myocardial injury: The role of mitochondrial fusion, fission, and mitophagy. Biomed Pharmacother 2024; 170:116020. [PMID: 38147733 DOI: 10.1016/j.biopha.2023.116020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023] Open
Abstract
INTRODUCTION Mitochondrial dysfunction causes myocardial disease. This study investigated the effects of MitoQ alone and in combination with moderate-intensity endurance training (EX) on cardiac function and content and mRNA expression of several proteins involved in mitochondrial quality control in isoproterenol (ISO)-induced heart injuries METHODS: Seven groups of CTL, ISO, ISO-EX, ISO-MitoQ-125, ISO-MitoQ-250, ISO-EX+MitoQ-125, and ISO-EX+MitoQ-250 were assigned. Rats were trained on a treadmill, and the MitoQ groups received MitoQ in drinking water for 8 weeks, starting one week after the induction of heart injury. Arterial pressure and cardiac function indices, mRNA expression, protein content, oxidant and antioxidant markers, fibrosis, and histopathological changes were assessed by physiograph, Real-Time PCR, immunofluorescence, calorimetry, Masson's trichrome, and H&E staining, respectively. RESULTS The impacts of MitoQ-125, EX+MitoQ-125, and EX+MitoQ-250 on arterial pressure and left ventricular systolic pressure were higher than MitoQ-250 or EX alone. ± dp/dt max were higher in ISO-EX+MitoQ-125 and ISO-EX+MitoQ-250 than ISO-MitoQ-125 and ISO-MitoQ-250 groups, respectively. Histopathological scores and fibrosis decreased in ISO-EX, ISO-MitoQ-125, ISO-EX+MitoQ-125, and ISO-EX+MitoQ-250 groups. The restoration of MFN2, PINK-1, and FIS-1 changes was higher in ISO-EX+MitoQ-125 and ISO-EX+MitoQ-250 than ISO-EX, ISO-MitoQ-125 and ISO-MitoQ-250 groups. The expression of MFN2 and PINK-1 was lower in ISO-MitoQ-125 and ISO-EX+MitoQ-125 than ISO and CTL groups. The expression of FIS-1 in ISO-EX and ISO-EX+MitoQ-250 increased compared to CTL and ISO groups. MDA decreased in ISO-MitoQ-125 and ISO-EX+MitoQ-125 groups. CONCLUSION Exercise and MitoQ combination have additive effects on cardiac function by modulating cardiac mitochondria quality. This study provided a possible therapy to treat heart injuries.
Collapse
Affiliation(s)
- Farzaneh Rostamzadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Soheil Aminizadeh
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Zhang R, Yang A, Zhang L, He L, Gu X, Yu C, Lu Z, Wang C, Zhou F, Li F, Ji L, Xing J, Guo H. MFN2 deficiency promotes cardiac response to hypobaric hypoxia by reprogramming cardiomyocyte metabolism. Acta Physiol (Oxf) 2023; 239:e14018. [PMID: 37401731 DOI: 10.1111/apha.14018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
AIM Under hypobaric hypoxia (HH), the heart triggers various defense mechanisms including metabolic remodeling against lack of oxygen. Mitofusin 2 (MFN2), located at the mitochondrial outer membrane, is closely involved in the regulation of mitochondrial fusion and cell metabolism. To date, however, the role of MFN2 in cardiac response to HH has not been explored. METHODS Loss- and gain-of-function approaches were used to investigate the role of MFN2 in cardiac response to HH. In vitro, the function of MFN2 in the contraction of primary neonatal rat cardiomyocytes under hypoxia was examined. Non-targeted metabolomics and mitochondrial respiration analyses, as well as functional experiments were performed to explore underlying molecular mechanisms. RESULTS Our data demonstrated that, following 4 weeks of HH, cardiac-specific MFN2 knockout (MFN2 cKO) mice exhibited significantly better cardiac function than control mice. Moreover, restoring the expression of MFN2 clearly inhibited the cardiac response to HH in MFN2 cKO mice. Importantly, MFN2 knockout significantly improved cardiac metabolic reprogramming during HH, resulting in reduced capacity for fatty acid oxidation (FAO) and oxidative phosphorylation, and increased glycolysis and ATP production. In vitro data showed that down-regulation of MFN2 promoted cardiomyocyte contractility under hypoxia. Interestingly, increased FAO through palmitate treatment decreased contractility of cardiomyocyte with MFN2 knockdown under hypoxia. Furthermore, treatment with mdivi-1, an inhibitor of mitochondrial fission, disrupted HH-induced metabolic reprogramming and subsequently promoted cardiac dysfunction in MFN2-knockout hearts. CONCLUSION Our findings provide the first evidence that down-regulation of MFN2 preserves cardiac function in chronic HH by promoting cardiac metabolic reprogramming.
Collapse
Affiliation(s)
- Ru Zhang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China
- Department of Aerospace Physiology, Air Force Medical University, Xi'an, China
| | - Ailin Yang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China
| | - Lin Zhang
- Department of Aerospace Physiology, Air Force Medical University, Xi'an, China
| | - Linjie He
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China
| | - Xiaoming Gu
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China
| | - Caiyong Yu
- Military Medical Innovation Center, Air Force Medical University, Xi'an, China
| | - Zhenxing Lu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Chuang Wang
- College of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Feng Zhou
- Department of General Surgery, The 71st Group Army Hospital of the People's Liberation Army, Xuzhou, China
| | - Fei Li
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Lele Ji
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China
- Experimental Teaching Center of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China
| | - Haitao Guo
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China
| |
Collapse
|
8
|
Da Dalt L, Cabodevilla AG, Goldberg IJ, Norata GD. Cardiac lipid metabolism, mitochondrial function, and heart failure. Cardiovasc Res 2023; 119:1905-1914. [PMID: 37392421 PMCID: PMC10681665 DOI: 10.1093/cvr/cvad100] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 07/03/2023] Open
Abstract
A fine balance between uptake, storage, and the use of high energy fuels, like lipids, is crucial in the homeostasis of different metabolic tissues. Nowhere is this balance more important and more precarious than in the heart. This highly energy-demanding muscle normally oxidizes almost all the available substrates to generate energy, with fatty acids being the preferred source under physiological conditions. In patients with cardiomyopathies and heart failure, changes in the main energetic substrate are observed; these hearts often prefer to utilize glucose rather than oxidizing fatty acids. An imbalance between uptake and oxidation of fatty acid can result in cellular lipid accumulation and cytotoxicity. In this review, we will focus on the sources and uptake pathways used to direct fatty acids to cardiomyocytes. We will then discuss the intracellular machinery used to either store or oxidize these lipids and explain how disruptions in homeostasis can lead to mitochondrial dysfunction and heart failure. Moreover, we will also discuss the role of cholesterol accumulation in cardiomyocytes. Our discussion will attempt to weave in vitro experiments and in vivo data from mice and humans and use several human diseases to illustrate metabolism gone haywire as a cause of or accomplice to cardiac dysfunction.
Collapse
Affiliation(s)
- Lorenzo Da Dalt
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan, Italy
| | - Ainara G Cabodevilla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, 550 1st Ave., New York, NY, USA
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, 550 1st Ave., New York, NY, USA
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan, Italy
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Via Massimo Gorki 50, Cinisello Balsamo, Italy
| |
Collapse
|
9
|
Yang A, Guo L, Zhang Y, Qiao C, Wang Y, Li J, Wang M, Xing J, Li F, Ji L, Guo H, Zhang R. MFN2-mediated mitochondrial fusion facilitates acute hypobaric hypoxia-induced cardiac dysfunction by increasing glucose catabolism and ROS production. Biochim Biophys Acta Gen Subj 2023:130413. [PMID: 37331409 DOI: 10.1016/j.bbagen.2023.130413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Rapid ascent to high-altitude environment which is characterized by acute hypobaric hypoxia (HH) may increase the risk of cardiac dysfunction. However, the potential regulatory mechanisms and prevention strategies for acute HH-induced cardiac dysfunction have not been fully clarified. Mitofusin 2 (MFN2) is highly expressed in the heart and is involved in the regulation of mitochondrial fusion and cell metabolism. To date, however, the significance of MFN2 in the heart under acute HH has not been investigated. METHODS AND RESULTS Our study revealed that MFN2 upregulation in hearts of mice during acute HH led to cardiac dysfunction. In vitro experiments showed that the decrease in oxygen concentration induced upregulation of MFN2, impairing cardiomyocyte contractility and increasing the risk of QT prolongation. Additionally, acute HH-induced MFN2 upregulation promoted glucose catabolism and led to excessive mitochondrial reactive oxygen species (ROS) production in cardiomyocytes, ultimately resulting in decreased mitochondrial function. Furthermore, co-immunoprecipitation (co-IP) and mass spectrometry analyses indicated that MFN2 interacted with the NADH-ubiquinone oxidoreductase 23 kDa subunit (NDUFS8). Specifically, acute HH-induced MFN2 upregulation increased NDUFS8-dependent complex I activity. CONCLUSIONS Taken together, our studies provide the first direct evidence that MFN2 upregulation exacerbates acute HH-induced cardiac dysfunction by increasing glucose catabolism and ROS production. GENERAL SIGNIFICANCE Our studies indicate that MFN2 may be a promising therapeutic target for cardiac dysfunction under acute HH.
Collapse
Affiliation(s)
- Ailin Yang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Lifei Guo
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yanfang Zhang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Chenjin Qiao
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yijin Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jiaying Li
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Min Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China; Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an 710032, China
| | - Fei Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Lele Ji
- Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Haitao Guo
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an 710032, China.
| | - Ru Zhang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
10
|
Luan Y, Guo G, Luan Y, Yang Y, Yuan R. Single-cell transcriptional profiling of hearts during cardiac hypertrophy reveals the role of MAMs in cardiomyocyte subtype switching. Sci Rep 2023; 13:8339. [PMID: 37221368 DOI: 10.1038/s41598-023-35464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/18/2023] [Indexed: 05/25/2023] Open
Abstract
Pathological cardiac hypertrophy is the main predecessor of heart failure. Its pathology is sophisticated, and its progression is associated with multiple cellular processes. To explore new therapeutic approaches, more precise examination of cardiomyocyte subtypes and involved biological processes is required in response to hypertrophic stimuli. Mitochondria and the endoplasmic reticulum (ER) are two crucial organelles associated with the progression of cardiac hypertrophy and are connected through junctions known as mitochondria-associated endoplasmic reticulum membranes (MAMs). Although MAM genes are altered in cardiac hypertrophy, the importance of MAMs in cardiac hypertrophy and the expression pattern of MAMs in certain cardiac cell types require a comprehensive analysis. In this study, we analyzed the temporal expression of MAM proteins in the process of cardiac hypertrophy and observed that MAM-related proteins preferentially accumulated in cardiomyocytes at the initial stage of cardiac hypertrophy and underwent a gradual decline, which was synchronized with the proportion of two cardiomyocyte subtypes (CM2 and CM3). Meanwhile, these subtypes went through a functional switch during cardiac hypertrophy. Trajectory analysis suggested that there was a differentiation trajectory of cardiomyocyte subtypes from high to low MAM protein expression. Distinct regulon modules across different cardiomyocyte cell types were revealed by transcriptional regulatory network analysis. Furthermore, scWGCNA revealed that MAM-related genes were clustered into a module that correlated with diabetic cardiomyopathy. Altogether, we identified cardiomyocyte subtype transformation and the potential critical transcription factors involved, which may serve as therapeutic targets in combating cardiac hypertrophy.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Guangyu Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Ying Luan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
| | - Ruixia Yuan
- Clinical Big Data Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
11
|
Liu X, Guo C, Zhang Q. Novel insights into the involvement of mitochondrial fission/fusion in heart failure: From molecular mechanisms to targeted therapies. Cell Stress Chaperones 2023; 28:133-144. [PMID: 36652120 PMCID: PMC10050249 DOI: 10.1007/s12192-023-01321-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/19/2023] Open
Abstract
Mitochondria are dynamic organelles that alter their morphology through fission (fragmentation) and fusion (elongation). These morphological changes correlate highly with mitochondrial functional adaptations to stressors, such as hypoxia, pressure overload, and inflammation, and are important in the setting of heart failure. Pathological mitochondrial remodeling, characterized by increased fission and reduced fusion, is associated with impaired mitochondrial respiration, increased mitochondrial oxidative stress, abnormal cytoplasmic calcium handling, and increased cardiomyocyte apoptosis. Considering the impact of the mitochondrial morphology on mitochondrial behavior and cardiomyocyte performance, altered mitochondrial dynamics could be expected to induce or exacerbate the pathogenesis and progression of heart failure. However, whether alterations in mitochondrial fission and fusion accelerate or retard the progression of heart failure has been the subject of intense debate. In this review, we first describe the physiological processes and regulatory mechanisms of mitochondrial fission and fusion. Then, we extensively discuss the pathological contributions of mitochondrial fission and fusion to heart failure. Lastly, we examine potential therapeutic approaches targeting mitochondrial fission/fusion to treat patients with heart failure.
Collapse
Affiliation(s)
- Xinxin Liu
- Department of First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Chenchen Guo
- Neck, Shoulder, Waist and Leg Pain Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiming Zhang
- Department of First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China.
| |
Collapse
|
12
|
Zhang Y, Yao J, Zhang M, Wang Y, Shi X. Mitochondria-associated endoplasmic reticulum membranes (MAMs): Possible therapeutic targets in heart failure. Front Cardiovasc Med 2023; 10:1083935. [PMID: 36776252 PMCID: PMC9909017 DOI: 10.3389/fcvm.2023.1083935] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAMs) are formed by physical connections of the endoplasmic reticulum and mitochondria. Over the past decades, great breakthroughs have been made in the study of ER-mitochondria communications. It has been identified that MAM compartments are pivotal in regulating neurological function. Accumulating studies indicated that MAMs participate in the development of cardiovascular diseases. However, the specific role of MAMs in heart failure remains to be fully understood. In this article, we first summarize the structural and functional properties of MAM and MAM-associated proteins. We then focus on the roles of MAMs in myocardial infarction, cardiomyopathy and heart failure, and discuss the involvement of MAMs in disease progression and treatment. Elucidating these issues may provide important insights into therapeutic intervention of heart failure.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Jiayu Yao
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Mingming Zhang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Yushan Wang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Xingjuan Shi
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| |
Collapse
|
13
|
Jiang X, Zhang K, Gao C, Ma W, Liu M, Guo X, Bao G, Han B, Hu H, Zhao Z. Activation of FMS-like tyrosine kinase 3 protects against isoprenaline-induced cardiac hypertrophy by improving autophagy and mitochondrial dynamics. FASEB J 2022; 36:e22672. [PMID: 36440960 DOI: 10.1096/fj.202200419rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022]
Abstract
FMS-like receptor tyrosine kinase 3 (Flt3) expression was reported to increase in the heart in response to pathological stress, but the role of Flt3 activation and its underlying mechanisms remain poorly elucidated. This study was designed to investigate the role of Flt3 activation in sympathetic hyperactivity-induced cardiac hypertrophy and its mechanisms through autophagy and mitochondrial dynamics. In vivo, cardiac hypertrophy was established by subcutaneous injection of isoprenaline (6 mg/kg·day) in C57BL/6 mice for 7 consecutive days. The Flt3-ligand intervention was launched 2 h prior to isoprenaline each day. In vitro, experiments of cardiomyocyte hypertrophy, autophagy, and mitochondrial dynamics were performed in neonatal rat cardiomyocytes (NRCMs). Our results revealed that the expression level of Flt3 protein was significantly increased in the hypertrophic myocardium provoked by isoprenaline administration. Flt3-ligand intervention alleviated isoprenaline-induced cardiac oxidative stress, hypertrophy, fibrosis, and contractile dysfunction. Isoprenaline stimulation impaired autophagic flux in hypertrophic mouse hearts, supported by the accumulation of LC3II and P62 proteins, while Flt3-ligand restored the impairment of autophagic flux. Flt3 activation normalized the imbalance of mitochondrial fission and fusion in the hearts of mice evoked by isoprenaline as evidenced by the neutralization of elevated mitochondrial fission markers and reduced mitochondrial fusion markers. In NRCMs, Flt3-ligand treatment attenuated isoprenaline-stimulated hypertrophy, which was abolished by a Flt3-specific blocker AC220. Activating Flt3 reversed isoprenaline-induced autophagosome accumulation and impairment of autophagic flux probably by enhancing SIRT1 expression and consequently TFEB nuclear translocation. Flt3 activation improved the imbalance of mitochondrial dynamics induced by isoprenaline in NRCMs through the SIRT1/P53 pathway. Activation of Flt3 mitigated ISO-stimulated hypertrophy probably involves the restoration of autophagic flux and balance of mitochondrial dynamics. Therefore, activation of Flt3 attenuates isoprenaline-induced cardiac hypertrophy in vivo and in vitro, the potential mechanism probably attributes to SIRT1/TFEB-mediated autophagy promotion and SIRT1/P53-mediated mitochondrial dynamics balance. These findings suggest that activation of Flt3 may be a novel target for protection against cardiac remodeling and heart failure during sympathetic hyperactivity.
Collapse
Affiliation(s)
- Xixi Jiang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Kaina Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chenying Gao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wenzhuo Ma
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Mengqing Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xinyu Guo
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Gaowa Bao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Bing Han
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Hao Hu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zhenghang Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
14
|
Guajardo-Correa E, Silva-Agüero JF, Calle X, Chiong M, Henríquez M, García-Rivas G, Latorre M, Parra V. Estrogen signaling as a bridge between the nucleus and mitochondria in cardiovascular diseases. Front Cell Dev Biol 2022; 10:968373. [PMID: 36187489 PMCID: PMC9516331 DOI: 10.3389/fcell.2022.968373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Epidemiological studies indicate that pre-menopausal women are more protected against the development of CVDs compared to men of the same age. This effect is attributed to the action/effects of sex steroid hormones on the cardiovascular system. In this context, estrogen modulates cardiovascular function in physiological and pathological conditions, being one of the main physiological cardioprotective agents. Here we describe the common pathways and mechanisms by which estrogens modulate the retrograde and anterograde communication between the nucleus and mitochondria, highlighting the role of genomic and non-genomic pathways mediated by estrogen receptors. Additionally, we discuss the presumable role of bromodomain-containing protein 4 (BRD4) in enhancing mitochondrial biogenesis and function in different CVD models and how this protein could act as a master regulator of estrogen protective activity. Altogether, this review focuses on estrogenic control in gene expression and molecular pathways, how this activity governs nucleus-mitochondria communication, and its projection for a future generation of strategies in CVDs treatment.
Collapse
Affiliation(s)
- Emanuel Guajardo-Correa
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Juan Francisco Silva-Agüero
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ximena Calle
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
- Center of Applied Nanoscience (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Mario Chiong
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Mauricio Henríquez
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
| | - Gerardo García-Rivas
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
- Tecnológico de Monterrey, The Institute for Obesity Research, Hospital Zambrano Hellion, San Pedro Garza Garcia, Nuevo León, Mexico
| | - Mauricio Latorre
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
| |
Collapse
|
15
|
Lin J, Duan J, Wang Q, Xu S, Zhou S, Yao K. Mitochondrial Dynamics and Mitophagy in Cardiometabolic Disease. Front Cardiovasc Med 2022; 9:917135. [PMID: 35783853 PMCID: PMC9247260 DOI: 10.3389/fcvm.2022.917135] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/20/2022] [Indexed: 12/17/2022] Open
Abstract
Mitochondria play a key role in cellular metabolism. Mitochondrial dynamics (fusion and fission) and mitophagy, are critical to mitochondrial function. Fusion allows organelles to share metabolites, proteins, and mitochondrial DNA, promoting complementarity between damaged mitochondria. Fission increases the number of mitochondria to ensure that they are passed on to their offspring during mitosis. Mitophagy is a process of selective removal of excess or damaged mitochondria that helps improve energy metabolism. Cardiometabolic disease is characterized by mitochondrial dysfunction, high production of reactive oxygen species, increased inflammatory response, and low levels of ATP. Cardiometabolic disease is closely related to mitochondrial dynamics and mitophagy. This paper reviewed the mechanisms of mitochondrial dynamics and mitophagy (focus on MFN1, MFN2, OPA1, DRP1, and PINK1 proteins) and their roles in diabetic cardiomyopathy, myocardial infarction, cardiac hypertrophy, heart failure, atherosclerosis, and obesity.
Collapse
Affiliation(s)
- Jianguo Lin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinlong Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingqing Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Siyu Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Simin Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kuiwu Yao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Kuiwu Yao
| |
Collapse
|
16
|
Shackebaei D, Hesari M, Ramezani-Aliakbari S, Hoseinkhani Z, Ramezani-Aliakbari F. Gallic acid protects against isoproterenol-induced cardiotoxicity in rats. Hum Exp Toxicol 2022; 41:9603271211064532. [PMID: 35193428 DOI: 10.1177/09603271211064532] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Gallic acid (GA) is a polyphenolic agent with interesting pharmacological impacts on the cardiovascular system. OBJECTIVE The present study purposed to study the protective effects of GA at 25 and 50 mg/kg against isoproterenol (ISO)-induced cardiac damage in ischemia/reperfusion (I/R) in rats. METHODS Male Wistar rats were randomly assigned into six groups: Control, Control treated with GA at 25 mg/kg (GA25), Control treated with GA at 50 mg/kg (GA50), Hypertrophic rats induced by ISO (ISO), Hypertrophic rats treated with GA at 25 mg/kg (ISO+GA25), and Hypertrophic rats treated with GA at 50 mg/kg (ISO+GA50). Heart isolation was performed to induce a cardiac I/R injury model. Cardiac hemodynamic parameters were recorded. Serum Lactate Dehydrogenase (LDH) and Creatine Kinase-MB (CK-MB) and cardiac Superoxide dismutases (SOD) levels were evaluated. The gene expression of Sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) was assessed. RESULTS We found that GA at 50 mg/kg was significantly increased cardiac function at post I/R period in ISO-induced hypertrophic hearts. Moreover, it suppressed cardiac hypertrophy, the serum LDH and CK-MB levels in ISO injected rats. Administration of GA at 50 mg/kg was significantly increased SOD level and SERCA2a gene expression in the hypertrophic hearts. CONCLUSION GA at 50 mg/kg could improve cardiac performance possibly by increasing antioxidant defense enzymes, reducing cell damage, and enhancing SERCA2a gene expression in hypertrophic heart induced by ISO in I/R injury conditions.
Collapse
Affiliation(s)
- Dareuosh Shackebaei
- Medical Biology Research Center, Health Technology Institute, 48464Kermanshah University of Medical Sciences, Kermanshah, Iran.,Cardiovascular Research Center, 48464Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahvash Hesari
- Medical Biology Research Center, Health Technology Institute, 48464Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soudabeh Ramezani-Aliakbari
- Medical Biology Research Center, Health Technology Institute, 48464Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical School, 48464Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Hoseinkhani
- Medical Biology Research Center, Health Technology Institute, 48464Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Ramezani-Aliakbari
- Medical Biology Research Center, Health Technology Institute, 48464Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Physiology, School of Medicine, 48430Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
17
|
Aung LHH, Jumbo JCC, Wang Y, Li P. Therapeutic potential and recent advances on targeting mitochondrial dynamics in cardiac hypertrophy: A concise review. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:416-443. [PMID: 34484866 PMCID: PMC8405900 DOI: 10.1016/j.omtn.2021.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pathological cardiac hypertrophy begins as an adaptive response to increased workload; however, sustained hemodynamic stress will lead it to maladaptation and eventually cardiac failure. Mitochondria, being the powerhouse of the cells, can regulate cardiac hypertrophy in both adaptive and maladaptive phases; they are dynamic organelles that can adjust their number, size, and shape through a process called mitochondrial dynamics. Recently, several studies indicate that promoting mitochondrial fusion along with preventing mitochondrial fission could improve cardiac function during cardiac hypertrophy and avert its progression toward heart failure. However, some studies also indicate that either hyperfusion or hypo-fission could induce apoptosis and cardiac dysfunction. In this review, we summarize the recent knowledge regarding the effects of mitochondrial dynamics on the development and progression of cardiac hypertrophy with particular emphasis on the regulatory role of mitochondrial dynamics proteins through the genetic, epigenetic, and post-translational mechanisms, followed by discussing the novel therapeutic strategies targeting mitochondrial dynamic pathways.
Collapse
Affiliation(s)
- Lynn Htet Htet Aung
- Center for Molecular Genetics, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.,Center for Bioinformatics, Institute for Translational Medicine, School of Basic Science, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Juan Carlos Cueva Jumbo
- School of Preclinical Medicine, Nanobody Research Center, Guangxi Medical University, Nanning 530021, China
| | - Yin Wang
- Center for Molecular Genetics, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Center for Molecular Genetics, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.,Center for Bioinformatics, Institute for Translational Medicine, School of Basic Science, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
18
|
Xu X, Su YL, Shi JY, Lu Q, Chen C. MicroRNA-17-5p Promotes Cardiac Hypertrophy by Targeting Mfn2 to Inhibit Autophagy. Cardiovasc Toxicol 2021; 21:759-771. [PMID: 34120306 DOI: 10.1007/s12012-021-09667-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 06/03/2021] [Indexed: 12/21/2022]
Abstract
Pathological cardiac hypertrophy is the leading cause of heart failure, and miRNAs have been recognized as key factors in cardiac hypertrophy. This study aimed to elucidate whether miR-17-5p affects cardiac hypertrophy by targeting the mitochondrial fusion protein mitofusin 2 (Mfn2)-mediated phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway and regulating autophagy. miR-17-5p expression was shown to be upregulated both in vivo and in vitro. In addition, a miR-17-5p inhibitor significantly reversed AngII-induced cell hypertrophy in neonatal rat left ventricle myocytes (NRVMs). In contrast to miR-17-5p expression, Mfn2 expression was inhibited in rat hearts at 4 weeks after transverse aortic constriction (TAC) and in an Ang II-induced cell hypertrophy model. We examined miR-17-5p targeting of Mfn2 by dual luciferase reporter and Western blot assays. In addition, we also verified the relationship between Mfn2 and the PI3K/AKT/mTOR pathway. Mfn2 overexpression attenuated miR-17-5p-induced cell hypertrophy, and in rat myocardial tissue, miR-17-5p induced autophagy inhibition. In summary, the results of the present study demonstrated that miR-17-5p inhibits Mfn2 expression, activates the PI3K/AKT/mTOR pathway and suppresses autophagy to promote cardiac hypertrophy.
Collapse
Affiliation(s)
- Xuan Xu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yi-Ling Su
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jia-Yu Shi
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Chu Chen
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
19
|
Abstract
Cardiac hypertrophy (CH) is generally considered adaptive responses that may occur after myocardial infarction, pressure overload, volume overload, inflammatory heart muscle disease, or idiopathic dilated cardiomyopathy, whereas long-term stimulation eventually leads to heart failure (HF). However, the current molecular mechanisms involved in CH are unclear. Recently, increasing evidences reveal that long non-coding RNAs (lncRNAs) play vital roles in CH. Different lncRNAs can promote or inhibit the pathological process of CH by different mechanisms, while the regulation of lncRNAs expression can improve CH. Thus, CH-related lncRNAs may become a novel field of research on CH.
Collapse
Affiliation(s)
- Jinghui Sun
- Cardiovascular Disease Research Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Haidian District, Beijing, 100091, China
| | - Chenglong Wang
- Cardiovascular Disease Research Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Haidian District, Beijing, 100091, China.
| |
Collapse
|
20
|
Chen L, Liu B, Qin Y, Li A, Gao M, Liu H, Gong G. Mitochondrial Fusion Protein Mfn2 and Its Role in Heart Failure. Front Mol Biosci 2021; 8:681237. [PMID: 34026850 PMCID: PMC8138128 DOI: 10.3389/fmolb.2021.681237] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Mitofusin 2 (Mfn2) is a transmembrane GTPase located on the mitochondrial outer membrane that contributes to mitochondrial network regulation. It is an essential multifunctional protein that participates in various biological processes under physical and pathological conditions, including mitochondrial fusion, reticulum–mitochondria contacts, mitochondrial quality control, and apoptosis. Mfn2 dysfunctions have been found to contribute to cardiovascular diseases, such as ischemia-reperfusion injury, heart failure, and dilated cardiomyopathy. Here, this review mainly focuses on what is known about the structure and function of Mfn2 and its crucial role in heart failure.
Collapse
Affiliation(s)
- Lei Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Bilin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuan Qin
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Anqi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hanyu Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Gastroenterology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
21
|
Gong Y, Lin J, Ma Z, Yu M, Wang M, Lai D, Fu G. Mitochondria-associated membrane-modulated Ca 2+ transfer: A potential treatment target in cardiac ischemia reperfusion injury and heart failure. Life Sci 2021; 278:119511. [PMID: 33864818 DOI: 10.1016/j.lfs.2021.119511] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
Effective Ca2+ dependent mitochondrial energy supply is imperative for proper cardiac contractile activity, while disruption of Ca2+ homeostasis participates in the pathogenesis of multiple human diseases. This phenomenon is particularly prominent in cardiac ischemia and reperfusion (I/R) and heart failure, both of which require strict clinical intervention. The interface between endoplasmic reticula (ER) and mitochondria, designated the mitochondria-associated membrane (MAM), is now regarded as a crucial mediator of Ca2+ transportation. Thus, interventions targeting this physical and functional coupling between mitochondria and the ER are highly desirable. Increasing evidence supports the notion that restoration, and maintenance, of the physiological contact between these two organelles can improve mitochondrial function, while inhibiting cell death, thereby sufficiently ameliorating I/R injury and heart failure development. A better understanding regarding the underlying mechanism of MAM-mediated transport will pave the way for identification of novel treatment approaches for heart disease. Therefore, in this review, we summarize the crucial functions and potential mechanisms of MAMs in the pathogenesis of I/R and heart failure.
Collapse
Affiliation(s)
- Yingchao Gong
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, China
| | - Jun Lin
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, China
| | - Zetao Ma
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, China
| | - Mei Yu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, China
| | - Meihui Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, China.
| | - Dongwu Lai
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, China.
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, China.
| |
Collapse
|
22
|
Li A, Gao M, Jiang W, Qin Y, Gong G. Mitochondrial Dynamics in Adult Cardiomyocytes and Heart Diseases. Front Cell Dev Biol 2020; 8:584800. [PMID: 33392184 PMCID: PMC7773778 DOI: 10.3389/fcell.2020.584800] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are the powerhouse organelles of cells; they participate in ATP generation, calcium homeostasis, oxidative stress response, and apoptosis. Thus, maintenance of mitochondrial function is critical for cellular functions. As highly dynamic organelles, the function of mitochondria is dynamically regulated by their fusion and fission in many cell types, which regulate mitochondrial morphology, number, distribution, metabolism, and biogenesis in cells. Mature rod-shaped cardiomyocytes contain thousands of end-to-end contacted spheroid mitochondria. The movement of mitochondria in these cells is limited, which hinders the impetus for research into mitochondrial dynamics in adult cardiomyocytes. In this review, we discuss the most recent progress in mitochondrial dynamics in mature (adult) cardiomyocytes and the relationship thereof with heart diseases.
Collapse
Affiliation(s)
- Anqi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenting Jiang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuan Qin
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
23
|
The Expression of microRNA in Adult Rat Heart with Isoproterenol-Induced Cardiac Hypertrophy. Cells 2020; 9:cells9051173. [PMID: 32397324 PMCID: PMC7290591 DOI: 10.3390/cells9051173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiac hypertrophy is a common pathological condition and an independent risk factor that triggers cardiovascular morbidity. As an important epigenetic regulator, miRNA is widely involved in many biological processes. In this study, miRNAs expressed in rat hearts that underwent isoprenaline-induced cardiac hypertrophy were identified using high-throughput sequencing, and functional verification of typical miRNAs was performed using rat primary cardiomyocytes. A total of 623 miRNAs were identified, of which 33 were specifically expressed in cardiac hypertrophy rats. The enriched pathways of target genes of differentially expressed miRNAs included the FoxO signaling pathway, dopaminergic synapse, Wnt signaling pathway, MAPK (mitogen-activated protein kinase) signaling pathway, and Hippo signaling pathway. Subsequently, miR-144 was the most differentially expressed miRNA and was subsequently selected for in vitro validation. Inhibition of miR-144 expression in primary myocardial cells caused up-regulation of cardiac hypertrophy markers atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). The dual luciferase reporter system showed that ANP may be a target gene of miR-144. Long non-coding RNA myocardial infarction associated transcript (LncMIAT) is closely related to heart disease, and here, we were the first to discover that LncMIAT may act as an miR-144 sponge in isoproterenol-induced cardiac hypertrophy. Taken together, these results enriched the understanding of miRNA in regulating cardiac hypertrophy and provided a reference for preventing and treating cardiac hypertrophy.
Collapse
|
24
|
Qiu Y, Cheng R, Liang C, Yao Y, Zhang W, Zhang J, Zhang M, Li B, Xu C, Zhang R. MicroRNA-20b Promotes Cardiac Hypertrophy by the Inhibition of Mitofusin 2-Mediated Inter-organelle Ca 2+ Cross-Talk. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1343-1356. [PMID: 32160705 PMCID: PMC7036712 DOI: 10.1016/j.omtn.2020.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/26/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
MicroRNA (miRNA) and mitofusin-2 (Mfn2) are important in the development of cardiac hypertrophy, but the target relationship and mechanism associated with Ca2+ handling between SR and mitochondria under hypertrophic condition is not established. Mfn2 expression, Mfn2-mediated interorganelle Ca2+ cross-talk, and target regulation by miRNA-20b (miR-20b) were evaluated using animal/cellular hypertrophic models with state-of-the-art techniques. The results demonstrated that Mfn2 was downregulated and miR-20b was upregulated upon the target binding profile under hypertrophic condition. Our data showed that miR-20b induced cardiac hypertrophy that was reversed by recombinant adeno-associated virus vector 9 (rAAV9)-anti-miR-20b or miR-20b antisense inhibitor (AMO-20b). The deleterious action of miR-20b on Mfn2 expression/function and mitochondrial ATP synthesis was observed and reversed by rAAV9-anti-miR-20b or AMO-20b. The targeted regulation of miR-20b on Mfn2 was confirmed by luciferase reporter and miRNA-masking. Importantly, the facts that mitochondrial calcium uniporter (MCU) activation by Spermine increased the cytosolic Ca2+ into mitochondria, manifested as enhanced histamine-mediated Ca2+ release from mitochondrial, suggesting that Ca2+ reuptake/buffering capability of mitochondria to cytosolic Ca2+ is injured by miR-20b-mediated Mfn2 signaling, by which leads cytosolic Ca2+ overload and cardiac hypertrophy through Ca2+ signaling pathway. In conclusion, pro-hypertonic miR-20b plays crucial roles in cardiac hypertrophy through downregulation of Mfn2 and cytosolic Ca2+ overload by weakening the buffering capability of mitochondria.
Collapse
Affiliation(s)
- Yue Qiu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Rongchao Cheng
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Chaoqi Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yuan Yao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Wenhao Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jie Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Mingyu Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Baiyan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Chaoqian Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Department of Pharmacology, Mudanjiang Medical University, Mudanjiang 157011, China.
| | - Rong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
25
|
Bonora M, Wieckowski MR, Sinclair DA, Kroemer G, Pinton P, Galluzzi L. Targeting mitochondria for cardiovascular disorders: therapeutic potential and obstacles. Nat Rev Cardiol 2019; 16:33-55. [PMID: 30177752 DOI: 10.1038/s41569-018-0074-0] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A large body of evidence indicates that mitochondrial dysfunction has a major role in the pathogenesis of multiple cardiovascular disorders. Over the past 2 decades, extraordinary efforts have been focused on the development of agents that specifically target mitochondria for the treatment of cardiovascular disease. Despite such an intensive wave of investigation, no drugs specifically conceived to modulate mitochondrial functions are currently available for the clinical management of cardiovascular disease. In this Review, we discuss the therapeutic potential of targeting mitochondria in patients with cardiovascular disease, examine the obstacles that have restrained the development of mitochondria-targeting agents thus far, and identify strategies that might empower the full clinical potential of this approach.
Collapse
Affiliation(s)
- Massimo Bonora
- Ruth L. and David S. Gottesman Institute for Stem Cell, Regenerative Medicine Research, Department of Cell Biology and Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mariusz R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - David A Sinclair
- Department of Genetics, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA.,Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Guido Kroemer
- Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Paolo Pinton
- Department of Morphology, Surgery, and Experimental Medicine, Section of Pathology, Oncology, and Experimental Biology, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy. .,Maria Cecilia Hospital, GVM Care & Research, E.S. Health Science Foundation, Cotignola, Italy.
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France. .,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA.
| |
Collapse
|
26
|
Sun D, Li C, Liu J, Wang Z, Liu Y, Luo C, Chen Y, Wen S. Expression Profile of microRNAs in Hypertrophic Cardiomyopathy and Effects of microRNA-20 in Inducing Cardiomyocyte Hypertrophy Through Regulating Gene MFN2. DNA Cell Biol 2019; 38:796-807. [PMID: 31295012 DOI: 10.1089/dna.2019.4731] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Myocardial hypertrophy is an important cause of heart failure and sudden death. Studies have shown that Mitofusin-2 (MFN2) is downregulated in myocardial hypertrophy, but the upstream regulation mechanism underlying its downexpression in cardiomyocytes is still unclear. This study aims to identify the expression profile of microRNAs (miRNAs) in hypertrophic cardiomyopathy (HCM) and explore the function of miRNA-20 in inducing cardiomyocyte hypertrophy through regulating MFN2. Through miRNA + mRNA microarray analysis, 1451 miRNAs were identified, 367 miRNAs expressed differently between groups. Meanwhile, a number of 24,718 mRNAs were identified, among which 5850 mRNAs were upregulated and 3005 mRNAs were downregulated in HCM group compared with the control group. Expression of hsa-miRNA-20a-5p was 2.26 times higher in the HCM group compared with the control group and 7 target gene prediction programs predicted MFN2 as a target of miRNA-20. In vitro model of hypertrophic cardiomyocytes displayed high expression level of miRNA-20, atrial natriuretic peptide (ANP) mRNA, and protein, accompanying low expression level of Mfn2 mRNA and protein, which meant miRNA-20 played a role in cardiomyocyte hypertrophy and might interact with MFN2 to function. Thereafter, overexpression of miRNA-20 led to cell hypertrophy accompanied with lowly expressed Mfn2 mRNA and protein. When transfected with miRNA-20 inhibitors, the expression of miRNA-20 and ANP gene was attenuated and MFN2 was the other way around. The cell surface area of Ang II group and mimic group was significantly larger compared with the control group, and in the inhibitor+Ang II group, the area was significantly decreased compared with the Ang II group. Dual-luciferase assays showed that miRNA-20 bound to 3' untranslated region of MFN2 and inhibited its expression. In conclusion, hypertrophic myocardium and normal myocardium have different miRNA expression profiles and the effect of miRNA-20 reducing the expression of MFN2 plays a role in promoting cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Dongdong Sun
- 1Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,2Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China.,3Beijing Laboratory for Cardiovascular Precision Medicine (PXM2017_014226_000037), Beijing, China
| | - Chuang Li
- 1Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,2Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China.,3Beijing Laboratory for Cardiovascular Precision Medicine (PXM2017_014226_000037), Beijing, China
| | - Jielin Liu
- 1Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,2Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China.,3Beijing Laboratory for Cardiovascular Precision Medicine (PXM2017_014226_000037), Beijing, China
| | - Zuoguang Wang
- 1Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,2Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China.,3Beijing Laboratory for Cardiovascular Precision Medicine (PXM2017_014226_000037), Beijing, China
| | - Ya Liu
- 1Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,2Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China.,3Beijing Laboratory for Cardiovascular Precision Medicine (PXM2017_014226_000037), Beijing, China
| | - Chen Luo
- 1Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,2Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China.,3Beijing Laboratory for Cardiovascular Precision Medicine (PXM2017_014226_000037), Beijing, China
| | - Yanyu Chen
- 1Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,2Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China.,3Beijing Laboratory for Cardiovascular Precision Medicine (PXM2017_014226_000037), Beijing, China
| | - Shaojun Wen
- 1Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,2Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China.,3Beijing Laboratory for Cardiovascular Precision Medicine (PXM2017_014226_000037), Beijing, China
| |
Collapse
|
27
|
Inhibition of Mitofusin-2 Promotes Cardiac Fibroblast Activation via the PERK/ATF4 Pathway and Reactive Oxygen Species. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3649808. [PMID: 31178957 PMCID: PMC6501253 DOI: 10.1155/2019/3649808] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/06/2018] [Indexed: 02/05/2023]
Abstract
Mitofusin-2 (Mfn2) is a key outer mitochondrial membrane protein, which maintains normal mitochondrial dynamics and function. However, its role in cardiac fibroblast activation remains poorly understood. In the present study, a rat model of transverse aortic constriction (TAC) was established to observe the cardiac fibroblast activation in vivo. TGF-β1 treatment for 24 hours was used to induce cardiac fibroblast activation in vitro. As a result, the expression of Mfn2 decreased in the hypertrophic heart tissues and cardiac fibroblasts treated with TGF-β1. siMfn2 and adenovirus were applied to mediate Mfn2 gene silencing and overexpression in cardiac fibroblasts to elucidate the relationship between Mfn2 and cardiac fibroblast activation, as well as the possible underlying mechanisms. Knockdown of Mfn2 further promoted TGF-β1-induced cardiac fibroblast activation, while forced expression of Mfn2 attenuated this pathological reaction. The PERK/ATF4 pathway, one of the branches of endoplasmic reticulum (ER) stress, was identified to be involved in this process. Knockdown and overexpression of Mfn2 lead to aggravation or alleviation of the PERK/ATF4 pathway. Blocking this pathway by silencing ATF4 with siATF4 attenuated the pathological process. During the activation of cardiac fibroblasts, knockdown of Mfn2 also increased the production of reactive oxygen species (ROS), while ROS scavenger N-acetyl-l-cysteine (NAC) could attenuate the effect caused by knockdown of Mfn2. Our data suggested that inhibition of Mfn2 could promote cardiac fibroblast activation by activating the PERK/ATF4 signaling pathway and increasing the generation of ROS.
Collapse
|
28
|
Han J, Liu J, Zhou Q, Nie S, Liu J, Wen S. Single Nucleotide Polymorphisms (SNPs) Genotyping Reveals that Mfn2 Polymorphisms are Associated with Thoracic Aortic Dissection in Han Chinese Population. Med Sci Monit 2019; 25:2419-2428. [PMID: 30940795 PMCID: PMC6459048 DOI: 10.12659/msm.915272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Many studies have shown that hypertension may contribute to thoracic aortic dissection (TAD). Among the factors that modulate hypertension are endoplasmic reticulum stress and vascular smooth muscle cell proliferation which are in turn modulated by mitofusion-2 (Mfn2). Specifically, we determined, in the Han Chinese population, whether single nucleotide polymorphisms (SNPs) of Mfn2 influenced the occurrence of TAD. MATERIAL AND METHODS Six tagging SNPs of Mfn2 (rs2236057, rs3766741, rs2236058, rs17037564, rs2295281, and rs2336384) were genotyped using a TaqMan assay in 200 TAD patients and 451 health individuals from the Han Chinese population. RESULTS Logistic regression analysis indicated CC genotype of rs2295281 was highly linked to an increased risk of TAD (TT+CT versus CC, OR=0.540, 95% CI [0.320-0.911], P=0.021), implying that TT genotype and CT genotype of rs2295281 have a lower risk for TAD. Logistic regression analysis also indicated that rs2236058 was highly linked to the risk of TAD based on recessive genetic model, which indicated that the GG genotype was a protective factor against TAD (GG versus (CG+CC), OR=0.545, 95% CI [0.351-0.845], P=0.007). CG genotype and CC genotype of rs2236058 had a higher risk for TAD. In addition, rs2236058 was linked to the risk of TAD in the recessive genetic and homozygous models in the normotensive subgroup (GG versus (CG+CC), OR=0.298, 95% CI [0.112-0.792], P=0.015; GG versus CC, OR=0.528, 95% CI [0.302-0.925], P=0.026) but not in the hypertension subgroup. CONCLUSIONS Our findings showed that the occurrence of TAD in a Han Chinese population was influenced by Mfn2 polymorphisms.
Collapse
Affiliation(s)
- Jing Han
- Department of Emergency and Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (mainland)
| | - Jielin Liu
- Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China (mainland)
| | - Qi Zhou
- Department of Hypertension, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (mainland)
| | - Shaoping Nie
- Department of Emergency and Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (mainland)
| | - Jinghua Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (mainland)
| | - Shaojun Wen
- Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China (mainland)
| |
Collapse
|
29
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 663] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
30
|
Prado NJ, Casarotto M, Calvo JP, Mazzei L, Ponce Zumino AZ, García IM, Cuello-Carrión FD, Fornés MW, Ferder L, Diez ER, Manucha W. Antiarrhythmic effect linked to melatonin cardiorenal protection involves AT 1 reduction and Hsp70-VDR increase. J Pineal Res 2018; 65:e12513. [PMID: 29851143 DOI: 10.1111/jpi.12513] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/14/2018] [Indexed: 12/15/2022]
Abstract
Lethal ventricular arrhythmias increase in patients with chronic kidney disease that suffer an acute coronary event. Chronic kidney disease induces myocardial remodeling, oxidative stress, and arrhythmogenesis. A manifestation of the relationship between kidney and heart is the concomitant reduction in vitamin D receptor (VDR) and the increase in angiotensin II receptor type 1 (AT1 ). Melatonin has renal and cardiac protective actions. One potential mechanism is the increase in the heat shock protein 70 (Hsp70)-an antioxidant factor. We aim to determine the mechanisms involved in melatonin (Mel) prevention of kidney damage and arrhythmogenic heart remodeling. Unilateral ureteral-obstruction (UUO) and sham-operated rats were treated with either melatonin (4 mg/kg/day) or vehicle for 15 days. Hearts and kidneys from obstructed rats showed a reduction in VDR and Hsp70. Associated with AT1 up-regulation in the kidneys and the heart of UUO rats also increased oxidative stress, fibrosis, apoptosis, mitochondrial edema, and dilated crests. Melatonin prevented these changes and ventricular fibrillation during reperfusion. The action potential lengthened and hyperpolarized in melatonin-treated rats throughout the experiment. We conclude that melatonin prevents renal damage and arrhythmogenic myocardial remodeling during unilateral ureteral obstruction due to a decrease in oxidative stress/fibrosis/apoptosis associated with AT1 reduction and Hsp70-VDR increase.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Apoptosis/drug effects
- Fibrosis/metabolism
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- In Situ Nick-End Labeling
- In Vitro Techniques
- Kidney/metabolism
- Male
- Melatonin/therapeutic use
- Microscopy, Electron
- Microscopy, Fluorescence
- Mitochondria/drug effects
- Mitochondria/metabolism
- Myocardium/metabolism
- NADPH Oxidases/metabolism
- Rats
- Rats, Inbred WKY
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, Calcitriol/genetics
- Receptors, Calcitriol/metabolism
- Tachycardia, Ventricular/drug therapy
- Tachycardia, Ventricular/metabolism
Collapse
Affiliation(s)
- Natalia Jorgelina Prado
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Mariana Casarotto
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Juan Pablo Calvo
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Luciana Mazzei
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Amira Zulma Ponce Zumino
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Isabel Mercedes García
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Fernando Darío Cuello-Carrión
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Miguel Walter Fornés
- Instituto de Histología y Embriología "Dr. Mario H. Burgos" (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - León Ferder
- Department of Pediatrics, Nephrology Division, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Emiliano Raúl Diez
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Walter Manucha
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
31
|
Emerging Role of mTOR Signaling-Related miRNAs in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6141902. [PMID: 30305865 PMCID: PMC6165581 DOI: 10.1155/2018/6141902] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/04/2018] [Indexed: 12/21/2022]
Abstract
Mechanistic/mammalian target of rapamycin (mTOR), an atypical serine/threonine kinase of the phosphoinositide 3-kinase- (PI3K-) related kinase family, elicits a vital role in diverse cellular processes, including cellular growth, proliferation, survival, protein synthesis, autophagy, and metabolism. In the cardiovascular system, the mTOR signaling pathway integrates both intracellular and extracellular signals and serves as a central regulator of both physiological and pathological processes. MicroRNAs (miRs), a class of short noncoding RNA, are an emerging intricate posttranscriptional modulator of critical gene expression for the development and maintenance of homeostasis across a wide array of tissues, including the cardiovascular system. Over the last decade, numerous studies have revealed an interplay between miRNAs and the mTOR signaling circuit in the different cardiovascular pathophysiology, like myocardial infarction, hypertrophy, fibrosis, heart failure, arrhythmia, inflammation, and atherosclerosis. In this review, we provide a comprehensive state of the current knowledge regarding the mechanisms of interactions between the mTOR signaling pathway and miRs. We have also highlighted the latest advances on mTOR-targeted therapy in clinical trials and the new perspective therapeutic strategies with mTOR-targeting miRs in cardiovascular diseases.
Collapse
|
32
|
The lncRNA Plscr4 Controls Cardiac Hypertrophy by Regulating miR-214. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 10:387-397. [PMID: 29499950 PMCID: PMC5862136 DOI: 10.1016/j.omtn.2017.12.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 01/09/2023]
Abstract
Cardiac hypertrophy accompanied by maladaptive cardiac remodeling is the uppermost risk factor for the development of heart failure. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have various biological functions, and their vital role in the regulation of cardiac hypertrophy still needs to be explored. In this study, we demonstrated that lncRNA Plscr4 was upregulated in hypertrophic mice hearts and in angiotensin II (Ang II)–treated cardiomyocytes. Next, we observed that overexpression of Plscr4 attenuated Ang II-induced cardiomyocyte hypertrophy. Conversely, the inhibition of Plscr4 gave rise to cardiomyocyte hypertrophy. Furthermore, overexpression of Plscr4 attenuated TAC (transverse aortic constriction)-induced cardiac hypertrophy. Finally, we demonstrated that Plscr4 acted as an endogenous sponge of miR-214 and forced expression of Plscr4 downregulated miR-214 expression to promote Mfn2 and attenuate hypertrophy. In contrast, knockdown of Plscr4 upregulated miR-214 to induce cardiomyocyte hypertrophy. Additionally, luciferase assay showed that miR-214 was the direct target of Plscr4, and overexpression of miR-214 counteracted the anti-hypertrophy effect of Plscr4. Collectively, these findings identify Plscr4 as a negative regulator of cardiac hypertrophy in vivo and in vitro due to its regulation of the miR-214-Mfn2 axis, suggesting that Plscr4 might act as a therapeutic target for the treatment of cardiac hypertrophy and heart failure.
Collapse
|
33
|
AT1 receptor signaling pathways in the cardiovascular system. Pharmacol Res 2017; 125:4-13. [PMID: 28527699 DOI: 10.1016/j.phrs.2017.05.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 01/14/2023]
Abstract
The importance of the renin angiotensin aldosterone system in cardiovascular physiology and pathophysiology has been well described whereas the detailed molecular mechanisms remain elusive. The angiotensin II type 1 receptor (AT1 receptor) is one of the key players in the renin angiotensin aldosterone system. The AT1 receptor promotes various intracellular signaling pathways resulting in hypertension, endothelial dysfunction, vascular remodeling and end organ damage. Accumulating evidence shows the complex picture of AT1 receptor-mediated signaling; AT1 receptor-mediated heterotrimeric G protein-dependent signaling, transactivation of growth factor receptors, NADPH oxidase and ROS signaling, G protein-independent signaling, including the β-arrestin signals and interaction with several AT1 receptor interacting proteins. In addition, there is functional cross-talk between the AT1 receptor signaling pathway and other signaling pathways. In this review, we will summarize an up to date overview of essential AT1 receptor signaling events and their functional significances in the cardiovascular system.
Collapse
|
34
|
Ong SB, Kalkhoran SB, Hernández-Reséndiz S, Samangouei P, Ong SG, Hausenloy DJ. Mitochondrial-Shaping Proteins in Cardiac Health and Disease - the Long and the Short of It! Cardiovasc Drugs Ther 2017; 31:87-107. [PMID: 28190190 PMCID: PMC5346600 DOI: 10.1007/s10557-016-6710-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondrial health is critically dependent on the ability of mitochondria to undergo changes in mitochondrial morphology, a process which is regulated by mitochondrial shaping proteins. Mitochondria undergo fission to generate fragmented discrete organelles, a process which is mediated by the mitochondrial fission proteins (Drp1, hFIS1, Mff and MiD49/51), and is required for cell division, and to remove damaged mitochondria by mitophagy. Mitochondria undergo fusion to form elongated interconnected networks, a process which is orchestrated by the mitochondrial fusion proteins (Mfn1, Mfn2 and OPA1), and which enables the replenishment of damaged mitochondrial DNA. In the adult heart, mitochondria are relatively static, are constrained in their movement, and are characteristically arranged into 3 distinct subpopulations based on their locality and function (subsarcolemmal, myofibrillar, and perinuclear). Although the mitochondria are arranged differently, emerging data supports a role for the mitochondrial shaping proteins in cardiac health and disease. Interestingly, in the adult heart, it appears that the pleiotropic effects of the mitochondrial fusion proteins, Mfn2 (endoplasmic reticulum-tethering, mitophagy) and OPA1 (cristae remodeling, regulation of apoptosis, and energy production) may play more important roles than their pro-fusion effects. In this review article, we provide an overview of the mitochondrial fusion and fission proteins in the adult heart, and highlight their roles as novel therapeutic targets for treating cardiac disease.
Collapse
Affiliation(s)
- Sang-Bing Ong
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Siavash Beikoghli Kalkhoran
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK
| | - Sauri Hernández-Reséndiz
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Parisa Samangouei
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK
| | - Sang-Ging Ong
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Derek John Hausenloy
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore. .,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore. .,The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK. .,The National Institute of Health Research, University College London Hospitals Biomedical Research Centre, London, UK.
| |
Collapse
|
35
|
Maarman GJ, Schulz R, Sliwa K, Schermuly RT, Lecour S. Novel putative pharmacological therapies to protect the right ventricle in pulmonary hypertension: a review of current literature. Br J Pharmacol 2017; 174:497-511. [PMID: 28099680 DOI: 10.1111/bph.13721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/06/2016] [Accepted: 09/27/2016] [Indexed: 12/15/2022] Open
Abstract
Pulmonary hypertension (PH) is defined by elevated mean pulmonary artery pressure following the pathological remodelling of small pulmonary arteries. An increase in right ventricular (RV) afterload results in RV hypertrophy and RV failure. The pathophysiology of PH, and RV remodelling in particular, is not well understood, thus explaining, at least in part, why current PH therapies have a limited effect. Existing therapies mostly target the pulmonary circulation. Because the remodelled RV fails to support normal cardiac function, patients eventually succumb from RV failure. Developing novel therapies that directly target the function of the RV may therefore benefit patients with PH. In the past decade, several promising studies have investigated novel cardioprotective strategies in experimental models of PH. This review aims to comprehensively discuss and highlight these novel experimental approaches to confer, in the long-term, greater health benefit in patients with PH.
Collapse
Affiliation(s)
- Gerald J Maarman
- Hatter Institute for Cardiovascular Research in Africa (HICRA) and MRC Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Karen Sliwa
- Hatter Institute for Cardiovascular Research in Africa (HICRA) and MRC Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ralph Theo Schermuly
- Universities of Giessen and Marburg Lung Centre, Member of the German Lung Centre (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa (HICRA) and MRC Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
36
|
Ong SB, Hausenloy DJ. Mitochondrial Dynamics as a Therapeutic Target for Treating Cardiac Diseases. Handb Exp Pharmacol 2017; 240:251-279. [PMID: 27844171 DOI: 10.1007/164_2016_7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mitochondria are dynamic in nature and are able to shift their morphology between elongated interconnected mitochondrial networks and a fragmented disconnected arrangement by the processes of mitochondrial fusion and fission, respectively. Changes in mitochondrial morphology are regulated by the mitochondrial fusion proteins - mitofusins 1 and 2 (Mfn1 and 2), and optic atrophy 1 (Opa1) as well as the mitochondrial fission proteins - dynamin-related peptide 1 (Drp1) and fission protein 1 (Fis1). Despite having a unique spatial arrangement, cardiac mitochondria have been implicated in a variety of disorders including ischemia-reperfusion injury (IRI), heart failure, diabetes, and pulmonary hypertension. In this chapter, we review the influence of mitochondrial dynamics in these cardiac disorders as well as their potential as therapeutic targets in tackling cardiovascular disease.
Collapse
Affiliation(s)
- Sang-Bing Ong
- Cardiovascular and Metabolic Disorders (CVMD) Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.
| | - Derek J Hausenloy
- Cardiovascular and Metabolic Disorders (CVMD) Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
- The Hatter Cardiovascular Institute, University College London Hospitals and Medical School, London, UK
| |
Collapse
|
37
|
miR-106a promotes cardiac hypertrophy by targeting mitofusin 2. J Mol Cell Cardiol 2016; 99:207-217. [DOI: 10.1016/j.yjmcc.2016.08.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/11/2016] [Accepted: 08/22/2016] [Indexed: 11/20/2022]
|
38
|
Pei H, Du J, Song X, He L, Zhang Y, Li X, Qiu C, Zhang Y, Hou J, Feng J, Gao E, Li D, Yang Y. Melatonin prevents adverse myocardial infarction remodeling via Notch1/Mfn2 pathway. Free Radic Biol Med 2016; 97:408-417. [PMID: 27387769 DOI: 10.1016/j.freeradbiomed.2016.06.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/04/2016] [Accepted: 06/16/2016] [Indexed: 01/17/2023]
Abstract
Mitochondrial dysfunction is linked with myocardial infarction (MI), a disorder in which Notch1 has attracted increasing attention. However, the involvement of Notch1 in mitochondrial impairment after an MI is poorly understood, as is the role of mitochondrial fusion-associated protein 2 (Mfn2). Moreover, whether melatonin potentiates the Notch1/Mfn2 pathway in post-MI cardiac damage remains unclear. In our study, small interfering RNAs against Notch1 or Mfn2 and Jagged1 peptide were delivered via intramyocardial injection. At 3 days after these treatments, MI was induced by ligation of the anterior descending branch. We found that this ablation of Notch1 or Mfn2 aggravated post-MI injury, including worsened mitochondrial damage and increased generation of reactive oxygen species (ROS). In contrast, Jagged1 improved mitochondrial structure and function, decreased ROS production and attenuated post-MI injury. Interestingly, though Mfn2 expression was mildly regulated by Notch1 signaling in myocardium, Mfn2 deficiency nearly eliminated the cardioprotection by Jagged1, as evidenced by suppressed cardiac function, aggravated myocardial fibrosis, increased cell apoptosis, worsened mitochondrial impairment and enhanced oxidative stress. These observations revealed that Mfn2 plays an indispensable role in protection against MI-induced injury by Notch1. The mechanism might involve disrupting a damaging cycle of mitochondrial damage and ROS generation. Furthermore, melatonin activated Notch1 signaling and increased Mfn2 expression were reversed by luzindole, a nonselective antagonist of the melatonin receptor. Notably, melatonin attenuated post-MI injury in normal mice, but not in mice deficient in Notch1 or Mfn2. These results demonstrate that melatonin attenuates post-MI injury via the Notch1/Mfn2 pathway in a receptor-dependent manner.
Collapse
Affiliation(s)
- Haifeng Pei
- Department of Cardiology, Chengdu Military General Hospital, Chengdu 610083, China; Third Military Medical University, Chongqing 400042, China
| | - Jin Du
- Department of Cardiology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Xiaofeng Song
- Department of Cardiology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Lei He
- Department of Cardiology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Yufei Zhang
- Department of Medical Genetics and Developmental Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xiuchuan Li
- Department of Cardiology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Chenming Qiu
- Department of Cardiology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Yangyang Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Juanni Hou
- Department of Cardiology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Juan Feng
- Department of Cardiology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Erhe Gao
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - De Li
- Department of Cardiology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Yongjian Yang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu 610083, China; Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
39
|
Wang Z, Niu Q, Peng X, Li M, Liu K, Liu Y, Liu J, Jin F, Li X, Wei Y. Candesartan cilexetil attenuated cardiac remodeling by improving expression and function of mitofusin 2 in SHR. Int J Cardiol 2016; 214:348-57. [PMID: 27085127 DOI: 10.1016/j.ijcard.2016.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/02/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND Left ventricular hypotrophy (LVH) is very common in hypertensives even after antihypertensive treatment. Mitofusin 2 (Mfn2) is a critical negative regulator of vascular smooth muscle cell (VSMC) hypertrophy by regulating mitochondrial fusion, ras/raf/MEK signal pathway, et al. The purpose of this study was to investigate whether candesartan attenuated cardiac remodeling by improving expression and function of mitofusin 2 in SHR. METHODS Nine weeks old spontaneously hypertensive rats (SHR) were selected and treated with candesartan for eight weeks. Then, heart tissues were investigated for signs of cardiac remodeling, mitochondrial structure and membrane potential, mitochondrial enzyme activities, hydrogen peroxide, mRNA and protein expression of Mfn2/ras/raf/MEK signaling pathway in heart tissues. RESULTS The results showed that cardiac remodeling was obviously in SHR group: cardiac cell alignment was irregular; cardiac fibers became thick, irregular and enlarged; cell density was reduced in SHR compared to WKY. After candesartan treatment, histopathological structure improved significantly which were consistent with mitochondrial morphology, mitochondrial membrane potential, mitochondrial enzyme activities, hydrogen peroxide, Mfn2/ras/raf/MEK gene and protein expression in cardiac tissues. What's more, although blood pressure was well controlled in a normal range, cardiac remodeling wasn't avoided. In general, candesartan obviously repressed cardiac hypertrophy and cardiac remodeling significantly compared to SHR untreated group, but didn't reverse it. CONCLUSIONS Mfn2 is negatively associated with cardiac remodeling. Candesartan treatment can improve mitochondrial structure and function and regulate Mfn2/ras/raf/MEK signaling pathway. Mfn2 may be used a potential marker for cardiac remodeling and a novel therapeutic target for target organ damage protection.
Collapse
Affiliation(s)
- Zuoguang Wang
- Department of Hypertension, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing 100029, PR China.
| | - Qiuli Niu
- Department of Hypertension, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing 100029, PR China
| | - Xiaoyun Peng
- Institute of Westnorth Plateau Biology, Chinese Academy of Sciences, 650032, PR China
| | - Mei Li
- Department of Hypertension, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing 100029, PR China
| | - Kuo Liu
- Department of Hypertension, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing 100029, PR China
| | - Ya Liu
- Department of Hypertension, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing 100029, PR China
| | - Jielin Liu
- Department of Hypertension, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing 100029, PR China
| | - Fei Jin
- Department of Hypertension, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing 100029, PR China
| | - Xiao Li
- Department of Hypertension, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing 100029, PR China
| | - Yongxiang Wei
- Department of Hypertension, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing 100029, PR China.
| |
Collapse
|
40
|
Ong SB, Kalkhoran SB, Cabrera-Fuentes HA, Hausenloy DJ. Mitochondrial fusion and fission proteins as novel therapeutic targets for treating cardiovascular disease. Eur J Pharmacol 2015; 763:104-14. [PMID: 25987420 PMCID: PMC4784719 DOI: 10.1016/j.ejphar.2015.04.056] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 03/28/2015] [Accepted: 04/09/2015] [Indexed: 12/11/2022]
Abstract
The past decade has witnessed a number of exciting developments in the field of mitochondrial dynamics - a phenomenon in which changes in mitochondrial shape and movement impact on cellular physiology and pathology. By undergoing fusion and fission, mitochondria are able to change their morphology between elongated interconnected networks and discrete fragmented structures, respectively. The cardiac mitochondria, in particular, have garnered much interest due to their unique spatial arrangement in the adult cardiomyocyte, and the multiple roles they play in cell death and survival. In this article, we review the role of the mitochondrial fusion and fission proteins as novel therapeutic targets for treating cardiovascular disease.
Collapse
Affiliation(s)
- Sang-Bing Ong
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; Department of Clinical Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | | | - Hector A Cabrera-Fuentes
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; Institute of Biochemistry, Medical School, Justus-Liebig University, Giessen, Germany; Department of Microbiology, Kazan Federal University, Kazan, Russian Federation
| | - Derek J Hausenloy
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, UK; The National Institute of Health Research University College London Hospitals Biomedical Research Centre, UK.
| |
Collapse
|
41
|
Hall AR, Burke N, Dongworth RK, Hausenloy DJ. Mitochondrial fusion and fission proteins: novel therapeutic targets for combating cardiovascular disease. Br J Pharmacol 2014; 171:1890-906. [PMID: 24328763 PMCID: PMC3976611 DOI: 10.1111/bph.12516] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/21/2013] [Accepted: 10/28/2013] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are no longer considered to be solely the static powerhouses of the cell. While they are undoubtedly essential to sustaining life and meeting the energy requirements of the cell through oxidative phosphorylation, they are now regarded as highly dynamic organelles with multiple functions, playing key roles in cell survival and death. In this review, we discuss the emerging role of mitochondrial fusion and fission proteins, as novel therapeutic targets for treating a wide range of cardiovascular diseases.
Collapse
Affiliation(s)
- A R Hall
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, NIHR University College London Hospitals Biomedical Research Centre, University College London Hospital & Medical School, London, UK
| | | | | | | |
Collapse
|
42
|
Liu T, Xue CC, Shi YL, Bai XJ, Li ZF, Yi CL. Overexpression of mitofusin 2 inhibits reactive astrogliosis proliferation in vitro. Neurosci Lett 2014; 579:24-9. [PMID: 25017825 DOI: 10.1016/j.neulet.2014.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/14/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
Abstract
Astrocytes become activated in response to central nervous system (CNS) injury, and excessive astrogliosis is considered an impediment to axonal regeneration by forming glial scar. Mitofusin 2 (Mfn2), a key protein in mitochondrial network, has been reported to negatively regulate cell proliferation. The present study aimed to explore whether reactive astrogliosis could be suppressed by Mfn2 overexpression. Scratch injury and starvation-serum stimulation models in cultured astrocytes were combined to address this issue. In scratch model, reactive proliferation status of damaged astrocytes was implicated by migration of high ratio of EdU(+) cells into lesion region and significantly increased expression of GFAP and PCNA. At meantime, Mfn2 expression was found to exert a down-regulated trend both in gen and protein levels. Pretreatment of cells with adenoviral vector encoding Mfn2 gene increased Mfn2 expression and subsequently attenuated injury-induced astrocytes hyperplasia, activation-relevant protein synthesis, cellular proliferation, eventually delayed wound healing process. Furthermore, Mfn2 overexpression markedly inhibited astrocytes proliferation induced by serum stimulation, by arresting the transition of cell cycle from G1 to S phase. Together, these in vitro results demonstrated that reactive astrogliosis can be effectively suppressed by up-regulation of Mfn2, which might contribute to a promising therapeutic intervention in CNS disease characterized by glia-related damage.
Collapse
Affiliation(s)
- Tao Liu
- Department of Traumatic Surgery, Tong-ji Hospital, Tong-ji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen-chen Xue
- Department of Traumatic Surgery, Tong-ji Hospital, Tong-ji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-long Shi
- Department of Traumatic Surgery, Tong-ji Hospital, Tong-ji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-jun Bai
- Department of Traumatic Surgery, Tong-ji Hospital, Tong-ji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhan-fei Li
- Department of Traumatic Surgery, Tong-ji Hospital, Tong-ji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng-la Yi
- Department of Traumatic Surgery, Tong-ji Hospital, Tong-ji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
43
|
Pennanen C, Parra V, López-Crisosto C, Morales PE, Del Campo A, Gutierrez T, Rivera-Mejías P, Kuzmicic J, Chiong M, Zorzano A, Rothermel BA, Lavandero S. Mitochondrial fission is required for cardiomyocyte hypertrophy mediated by a Ca2+-calcineurin signaling pathway. J Cell Sci 2014; 127:2659-71. [PMID: 24777478 PMCID: PMC4058110 DOI: 10.1242/jcs.139394] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 03/20/2014] [Indexed: 12/12/2022] Open
Abstract
Cardiomyocyte hypertrophy has been associated with diminished mitochondrial metabolism. Mitochondria are crucial organelles for the production of ATP, and their morphology and function are regulated by the dynamic processes of fusion and fission. The relationship between mitochondrial dynamics and cardiomyocyte hypertrophy is still poorly understood. Here, we show that treatment of cultured neonatal rat cardiomyocytes with the hypertrophic agonist norepinephrine promotes mitochondrial fission (characterized by a decrease in mitochondrial mean volume and an increase in the relative number of mitochondria per cell) and a decrease in mitochondrial function. We demonstrate that norepinephrine acts through α1-adrenergic receptors to increase cytoplasmic Ca(2+), activating calcineurin and promoting migration of the fission protein Drp1 (encoded by Dnml1) to mitochondria. Dominant-negative Drp1 (K38A) not only prevented mitochondrial fission, it also blocked hypertrophic growth of cardiomyocytes in response to norepinephrine. Remarkably, an antisense adenovirus against the fusion protein Mfn2 (AsMfn2) was sufficient to increase mitochondrial fission and stimulate a hypertrophic response without agonist treatment. Collectively, these results demonstrate the importance of mitochondrial dynamics in the development of cardiomyocyte hypertrophy and metabolic remodeling.
Collapse
Affiliation(s)
- Christian Pennanen
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380492, Chile Centro Estudios Moleculares de la Celula, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380492, Chile Centro Estudios Moleculares de la Celula, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago 8380492, Chile Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Camila López-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380492, Chile Centro Estudios Moleculares de la Celula, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380492, Chile Centro Estudios Moleculares de la Celula, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Andrea Del Campo
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380492, Chile Centro Estudios Moleculares de la Celula, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Tomás Gutierrez
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380492, Chile Centro Estudios Moleculares de la Celula, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Pablo Rivera-Mejías
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380492, Chile Centro Estudios Moleculares de la Celula, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Jovan Kuzmicic
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380492, Chile Centro Estudios Moleculares de la Celula, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380492, Chile Centro Estudios Moleculares de la Celula, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB), 08028 Barcelona, Spain Departamento de Bioquímica í Biología molecular, Facultat de Biología, Universitat de Barcelona, Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380492, Chile Centro Estudios Moleculares de la Celula, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago 8380492, Chile Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|
44
|
Givvimani S, Pushpakumar S, Veeranki S, Tyagi SC. Dysregulation of Mfn2 and Drp-1 proteins in heart failure. Can J Physiol Pharmacol 2014; 92:583-91. [PMID: 24905188 DOI: 10.1139/cjpp-2014-0060] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Therapeutic approaches for cardiac regenerative mechanisms have been explored over the past decade to target various cardiovascular diseases (CVD). Structural and functional aberrations of mitochondria have been observed in CVD. The significance of mitochondrial maturation and function in cardiomyocytes is distinguished by their attribution to embryonic stem cell differentiation into adult cardiomyocytes. An abnormal fission process has been implicated in heart failure, and treatment with mitochondrial division inhibitor 1 (Mdivi-1), a specific inhibitor of dynamin related protein-1 (Drp-1), has been shown to improve cardiac function. We recently observed that the ratio of mitofusin 2 (Mfn2; a fusion protein) and Drp-1 (a fission protein) was decreased during heart failure, suggesting increased mitophagy. Treatment with Mdivi-1 improved cardiac function by normalizing this ratio. Aberrant mitophagy and enhanced oxidative stress in the mitochondria contribute to abnormal activation of MMP-9, leading to degradation of the important gap junction protein connexin-43 (Cx-43) in the ventricular myocardium. Reduced Cx-43 levels were associated with increased fibrosis and ventricular dysfunction in heart failure. Treatment with Mdivi-1 restored MMP-9 and Cx-43 expression towards normal. In this review, we discuss mitochondrial dynamics, its relation to MMP-9 and Cx-43, and the therapeutic role of fission inhibition in heart failure.
Collapse
Affiliation(s)
- Srikanth Givvimani
- Department of Physiology & Biophysics, School of Medicine, University of Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
45
|
KONG DEXIAN, SONG GUANGYAO, WANG CHAO, MA HUIJUAN, REN LUPING, NIE QIAN, ZHANG XUEMEI, GAN KEXIN. Overexpression of mitofusin 2 improves translocation of glucose transporter 4 in skeletal muscle of high-fat diet-fed rats through AMP-activated protein kinase signaling. Mol Med Rep 2013; 8:205-10. [DOI: 10.3892/mmr.2013.1457] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/23/2013] [Indexed: 11/05/2022] Open
|
46
|
Wang Z, Liu Y, Liu J, Niu Q, Wen J, Wen S, Wu Z. A novel 5'-uncoding region -1248 A>G variation of mitofusin-2 gene is associated with hypertension in Chinese. Yonsei Med J 2013; 54:603-8. [PMID: 23549803 PMCID: PMC3635618 DOI: 10.3349/ymj.2013.54.3.603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Mitofusin2 gene (Mfn2, also named Hyperplasia suppressive gene, HSG) is very important in the origin and development of hypertension. However, the mechanism of Mfn2/HSG expression regulation was not uncovered. This study was designed to explore the association of a novel 5'-uncoding region (UCR) -1248 A>G variation of HSG/Mfn2 gene and hypertension. MATERIALS AND METHODS 472 healthy, normotensive subjects [normotension (NT) group], 454 prehypertensive subjects [prehypertension (PH) group] and 978 hypertensive patients [essential hypertension (EH) group] were screened for an association study between 5'-UCR -1248 A>G of Mfn2/HSG and hypertension by polymerase chain reaction and DNA sequencing after venous blood was drawn and DNA was extracted. RESULTS When comparing the A and G frequency in EH, PH and NT groups, in total, NT group significantly had higher A frequency than in PH group [odds ratio (OR)=1.605, confidence interval (CI) 95%=1.063-2.242, p=0.025] and EH group (OR=5.395, CI 95%=3.783-7.695, p<0.01). When subgrouped by gender, A frequency in NT group was still significantly higher than in EH group (male: OR= 4.264, CI 95%=2.780-6.543, p<0.01; female: OR=8.897, CI 95%=4.686-16.891, p<0.01), but not from PH group, either in male group or in female group. Ordinal Logistic Regression analysis showed that A>G variation was significantly related with blood pressure level (B=-1.271, Wald=40.914, CI 95%=-1.660 - -0.881, p<0.01). CONCLUSION 5'-UCR -1248 A>G variation of Mfn2/HSG gene was a novel variation and may be associated with hypertension in Chinese.
Collapse
Affiliation(s)
- Zuoguang Wang
- Department of Hypertension, Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ya Liu
- Department of Hypertension, Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jieling Liu
- Department of Hypertension, Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qiuli Niu
- Department of Hypertension, Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jie Wen
- Department of Hypertension, Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shaojun Wen
- Department of Hypertension, Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhaosu Wu
- Department of Epidemiology, Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
47
|
Tang WX, Wu WH, Zeng XX, Bo H, Huang SM. Early protective effect of mitofusion 2 overexpression in STZ-induced diabetic rat kidney. Endocrine 2012; 41:236-47. [PMID: 22095488 DOI: 10.1007/s12020-011-9555-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/27/2011] [Indexed: 02/05/2023]
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes with a poorly defined etiology and limited treatment options. Early intervention is key to preventing the progression of DN. Mitofusin 2 (Mfn2) regulates mitochondrial morphology and signaling, and is involved in the pathogenesis of numerous diseases. Furthermore, Mfn2 is also closely associated with the development of diabetes, but its functional roles in the diabetic kidney remain unknown. This study investigated the effect of Mfn2 at an early stage of DN. Mfn2 was overexpressed by adenovirus-mediated gene transfer in streptozotocin-induced diabetic rats. Clinical parameters (proteinuria, albumin/creatinine ratio), pathological changes, ultra-microstructural changes in nephrons, expression of collagen IV and phosph-p38, ROS production, mitochondrial function, and apoptosis were evaluated and compared with diabetic rats expressing control levels of Mfn2. Endogenous Mfn2 expression decreased with time in DN. Compared to the blank transfection control group, overexpression of Mfn2 decreased kidney weight relative to body weight, reduced proteinuria and ACR, and improved pathological changes typical of the diabetic kidney, like enlargement of glomeruli, accumulation of ECM, and thickening of the basement membrane. In addition, Mfn2 overexpression inhibited activation of p38, and the accumulation of ROS; prevented mitochondrial dysfunction; and reduced the synthesis of collagen IV, but did not affect apoptosis of kidney cells. This study demonstrates that Mfn2 overexpression can attenuate pathological changes in the kidneys of diabetic rats. Further studies are needed to clarify the underlying mechanism of this protective function. Mfn2 might be a potential therapeutic target for the treatment of early stage DN.
Collapse
Affiliation(s)
- Wan Xin Tang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | | | | | | | | |
Collapse
|