1
|
Poliakova T, Wellington CL. Roles of peripheral lipoproteins and cholesteryl ester transfer protein in the vascular contributions to cognitive impairment and dementia. Mol Neurodegener 2023; 18:86. [PMID: 37974180 PMCID: PMC10652636 DOI: 10.1186/s13024-023-00671-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023] Open
Abstract
This narrative review focuses on the role of cholesteryl ester transfer protein (CETP) and peripheral lipoproteins in the vascular contributions to cognitive impairment and dementia (VCID). Humans have a peripheral lipoprotein profile where low-density lipoproteins (LDL) represent the dominant lipoprotein fraction and high-density lipoproteins (HDL) represent a minor lipoprotein fraction. Elevated LDL-cholesterol (LDL-C) levels are well-established to cause cardiovascular disease and several LDL-C-lowering therapies are clinically available to manage this vascular risk factor. The efficacy of LDL-C-lowering therapies to reduce risk of all-cause dementia and AD is now important to address as recent studies demonstrate a role for LDL in Alzheimer's Disease (AD) as well as in all-cause dementia. The LDL:HDL ratio in humans is set mainly by CETP activity, which exchanges cholesteryl esters for triglycerides across lipoprotein fractions to raise LDL and lower HDL as CETP activity increases. Genetic and pharmacological studies support the hypothesis that CETP inhibition reduces cardiovascular risk by lowering LDL, which, by extension, may also lower VCID. Unlike humans, wild-type mice do not express catalytically active CETP and have HDL as their major lipoprotein fraction. As HDL has potent beneficial effects on endothelial cells, the naturally high HDL levels in mice protect them from vascular disorders, likely including VCID. Genetic restoration of CETP expression in mice to generate a more human-like lipid profile may increase the relevance of murine models for VCID studies. The therapeutic potential of existing and emerging LDL-lowering therapies for VCID will be discussed. Figure Legend. Cholesteryl Ester Transfer Protein in Alzheimer's Disease. CETP is mainly produced by the liver, and exchanges cholesteryl esters for triglycerides across lipoprotein fractions to raise circulating LDL and lower HDL as CETP activity increases. Low CETP activity is associated with better cardiovascular health, due to decreased LDL and increased HDL, which may also improve brain health. Although most peripheral lipoproteins cannot enter the brain parenchyma due to the BBB, it is increasingly appreciated that direct access to the vascular endothelium may enable peripheral lipoproteins to have indirect effects on brain health. Thus, lipoproteins may affect the cerebrovasculature from both sides of the BBB. Recent studies show an association between elevated plasma LDL, a well-known cardiovascular risk factor, and a higher risk of AD, and considerable evidence suggests that high HDL levels are associated with reduced CAA and lower neuroinflammation. Considering the potential detrimental role of LDL in AD and the importance of HDL's beneficial effects on endothelial cells, high CETP activity may lead to compromised BBB integrity, increased CAA deposits and greater neuroinflammation. Abbreviations: CETP - cholesteryl transfer ester protein; LDL - low-density lipoproteins; HDL - high-density lipoproteins; BBB - blood-brain barrier; CAA - cerebral amyloid angiopathy, SMC - smooth muscle cells, PVM - perivascular macrophages, RBC - red blood cells.
Collapse
Affiliation(s)
- Tetiana Poliakova
- Department of Pathology and Laboratory Medicine, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
- Djavad Mowafagian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Djavad Mowafagian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- International Collaboration On Repair Discoveries, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Nelson AJ, Sniderman AD, Ditmarsch M, Dicklin MR, Nicholls SJ, Davidson MH, Kastelein JJP. Cholesteryl Ester Transfer Protein Inhibition Reduces Major Adverse Cardiovascular Events by Lowering Apolipoprotein B Levels. Int J Mol Sci 2022; 23:ijms23169417. [PMID: 36012684 PMCID: PMC9409323 DOI: 10.3390/ijms23169417] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 12/04/2022] Open
Abstract
Cholesteryl ester transfer protein (CETP) facilitates the exchange of cholesteryl esters and triglycerides (TG) between high-density lipoprotein (HDL) particles and TG-rich, apolipoprotein (apo) B-containing particles. Initially, these compounds were developed to raise plasma HDL cholesterol (HDL-C) levels, a mechanism that was previously thought to lower the risk of atherosclerotic cardiovascular disease (ASCVD). More recently, the focus changed and the use of pharmacologic CETP inhibitors to reduce low-density lipoprotein cholesterol (LDL-C), non-HDL-C and apoB concentrations became supported by several lines of evidence from animal models, observational investigations, randomized controlled trials and Mendelian randomization studies. Furthermore, a cardiovascular outcome trial of anacetrapib demonstrated that CETP inhibition significantly reduced the risk of major coronary events in patients with ASCVD in a manner directly proportional to the substantial reduction in LDL-C and apoB. These data have dramatically shifted the attention on CETP away from raising HDL-C instead to lowering apoB-containing lipoproteins, which is relevant since the newest CETP inhibitor, obicetrapib, reduces LDL-C by up to 51% and apoB by up to 30% when taken in combination with a high-intensity statin. An ongoing cardiovascular outcome trial of obicetrapib in patients with ASCVD is expected to provide further evidence of the ability of CETP inhibitors to reduce major adverse cardiovascular events by lowering apoB. The purpose of the present review is to provide an up-to-date understanding of CETP inhibition and its relationship to ASCVD risk reduction.
Collapse
Affiliation(s)
- Adam J. Nelson
- Victorian Heart Institute, Monash University, Clayton, VIC 3800, Australia
| | - Allan D. Sniderman
- Mike and Valeria Rosenbloom Centre for Cardiovascular Prevention, Department of Medicine, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | | | | | | | | | - John J. P. Kastelein
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
3
|
Nurmohamed NS, Ditmarsch M, Kastelein JJP. CETP-inhibitors: from HDL-C to LDL-C lowering agents? Cardiovasc Res 2021; 118:2919-2931. [PMID: 34849601 PMCID: PMC9648826 DOI: 10.1093/cvr/cvab350] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/20/2021] [Indexed: 11/29/2022] Open
Abstract
Cholesteryl ester transfer protein (CETP) is a liver-synthesized glycoprotein whose main functions are facilitating transfer of both cholesteryl esters from high-density lipoprotein (HDL) particles to apolipoprotein B (apoB)-containing particles as well as transfer of triglycerides from apoB-containing particles to HDL particles. Novel crystallographic data have shown that CETP exchanges lipids in the circulation by a dual molecular mechanism. Recently, it has been suggested that the atherosclerotic cardiovascular disease (ASCVD) benefit from CETP inhibition is the consequence of the achieved low-density lipoprotein cholesterol (LDL-C) and apoB reduction, rather than through the HDL cholesterol (HDL-C) increase. The use of CETP inhibitors is supported by genetic evidence from Mendelian randomization studies, showing that LDL-C lowering by CETP gene variants achieves equal ASCVD risk reduction as LDL-C lowering through gene proxies for statins, ezetimibe, and proprotein convertase subtilisin–kexin Type 9 inhibitors. Although first-generation CETP inhibitors (torcetrapib, dalcetrapib) were mainly raising HDL-C or had off-target effects, next generation CETP inhibitors (anacetrapib, evacetrapib) were also effective in reducing LDL-C and apoB and have been proven safe. Anacetrapib was the first CETP inhibitor to be proven effective in reducing ASCVD risk. In addition, CETP inhibitors have been shown to lower the risk of new-onset diabetes, improve glucose tolerance, and insulin sensitivity. The newest-generation CETP inhibitor obicetrapib, specifically designed to lower LDL-C and apoB, has achieved significant reductions of LDL-C up to 45%. Obicetrapib, about to enter phase III development, could become the first CETP inhibitor as add-on therapy for patients not reaching their guideline LDL-C targets.
Collapse
Affiliation(s)
- Nick S Nurmohamed
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - John J P Kastelein
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Bahbah EI, Shehata MSA, Alnahrawi SI, Sayed A, Menshawey A, Fisal A, Morsi M, Gabr ME, Elbasit MSA. Safety and Efficacy of Evacetrapib in Patients with Inadequately-controlled Hypercholesterolemia and High Cardiovascular Risk; A meta-analysis of Randomized Placebo-controlled Trials. Prostaglandins Leukot Essent Fatty Acids 2021; 168:102282. [PMID: 33882411 DOI: 10.1016/j.plefa.2021.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Low-density lipoprotein cholesterol (LDL-C) is causally related to cardiovascular disease. Inhibition of cholesteryl ester transfer protein with Evacetrapib may provide an additional treatment option for patients who do not reach their LDL-C goal with statins or patients who cannot tolerate statins. We aimed to evaluate the safety and efficacy of Evacetrapib in patients with inadequately-controlled hypercholesterolemia and high cardiovascular risk. METHOD A computer literature search for PubMed, Scopus, and Science Direct was carried out from inception to 2019 and was updated from January 2019 till March 2021. We included only RCTs. Data were pooled as a mean difference in a random-effect model using the Mantel-Haenzel (M-H) method. We used Open Meta [Analyst] software (by the center of evidence-based medicine, Oxford University, UK). RESULTS Five studies (n = 12,937 patients) reported in five articles were included in this meta-analysis. The overall pooled estimate showed that LDL-C was significantly lower in the evacetrapib group than the placebo group (MD -34.07 mg/dL, 95% CI [-40.66, -27.49], p<0.0001). The pooled estimate showed that Apo-B was significantly lower in the evacetrapib130 mg group than the placebo group (MD -22.64 mg/dL, 95% CI [-30.70, -14.58], p<0.0001). HDL-C was significantly higher in the evacetrapib group over the placebo group (MD 93.31 mg/dL, 95% CI [56.07, 130.56], p<0.0001). CONCLUSION Current evidence from five RCTs (12,539 participants) suggests that evacetrapib has favorable outcomes in patients with inadequately-controlled Hypercholesterolemia and high cardiovascular risks. Evacetrapib could significantly increase the HDL and Apo-A1 levels and lower the LDL cholesterol and Apo-B levels with an acceptable safety profile.
Collapse
Affiliation(s)
- Eshak I Bahbah
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Faculty of Medicine, Al-Azhar University, Damietta, Egypt.
| | - Mohamed S A Shehata
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Safwat Ibrahim Alnahrawi
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Department of Cardiology, National Heart Institute, Egypt
| | - Ahmed Sayed
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amr Menshawey
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ahmed Fisal
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mahmoud Morsi
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Faculty of Medicine, Menofia University, Menofia, Egypt
| | - Mohamed Essam Gabr
- Montefiore medical center, Albert Einstien college of medicine (Wakefield Division), Bronx, NY
| | - Mohamed Salah Abd Elbasit
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Department of Cardiology, National Heart Institute, Egypt
| |
Collapse
|
5
|
Su X, Li G, Deng Y, Chang D. Cholesteryl ester transfer protein inhibitors in precision medicine. Clin Chim Acta 2020; 510:733-740. [PMID: 32941836 DOI: 10.1016/j.cca.2020.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023]
Abstract
Dyslipidemia is associated with atherosclerosis and cardiovascular disease development, posing serious risks to human health. Cholesteryl ester transfer protein (CETP) is responsible for exchange of neutral lipids, such as cholesteryl ester and TG, between plasma high density lipoprotein (HDL) particles and Apolipoprotein B-100 (ApoB-100) containing lipoprotein particles. Genetic studies suggest that single-nucleotide polymorphism (SNPs) with loss of activity CETP is associated with increased HDL-C, reduced LDL-C, and cardiovascular risk. In animal studies, mostly in rabbits, which have similar CETP activity to humans, inhibition of CETP through antisense oligonucleotides reduced aortic arch atherosclerosis. Concerning this notion, inhibiting the CETP is considered as a promise approach to reduce cardiovascular events, and several CETP inhibitors have been recently studied as a cholesterol modifying agent to reduce cardiovascular mortality in high risk cardiovascular disease patients. However, in Phase III cardiovascular outcome trials, three CETP inhibitors, named Torcetrapib, Dalcetrapib, and Evacetrapib, did not provide expected cardiovascular benefits and failed to improve outcomes of patient with cardiovascular diseases (CVD). Although REVEAL trail has recently shown that Anacetrapib could reduce major coronary events, it was also shown to induce excessive lipid accumulation in adipose tissue; thereby, the further regulatory approval will not be sought. On the other hand, growing evidence indicated that the function of CETP inhibitors on modulating the cardiovascular events are determined by correlated single nucleotide polymorphism (SNP) in the ADCY9 gene. However, the underlying mechanisms whereby CETP inhibitors interact with the genotype are not yet elucidated, which could potentially be related to the genotype-dependent cholesterol efflux capacity of HDL particles. In the present review, we summarize the current understanding of the functions of CETP and the outcomes of the phase III randomized controlled trials of CETP inhibitors. In addition, we also put forward the implications from results of the trials which potentially suggest that the CETP inhibitors could be a promising precise therapeutic medicine for CVD based on genetic background.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Guiyang Li
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yingjian Deng
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Dong Chang
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
6
|
Abstract
Cholesterol metabolism and transport has been a major focus in cardiovascular disease risk modification over the past several decades. Hydroxymethylglutaryl-CoA reductase inhibitors (statins) have been the most commonly used agents, with the greatest benefit in reducing both the primary and secondary risks of cardiovascular disease. However, heart disease remains the leading cause of death in both men and women in the United States. Further investigation and intervention are required to further reduce the risk for cardiovascular disease and cardiovascular-related deaths. This review will focus on high-density lipoprotein metabolism and transport, looking particularly at cholesteryl ester transfer protein (CETP) inhibitors. While studies of the other CETP inhibitors in its class have not shown a significant improvement in the prevention of primary or secondary cardiovascular risk, anacetrapib, the fourth and latest of the CETP inhibitors to be investigated, may be more promising.
Collapse
|
7
|
Hey SP, Franklin JM, Avorn J, Kesselheim AS. Success, Failure, and Transparency in Biomarker-Based Drug Development. Circ Cardiovasc Qual Outcomes 2017; 10:CIRCOUTCOMES.116.003121. [DOI: 10.1161/circoutcomes.116.003121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 04/17/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Spencer Phillips Hey
- From the Program on Regulation, Therapeutics, and Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA (S.P.H., J.M.F., J.A., A.S.K.); and Harvard Center for Bioethics, Harvard Medical School, Boston, MA (S.P.H., A.S.K.)
| | - Jessica M. Franklin
- From the Program on Regulation, Therapeutics, and Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA (S.P.H., J.M.F., J.A., A.S.K.); and Harvard Center for Bioethics, Harvard Medical School, Boston, MA (S.P.H., A.S.K.)
| | - Jerry Avorn
- From the Program on Regulation, Therapeutics, and Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA (S.P.H., J.M.F., J.A., A.S.K.); and Harvard Center for Bioethics, Harvard Medical School, Boston, MA (S.P.H., A.S.K.)
| | - Aaron S. Kesselheim
- From the Program on Regulation, Therapeutics, and Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA (S.P.H., J.M.F., J.A., A.S.K.); and Harvard Center for Bioethics, Harvard Medical School, Boston, MA (S.P.H., A.S.K.)
| |
Collapse
|
8
|
|
9
|
Cannady EA, Wang MD, Friedrich S, Rehmel JLF, Yi P, Small DS, Zhang W, Suico JG. Evacetrapib: in vitro and clinical disposition, metabolism, excretion, and assessment of drug interaction potential with strong CYP3A and CYP2C8 inhibitors. Pharmacol Res Perspect 2015; 3:e00179. [PMID: 26516590 PMCID: PMC4618649 DOI: 10.1002/prp2.179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/04/2015] [Indexed: 01/29/2023] Open
Abstract
Evacetrapib is an investigational cholesteryl ester transfer protein inhibitor (CETPi) for reduction of risk of major adverse cardiovascular events in patients with high-risk vascular disease. Understanding evacetrapib disposition, metabolism, and the potential for drug-drug interactions (DDI) may help guide prescribing recommendations. In vitro, evacetrapib metabolism was investigated with a panel of human recombinant cytochromes P450 (CYP). The disposition, metabolism, and excretion of evacetrapib following a single 100-mg oral dose of (14)C-evacetrapib were determined in healthy subjects, and the pharmacokinetics of evacetrapib were evaluated in the presence of strong CYP3A or CYP2C8 inhibitors. In vitro, CYP3A was responsible for about 90% of evacetrapib's CYP-associated clearance, while CYP2C8 accounted for about 10%. In the clinical disposition study, only evacetrapib and two minor metabolites circulated in plasma. Evacetrapib metabolism was extensive. A mean of 93.1% and 2.30% of the dose was excreted in feces and urine, respectively. In clinical DDI studies, the ratios of geometric least squares means for evacetrapib with/without the CYP3A inhibitor ketoconazole were 2.37 for area under the curve (AUC)(0-∞) and 1.94 for C max. There was no significant difference in evacetrapib AUC(0-τ) or C max with/without the CYP2C8 inhibitor gemfibrozil, with ratios of 0.996 and 1.02, respectively. Although in vitro results indicated that both CYP3A and CYP2C8 metabolized evacetrapib, clinical studies confirmed that evacetrapib is primarily metabolized by CYP3A. However, given the modest increase in evacetrapib exposure and robust clinical safety profile to date, there is a low likelihood of clinically relevant DDI with concomitant use of strong CYP3A or CYP2C8 inhibitors.
Collapse
Affiliation(s)
- Ellen A Cannady
- Departments of Clinical Pharmacology, Drug Disposition, Medical, and Statistics, Lilly Research Laboratories, Eli Lilly and CompanyIndianapolis, Indiana
| | - Ming-Dauh Wang
- Departments of Clinical Pharmacology, Drug Disposition, Medical, and Statistics, Lilly Research Laboratories, Eli Lilly and CompanyIndianapolis, Indiana
| | - Stuart Friedrich
- Departments of Clinical Pharmacology, Drug Disposition, Medical, and Statistics, Lilly Research Laboratories, Eli Lilly and CompanyIndianapolis, Indiana
| | - Jessica L F Rehmel
- Departments of Clinical Pharmacology, Drug Disposition, Medical, and Statistics, Lilly Research Laboratories, Eli Lilly and CompanyIndianapolis, Indiana
| | - Ping Yi
- Departments of Clinical Pharmacology, Drug Disposition, Medical, and Statistics, Lilly Research Laboratories, Eli Lilly and CompanyIndianapolis, Indiana
| | - David S Small
- Departments of Clinical Pharmacology, Drug Disposition, Medical, and Statistics, Lilly Research Laboratories, Eli Lilly and CompanyIndianapolis, Indiana
| | - Wei Zhang
- Departments of Clinical Pharmacology, Drug Disposition, Medical, and Statistics, Lilly Research Laboratories, Eli Lilly and CompanyIndianapolis, Indiana
| | - Jeffrey G Suico
- Departments of Clinical Pharmacology, Drug Disposition, Medical, and Statistics, Lilly Research Laboratories, Eli Lilly and CompanyIndianapolis, Indiana
| |
Collapse
|
10
|
Suico JG, Wang MD, Friedrich S, Cannady EA, Konkoy CS, Ruotolo G, Krueger KA. Effects of the cholesteryl ester transfer protein inhibitor evacetrapib on lipoproteins, apolipoproteins and 24-h ambulatory blood pressure in healthy adults. ACTA ACUST UNITED AC 2014; 66:1576-85. [PMID: 24961753 PMCID: PMC4284021 DOI: 10.1111/jphp.12287] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 05/15/2014] [Indexed: 01/16/2023]
Abstract
Objectives We investigated the safety, tolerability, pharmacokinetics and pharmacodynamics of evacetrapib. Methods Healthy volunteers received multiple daily doses of evacetrapib (10–600 mg) administered for up to 15 days in a placebo-controlled study. Key findings Mean peak plasma concentrations of evacetrapib occurred at 4–6 h and terminal half-life ranged 24–44 h. Steady state was achieved at approximately 10 days; all subjects had undetectable levels of evacetrapib 3 weeks after their last dose. The trough inhibition of cholesteryl ester transfer protein (CETP) activity was 65 and 84% at 100 and 300 mg, respectively. At the highest dose (600 mg), evacetrapib significantly inhibited CETP activity (91%), increased HDL-C (87%) and apo AI (42%), and decreased LDL-C (29%) and apo B (26%) relative to placebo. For the highest dose tested, levels of evacetrapib, CETP activity, CETP mass, HDL-C and LDL-C returned to levels at or near baseline after a 2-week washout period. Evacetrapib at the highest dose tested did not produce any significant effect on 24-h ambulatory systolic or diastolic blood pressure. Conclusions Multiple doses of evacetrapib potently inhibited CETP activity, leading to substantial elevations in HDL-C and lowering of LDL-C. Evacetrapib was devoid of clinically relevant effects on blood pressure and mineralocorticoid levels.
Collapse
Affiliation(s)
- Jeffrey G Suico
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | | | | | | |
Collapse
|