1
|
Su S, Chen Z, Ke Q, Kocher O, Krieger M, Kang PM. Nanoparticle-Directed Antioxidant Therapy Can Ameliorate Disease Progression in a Novel, Diet-Inducible Model of Coronary Artery Disease. Arterioscler Thromb Vasc Biol 2024; 44:2476-2488. [PMID: 39417229 PMCID: PMC11602363 DOI: 10.1161/atvbaha.124.321030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Oxidative stress plays a crucial role in the pathogenesis of coronary artery disease. In cardiovascular research using murine models, the generation and maintenance of models with robust coronary arterial atherosclerosis has been challenging. METHODS We characterized a new mouse model in which the last 3 amino acids of the carboxyl terminus of the HDL (high-density lipoprotein) receptor (SR-B1 [scavenger receptor, class B, type 1]) were deleted in a low-density lipoprotein receptor knockout (LDLR-/-) mouse model (SR-B1ΔCT/LDLR-/-) fed an atherogenic diet. We also tested the therapeutic effects of an oxidative stress-targeted nanoparticle in atherogenic diet-fed SR-B1ΔCT/LDLR-/- mice. RESULTS The SR-B1ΔCT/LDLR-/- mice fed an atherogenic diet had occlusive coronary artery atherosclerosis, impaired cardiac function, and a dramatically lower survival rate, compared with LDLR-/- mice fed the same diet. As SR-B1ΔCT/LDLR-/- mice do not exhibit female infertility or low pup yield, they are far easier and less costly to use than the previously described SR-B1-based models of coronary artery disease. We found that treatment with the targeted nanoparticles improved the cardiac functions and corrected hematologic abnormalities caused by the atherogenic diet in SR-B1ΔCT/LDLR-/- mice but did not alter the distinctive plasma lipid levels. CONCLUSIONS The SR-B1ΔCT/LDLR-/- mice developed diet-inducible, fatal atherosclerotic coronary artery disease, which could be ameliorated by targeted nanoparticle therapy. Our study provides new tools for the development of cardiovascular therapies.
Collapse
Affiliation(s)
- Shi Su
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Zhifen Chen
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Qingen Ke
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Olivier Kocher
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Monty Krieger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter M. Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Tang C, Zhou K, Wu D, Zhu H. Nanoparticles as a Novel Platform for Cardiovascular Disease Diagnosis and Therapy. Int J Nanomedicine 2024; 19:8831-8846. [PMID: 39220195 PMCID: PMC11365508 DOI: 10.2147/ijn.s474888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular disease (CVD) is a major global health issue with high mortality and morbidity rates. With the advances in nanotechnology, nanoparticles are receiving increasing attention in diagnosing and treating CVD. Previous studies have explored the use of nanoparticles in noninvasive diagnostic technologies, such as magnetic resonance imaging and computed tomography. Nanoparticles have been extensively studied as drug carriers and prognostic factors, demonstrating synergistic efficacy. This review summarized the current applications of nanoparticles in CVD and discussed their opportunities and challenges for further exploration.
Collapse
Affiliation(s)
- Chuanyun Tang
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Di Wu
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
3
|
Jin S, Kang PM. A Systematic Review on Advances in Management of Oxidative Stress-Associated Cardiovascular Diseases. Antioxidants (Basel) 2024; 13:923. [PMID: 39199169 PMCID: PMC11351257 DOI: 10.3390/antiox13080923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress plays a significant role in the pathogenesis of cardiovascular diseases, such as myocardial ischemia/reperfusion injury, atherosclerosis, heart failure, and hypertension. This systematic review aims to integrate most relevant studies on oxidative stress management in cardiovascular diseases. We searched relevant literatures in the PubMed database using specific keywords. We put emphasis on those manuscripts that were published more recently and in higher impact journals. We reviewed a total of 200 articles. We examined current oxidative stress managements in cardiovascular diseases, including supplements like resveratrol, vitamins C and E, omega-3 fatty acids, flavonoids, and coenzyme-10, which have shown antioxidative properties and potential cardiovascular benefits. In addition, we reviewed the pharmacological treatments including newly discovered antioxidants and nanoparticles that show potential effects in targeting the specific oxidative stress pathways. Lastly, we examined biomarkers, such as soluble transferrin receptor, transthyretin, and cystatin C in evaluating antioxidant status and identifying cardiovascular risk. By addressing oxidative stress management and mechanisms, this paper emphasizes the importance of maintaining the balance between oxidants and antioxidants in the progression of cardiovascular diseases. This review paper is registered with the International Platform of Registered Systematic Review and Meta-analysis Protocols (INPLASY), registration # INPLASY202470064.
Collapse
Affiliation(s)
- Soyeon Jin
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS 910, Boston, MA 02215, USA
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, USA
| | - Peter M. Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS 910, Boston, MA 02215, USA
| |
Collapse
|
4
|
Fang H, Xu S, Wang Y, Yang H, Su D. Endogenous stimuli-responsive drug delivery nanoplatforms for kidney disease therapy. Colloids Surf B Biointerfaces 2023; 232:113598. [PMID: 37866237 DOI: 10.1016/j.colsurfb.2023.113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Kidney disease is one of the most life-threatening health problems, affecting millions of people in the world. Commonly used steroids and immunosuppressants often fall exceptionally short of outcomes with inescapable systemic toxicity. With the booming research in nanobiotechnology, stimuli-responsive nanoplatform has come an appealing therapeutic strategy for kidney disease. Endogenous stimuli-responsive materials have shown profuse promise owing to their enhanced spatiotemporal control and precise to the location of the lesion. This review focuses on recent advances stimuli-responsive drug delivery nano-architectonics for kidney disease. First, a brief introduction of pathogenesis of kidney disease and pathological microenvironment were provided. Then, various endogenous stimulus involved in drug delivery nanoplatforms including pH, ROS, enzymes, and glucose were categorized based on the pathological mechanisms of kidney disease. Next, we separately summarized literature examples of endogenous stimuli-responsive nanomaterials, and outlined the design strategies and response mechanisms. Finally, the paper was concluded by discussing remaining challenges and future perspectives of endogenous stimuli-responsive drug delivery nanoplatform for expediting the speed of development and clinical applications.
Collapse
Affiliation(s)
- Hufeng Fang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China.
| | - Shan Xu
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Yu Wang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Hao Yang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Dan Su
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China.
| |
Collapse
|
5
|
Zhao P, Lu Y, Wang Z. Naringenin attenuates cerebral ischemia/reperfusion injury by inhibiting oxidative stress and inflammatory response via the activation of SIRT1/FOXO1 signaling pathway in vitro. Acta Cir Bras 2023; 38:e380823. [PMID: 37132753 PMCID: PMC10158850 DOI: 10.1590/acb380823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/06/2023] [Indexed: 05/04/2023] Open
Abstract
PURPOSE To explore the protection of naringenin against oxygen-glucose deprivation/reperfusion (OGD/R)-induced HT22 cell injury, a cell model of cerebral ischemia/reperfusion (I/R) injury in vitro, focusing on SIRT1/FOXO1 signaling pathway. METHODS Cytotoxicity, apoptosis, reactive oxygen species (ROS) generation, malondialdehyde (MDA) content, 4-hydroxynonenoic acid (4-HNE) level, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) activities were measured by commercial kits. Inflammatory cytokines levels were determined by enzyme-linked immunosorbent assay (ELISA). The protein expressions were monitored by Western blot analysis. RESULTS Naringenin significantly ameliorated OGD/R-induced cytotoxicity and apoptosis in HT22 cells. Meanwhile, naringenin promoted SIRT1 and FOXO1 protein expressions in OGD/R-subjected HT22 cells. In addition, naringenin attenuated OGD/R-induced cytotoxicity, apoptosis, oxidative stress (the increased ROS, MDA and 4-HNE levels, and the decreased SOD, GSH-Px and CAT activities) and inflammatory response (the increased tumor necrosis factor-α, interleukin [IL]-1β, and IL-6 levels and the decreased IL-10 level), which were blocked by the inhibition of the SIRT1/FOXO1 signaling pathway induced by SIRT1-siRNA transfection. CONCLUSIONS Naringenin protected HT22 cells against OGD/R injury depending on its antioxidant and anti-inflammatory activities via promoting the SIRT1/FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Peng Zhao
- Tianjin First Central Hospital - Department of Neurology - Tianjin, China
| | - Yi Lu
- Tianjin First Central Hospital - Department of Neurology - Tianjin, China
| | - Zhiyun Wang
- Tianjin First Central Hospital - Department of Neurology - Tianjin, China
| |
Collapse
|
6
|
Swami Vetha BS, Adam AG, Aileru A. Redox Responsive Copolyoxalate Smart Polymers for Inflammation and Other Aging-Associated Diseases. Int J Mol Sci 2021; 22:ijms22115607. [PMID: 34070585 PMCID: PMC8198274 DOI: 10.3390/ijms22115607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 01/22/2023] Open
Abstract
Polyoxalate (POx) and copolyoxalate (CPOx) smart polymers are topics of interest the field of inflammation. This is due to their drug delivery ability and their potential to target reactive oxygen species (ROS) and to accommodate small molecules such as curcumin, vanilline, and p-Hydroxybenzyl alcohol. Their biocompatibility, ultra-size tunable characteristics and bioimaging features are remarkable. In this review we discuss the genesis and concept of oxylate smart polymer-based particles and a few innovative systemic delivery methods that is designed to counteract the inflammation and other aging-associated diseases (AADs). First, we introduce the ROS and its role in human physiology. Second, we discuss the polymers and methods of incorporating small molecule in oxalate backbone and its drug delivery application. Finally, we revealed some novel proof of concepts which were proven effective in disease models and discussed the challenges of oxylate polymers.
Collapse
Affiliation(s)
- Berwin Singh Swami Vetha
- Department of Foundational Sciences and Research, School of Dental Medicine, East Carolina University, 1851 MacGregor Downs Road, MS 701, Greenville, NC 27834, USA;
| | - Angela Guma Adam
- Physio/Biochem/New Product Development Division, Cocoa Research Center Institute of Ghana, P.O. Box 8, New Tafo-Akim 0233, Eastern Region, Ghana;
| | - Azeez Aileru
- Department of Foundational Sciences and Research, School of Dental Medicine, East Carolina University, 1851 MacGregor Downs Road, MS 701, Greenville, NC 27834, USA;
- Correspondence: ; Tel.: +252-737-7125
| |
Collapse
|