1
|
Ren X, Sun P, Wang Y. PARP inhibitor-related acute renal failure: a real-world study based on the FDA adverse event reporting system database. Expert Opin Drug Saf 2024; 23:1463-1471. [PMID: 38967020 DOI: 10.1080/14740338.2024.2376690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/22/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Current clinical trial data on PARP inhibitors (PARPis)-related acute renal failure (ARF) are not entirely representative of real-world situations. Therefore, in this study, the US Food and Drug Administration Adverse Event Reporting System (FAERS) was used to evaluate PARPis-related ARF. RESEARCH DESIGN AND METHODS Data were obtained from 1 January 2015, to 30 September 2023. ARF event reports were analyzed based on four algorithms. The time-to-onset (TTO) and clinical outcomes of PARPis-associated ARF were assessed. RESULTS The total included cases were 2726. Significant signals were observed for olaparib, niraparib, and rucaparib (reporting odds ratio (ROR): 1.62, 95% confidence interval (CI): 1.49-1.78, 1.25, 95% CI: 1.19-1.32 and 1.59, 95% CI: 1.47-1.72 respectively). The median TTO of ARF onset was 57, 36, and 85 days for olaparib, niraparib, and rucaparib, respectively. The proportion of deaths with olaparib (9.88%) was significantly higher than for niraparib (2.52%) and rucaparib (2.94%) (p < 0.005). The proportion of life-threatening adverse events associated with niraparib (4.89%) was significantly higher than for rucaparib (0.98%) (p < 0.005). CONCLUSIONS ARF and PARPi were related, with the exception of talazoparib. More emphasis should be given to PARPis-related ARF due to the high proportion of serious AEs and delayed adverse reactions.
Collapse
Affiliation(s)
- Xiayang Ren
- Department of Pharmacy, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ping Sun
- Department of Cancer Prevention, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanfeng Wang
- Department of Comprehensive Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Zhang Y, Li X, Liu F, Bai X, Liu X, Sun H, Gao C, Lin Y, Xing P, Zhu J, Liu R, Wang Z, Dai J, Shi D. Design of Selective PARP-1 Inhibitors and Antitumor Studies. J Med Chem 2024; 67:8877-8901. [PMID: 38776379 DOI: 10.1021/acs.jmedchem.3c02460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Designing selective PARP-1 inhibitors has become a new strategy for anticancer drug development. By sequence comparison of PARP-1 and PARP-2, we identified a possible selective site (S site) consisting of several different amino acid residues of α-5 helix and D-loop. Targeting this S site, 140 compounds were designed, synthesized, and characterized for their anticancer activities and mechanisms. Compound I16 showed the highest PARP-1 enzyme inhibitory activity (IC50 = 12.38 ± 1.33 nM) and optimal selectivity index over PARP-2 (SI = 155.74). Oral administration of I16 (25 mg/kg) showed high inhibition rates of Hela and SK-OV-3 tumor cell xenograft models, both of which were higher than those of the oral positive drug Olaparib (50 mg/kg). In addition, I16 has an excellent safety profile, without significant toxicity at high oral doses. These findings provide a novel design strategy and chemotype for the development of safe, efficient, and highly selective PARP-1 inhibitors.
Collapse
Affiliation(s)
- Yiting Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Fang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaoyi Bai
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaochun Liu
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Hao Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chenxia Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuxi Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Pan Xing
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jiqiang Zhu
- Shandong Linghai Biotechnology Co.Ltd., Jinan 250299, Shandong, P. R. China
| | - Ruihua Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zemin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jiajia Dai
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Shandong Linghai Biotechnology Co.Ltd., Jinan 250299, Shandong, P. R. China
| |
Collapse
|
3
|
Mentzel J, Hildebrand LS, Kuhlmann L, Fietkau R, Distel LV. Effective Radiosensitization of HNSCC Cell Lines by DNA-PKcs Inhibitor AZD7648 and PARP Inhibitors Talazoparib and Niraparib. Int J Mol Sci 2024; 25:5629. [PMID: 38891817 PMCID: PMC11172136 DOI: 10.3390/ijms25115629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
(1) Head and neck squamous cell carcinoma (HNSCC) is common, while treatment is difficult, and mortality is high. Kinase inhibitors are promising to enhance the effects of radiotherapy. We compared the effects of the PARP inhibitors talazoparib and niraparib and that of the DNA-PKcs inhibitor AZD7648, combined with ionizing radiation. (2) Seven HNSCC cell lines, including Cal33, CLS-354, Detroit 562, HSC4, RPMI2650 (HPV-negative), UD-SCC-2 and UM-SCC-47 (HPV-positive), and two healthy fibroblast cell lines, SBLF8 and SBLF9, were studied. Flow cytometry was used to analyze apoptosis and necrosis induction (AnnexinV/7AAD) and cell cycle distribution (Hoechst). Cell inactivation was studied by the colony-forming assay. (3) AZD7648 had the strongest effects, radiosensitizing all HNSCC cell lines, almost always in a supra-additive manner. Talazoparib and niraparib were effective in both HPV-positive cell lines but only consistently in one and two HPV-negative cell lines, respectively. Healthy fibroblasts were not affected by any combined treatment in apoptosis and necrosis induction or G2/M-phase arrest. AZD7648 alone was not toxic to healthy fibroblasts, while the combination with ionizing radiation reduced clonogenicity. (4) In conclusion, talazoparib, niraparib and, most potently, AZD7648 could improve radiation therapy in HNSCC. Healthy fibroblasts tolerated AZD7648 alone extremely well, but irradiation-induced effects might occur. Our results justify in vivo studies.
Collapse
Affiliation(s)
- Jacob Mentzel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.M.); (L.S.H.); (L.K.); (R.F.)
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Laura S. Hildebrand
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.M.); (L.S.H.); (L.K.); (R.F.)
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Lukas Kuhlmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.M.); (L.S.H.); (L.K.); (R.F.)
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.M.); (L.S.H.); (L.K.); (R.F.)
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Luitpold V. Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.M.); (L.S.H.); (L.K.); (R.F.)
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| |
Collapse
|
4
|
Peng X, Li Y, Qu J, Jiang L, Wu K, Liu D, Chen Y, Peng J, Guo Y, Cao X. High affinity and low PARP-trapping benzimidazole derivatives as a potential warhead for PARP1 degraders. Eur J Med Chem 2024; 271:116405. [PMID: 38678823 DOI: 10.1016/j.ejmech.2024.116405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
PARPi have been explored and applied in the treatment of various cancers with remarkable efficacy, especially BRCA1/2 mutated ovarian, breast, prostate, and pancreatic cancers. However, PARPi renders inevitable drug resistance and showed high toxicity because of PARP-Trapping with long-term clinic tracking. To overcome the drug resistance and the high toxicity of PARPi, many novel methods have been developed including PROTACs. Being an event-driven technology, PROTACs needs a high affinity, low toxicity warhead with no steric hindrance in binding process. Veliparib shows the lowest PARP-Trapping effect but could hardly to be the warhead of PROTACs because of the strong steric hindrance. Other PARP1 inhibitors showed less steric hindrance but owns high PARP-Trapping effect. Thus, the development of novel warhead with high PARP1 affinity, low PARP1-Trapping, and no steric hindrance would be valuable. In this work, we reserved benzimidazole as the motif to reserve the low PARP1-Trapping effect and substituted the pyrrole by aromatic ring to avoiding the steric hindrance in PARP1 binding cave. Thus, a series of benzimidazole derivates were designed and synthesized, and some biological activities in vitro were evaluated including the inhibition for PARP1 enzyme and the PARP-Trapping effect using MDA-MB-436 cell line. Results showed that the compound 19A10 has higher PARP1 affinity(IC50 = 4.62 nM)) and similar low PARP-Trapping effect compared with Veliparib(IC50 (MDA-MB-436) >100 μM). Docking study showed that the compound 19A10 could avoiding the steric hindrance which was much better than Veliparib. So, the compound 19A10 could potentially be a perfect warhead for PARP1 degraders. Besides, because of the depletion of the PARP1 and the decreasing of the binding capability, we suppose that the PROTACs using 19A10 as the warhead would be no-PARP-Trapping effect. Furthermore, QSAR study showed that to develop novel compounds with high PARP1 binding affinity and low PARP-Trapping, we can choose the skeleton with substituent R1H, R2 = piperiazine, and R3 with large tPSA. And, if we want to develop the compounds with high PARP1 binding affinity and high PARP-Trapping which can possibly improve the lethality against tumor cells, we can choose the skeleton with substituent R1F, R2 = 3-methy-piperiazine, and R3 with large tPSA.
Collapse
Affiliation(s)
- Xiaoyu Peng
- Institute of Pharmacy and Pharmacology, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - Yang Li
- Institute of Pharmacy and Pharmacology, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - Junfeng Qu
- Institute of Pharmacy and Pharmacology, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - Lizhi Jiang
- Institute of Pharmacy and Pharmacology, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - Kaiyue Wu
- Department of Pharmacy, Ezhou Central Hospital, Ezhou, Hubei, China
| | - Dan Liu
- Institute of Pharmacy and Pharmacology, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuping Chen
- Institute of Pharmacy and Pharmacology, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - Junmei Peng
- Institute of Pharmacy and Pharmacology, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - Yu Guo
- Institute of Pharmacy and Pharmacology, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuan Cao
- Institute of Pharmacy and Pharmacology, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
5
|
Staniszewska AD, Pilger D, Gill SJ, Jamal K, Bohin N, Guzzetti S, Gordon J, Hamm G, Mundin G, Illuzzi G, Pike A, McWilliams L, Maglennon G, Rose J, Hawthorne G, Cortes Gonzalez M, Halldin C, Johnström P, Schou M, Critchlow SE, Fawell S, Johannes JW, Leo E, Davies BR, Cosulich S, Sarkaria JN, O'Connor MJ, Hamerlik P. Preclinical Characterization of AZD9574, a Blood-Brain Barrier Penetrant Inhibitor of PARP1. Clin Cancer Res 2024; 30:1338-1351. [PMID: 37967136 DOI: 10.1158/1078-0432.ccr-23-2094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
PURPOSE We evaluated the properties and activity of AZD9574, a blood-brain barrier (BBB) penetrant selective inhibitor of PARP1, and assessed its efficacy and safety alone and in combination with temozolomide (TMZ) in preclinical models. EXPERIMENTAL DESIGN AZD9574 was interrogated in vitro for selectivity, PARylation inhibition, PARP-DNA trapping, the ability to cross the BBB, and the potential to inhibit cancer cell proliferation. In vivo efficacy was determined using subcutaneous as well as intracranial mouse xenograft models. Mouse, rat, and monkey were used to assess AZD9574 BBB penetration and rat models were used to evaluate potential hematotoxicity for AZD9574 monotherapy and the TMZ combination. RESULTS AZD9574 demonstrated PARP1-selectivity in fluorescence anisotropy, PARylation, and PARP-DNA trapping assays and in vivo experiments demonstrated BBB penetration. AZD9574 showed potent single agent efficacy in preclinical models with homologous recombination repair deficiency in vitro and in vivo. In an O6-methylguanine-DNA methyltransferase (MGMT)-methylated orthotopic glioma model, AZD9574 in combination with TMZ was superior in extending the survival of tumor-bearing mice compared with TMZ alone. CONCLUSIONS The combination of three key features-PARP1 selectivity, PARP1 trapping profile, and high central nervous system penetration in a single molecule-supports the development of AZD9574 as the best-in-class PARP inhibitor for the treatment of primary and secondary brain tumors. As documented by in vitro and in vivo studies, AZD9574 shows robust anticancer efficacy as a single agent as well as in combination with TMZ. AZD9574 is currently in a phase I trial (NCT05417594). See related commentary by Lynce and Lin, p. 1217.
Collapse
Affiliation(s)
| | - Domenic Pilger
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Sonja J Gill
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Kunzah Jamal
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Natacha Bohin
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Sofia Guzzetti
- DMPK, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jacob Gordon
- Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Gregory Hamm
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Gill Mundin
- DMPK, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Giuditta Illuzzi
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Andy Pike
- DMPK, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Lisa McWilliams
- Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Gareth Maglennon
- Pathology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jonathan Rose
- Animal Sciences and Technologies, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Glen Hawthorne
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Christer Halldin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Peter Johnström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- PET Science Centre at Karolinska Institutet, Precision Medicine and Biosamples, Oncology R&D, Stockholm, Sweden
| | - Magnus Schou
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- PET Science Centre at Karolinska Institutet, Precision Medicine and Biosamples, Oncology R&D, Stockholm, Sweden
| | | | | | | | - Elisabetta Leo
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Barry R Davies
- Projects Group, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Sabina Cosulich
- Projects Group, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Mark J O'Connor
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Petra Hamerlik
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
6
|
Szentmartoni G, Mühl D, Csanda R, Szasz AM, Herold Z, Dank M. Predictive Value and Therapeutic Significance of Somatic BRCA Mutation in Solid Tumors. Biomedicines 2024; 12:593. [PMID: 38540206 PMCID: PMC10967875 DOI: 10.3390/biomedicines12030593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 01/11/2025] Open
Abstract
Ten percent of patients with breast cancer, and probably somewhat more in patients with ovarian cancer, have inherited germline DNA mutations in the breast and ovarian cancer genes BRCA1 and BRCA2. In the remaining cases, the disease is caused by acquired somatic genetic and epigenetic alterations. Targeted therapeutic agents, such as poly ADP-ribose polymerases (PARP) inhibitors (PARPi), have emerged in treating cancers associated with germline BRCA mutations since 2014. The first PARPi was FDA-approved initially for ovarian cancer patients with germline BRCA mutations. Deleterious variants in the BRCA1/BRCA2 genes and homologous recombination deficiency status have been strong predictors of response to PARPi in a few solid tumors since then. However, the relevance of somatic BRCA mutations is less clear. Somatic BRCA-mutated tumors might also respond to this new class of therapeutics. Although the related literature is often controversial, recently published case reports and/or randomized studies demonstrated the effectiveness of PARPi in treating patients with somatic BRCA mutations. The aim of this review is to summarize the predictive role of somatic BRCA mutations and to provide further assistance for clinicians with the identification of patients who could potentially benefit from PARPi.
Collapse
Affiliation(s)
- Gyongyver Szentmartoni
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
7
|
Akinjiyan FA, Morecroft R, Phillipps J, Adeyelu T, Elliott A, Park SJ, Butt OH, Zhou AY, Ansstas G. Homologous Recombination Deficiency (HRD) in Cutaneous Oncology. Int J Mol Sci 2023; 24:10771. [PMID: 37445949 DOI: 10.3390/ijms241310771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Skin cancers, including basal cell carcinoma (BCC), cutaneous squamous cell carcinoma (SCC), and melanoma, are the most common malignancies in the United States. Loss of DNA repair pathways in the skin plays a significant role in tumorigenesis. In recent years, targeting DNA repair pathways, particularly homologous recombination deficiency (HRD), has emerged as a potential therapeutic approach in cutaneous malignancies. This review provides an overview of DNA damage and repair pathways, with a focus on HRD, and discusses major advances in targeting these pathways in skin cancers. Poly(ADP-ribose) polymerase (PARP) inhibitors have been developed to exploit HRD in cancer cells. PARP inhibitors disrupt DNA repair mechanisms by inhibiting PARP enzymatic activity, leading to the accumulation of DNA damage and cell death. The concept of synthetic lethality has been demonstrated in HR-deficient cells, such as those with BRCA1/2 mutations, which exhibit increased sensitivity to PARP inhibitors. HRD assessment methods, including genomic scars, RAD51 foci formation, functional assays, and BRCA1/2 mutation analysis, are discussed as tools for identifying patients who may benefit from PARP inhibitor therapy. Furthermore, HRD has been implicated in the response to immunotherapy, and the combination of PARP inhibitors with immunotherapy has shown promising results. The frequency of HRD in melanoma ranges from 18% to 57%, and studies investigating the use of PARP inhibitors as monotherapy in melanoma are limited. Further research is warranted to explore the potential of PARP inhibition in melanoma treatment.
Collapse
Affiliation(s)
- Favour A Akinjiyan
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Renee Morecroft
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Jordan Phillipps
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | | | | | - Soo J Park
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Omar H Butt
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Alice Y Zhou
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - George Ansstas
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, St. Louis, MO 63130, USA
| |
Collapse
|
8
|
Illuzzi G, Staniszewska AD, Gill SJ, Pike A, McWilliams L, Critchlow SE, Cronin A, Fawell S, Hawthorne G, Jamal K, Johannes J, Leonard E, Macdonald R, Maglennon G, Nikkilä J, O'Connor MJ, Smith A, Southgate H, Wilson J, Yates J, Cosulich S, Leo E. Preclinical Characterization of AZD5305, A Next-Generation, Highly Selective PARP1 Inhibitor and Trapper. Clin Cancer Res 2022; 28:4724-4736. [PMID: 35929986 PMCID: PMC9623235 DOI: 10.1158/1078-0432.ccr-22-0301] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/29/2022] [Accepted: 08/02/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE We hypothesized that inhibition and trapping of PARP1 alone would be sufficient to achieve antitumor activity. In particular, we aimed to achieve selectivity over PARP2, which has been shown to play a role in the survival of hematopoietic/stem progenitor cells in animal models. We developed AZD5305 with the aim of achieving improved clinical efficacy and wider therapeutic window. This next-generation PARP inhibitor (PARPi) could provide a paradigm shift in clinical outcomes achieved by first-generation PARPi, particularly in combination. EXPERIMENTAL DESIGN AZD5305 was tested in vitro for PARylation inhibition, PARP-DNA trapping, and antiproliferative abilities. In vivo efficacy was determined in mouse xenograft and PDX models. The potential for hematologic toxicity was evaluated in rat models, as monotherapy and combination. RESULTS AZD5305 is a highly potent and selective inhibitor of PARP1 with 500-fold selectivity for PARP1 over PARP2. AZD5305 inhibits growth in cells with deficiencies in DNA repair, with minimal/no effects in other cells. Unlike first-generation PARPi, AZD5305 has minimal effects on hematologic parameters in a rat pre-clinical model at predicted clinically efficacious exposures. Animal models treated with AZD5305 at doses ≥0.1 mg/kg once daily achieved greater depth of tumor regression compared to olaparib 100 mg/kg once daily, and longer duration of response. CONCLUSIONS AZD5305 potently and selectively inhibits PARP1 resulting in excellent antiproliferative activity and unprecedented selectivity for DNA repair deficient versus proficient cells. These data confirm the hypothesis that targeting only PARP1 can retain the therapeutic benefit of nonselective PARPi, while reducing potential for hematotoxicity. AZD5305 is currently in phase I trials (NCT04644068).
Collapse
Affiliation(s)
- Giuditta Illuzzi
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Sonja J. Gill
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Andy Pike
- DMPK, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Lisa McWilliams
- Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Anna Cronin
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Glen Hawthorne
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Kunzah Jamal
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Emilyanne Leonard
- Discovery Bioanalysis Europe, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Ruth Macdonald
- Animal Sciences and Technologies, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Gareth Maglennon
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jenni Nikkilä
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Mark J. O'Connor
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Aaron Smith
- DMPK, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Joanne Wilson
- DMPK, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - James Yates
- DMPK, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Sabina Cosulich
- Projects Group, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Elisabetta Leo
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
9
|
The Current State of the Art in PARP Inhibitor-Based Delivery Nanosystems. Pharmaceutics 2022; 14:pharmaceutics14081647. [PMID: 36015275 PMCID: PMC9413625 DOI: 10.3390/pharmaceutics14081647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Poly (adenosine diphosphate [ADP]–ribose) polymerases inhibitors (PARPi), the first clinically approved drug that exhibits synthetic lethality, are moving to the forefront of cancer treatments. Currently, the oral bioavailability of PARPi is quite low; thus, it is a major challenge to effectively and safely deliver PARPi during clinical cancer therapy. Nanotechnology has greatly advanced the development of drug delivery. Based on the basic characteristics and various forms of nanoparticles, drug delivery systems can prolong the time that drugs circulate, realize the controlled release of drugs, provide drugs with an active targeting ability, and spatiotemporally present combination treatment. Furthermore, nanosystems may not only enhance drug efficiency but also reduce adverse side effects. This review focuses on strategies involving nanoparticle-based delivery for PARPi, including single administration and codelivery with other agents. We believe that nanosystems have great potential in advancing PARPi efficacy for cancer therapy.
Collapse
|
10
|
Abstract
OPINION STATEMENT Poly-ADP-ribose polymerase inhibitors (PARPi) are a class of anti-cancer drugs that target DNA repair pathways and have shown promising efficacy in patients with ovarian cancer in recent clinical trials. To date, there have been 9 FDA PARPi approvals/indications in ovarian cancer since 2014, highlighting the importance of this class of agents in the treatment of ovarian cancer. BRCA1/2-mutated tumors or other forms of homologous recombination deficient (HRD) tumors are particularly susceptible to PARP inhibition and have seen the greatest benefits of improvement in response rate and progression-free survival (PFS) in clinical trials. Patients with homologous recombination-proficient tumors also receive benefit, especially when a nice response to paltinum is noted, but to a lesser extent. PARP inhibitors now have FDA approval and indications in first-line and recurrent maintenance, and treatment. PARP inhibitor use as maintenance therapy in the front-line setting is now considered the standard of care in patients with BRCA1/2 mutations based on the SOLO-1/GOG-3004/ENGOT study. PARP inhibitors are also recommended per ASCO guidelines in all patients with ovarian cancer as front-line maintenance therapy based on the PRIMA/ENGOT-OV26/GOG-3012 trial. The combination of PARP inhibitor, olaparib, and the anti-angiogenesis inhibitor bevacizumab is also approved as maintenance therapy after front-line chemotherapy treatment in patients with HRD tumors and is an option for patients who have initiated bevacizumab with their chemotherapy treatment. PARPi are also FDA approved and can be utilized as a treatment in third-line and beyond in recurrent ovarian cancer patients with BRCA1/2 mutations and HRD tumors. In this review, we will cover in detail when PARP inhibitor use is appropriate in ovarian cancer, as well as the various clinical factors to take into consideration when selecting a PARP inhibitor regimen.
Collapse
|
11
|
Kontandreopoulou CN, Diamantopoulos PT, Tiblalexi D, Giannakopoulou N, Viniou NA. PARP1 as a therapeutic target in acute myeloid leukemia and myelodysplastic syndrome. Blood Adv 2021; 5:4794-4805. [PMID: 34529761 PMCID: PMC8759124 DOI: 10.1182/bloodadvances.2021004638] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/15/2021] [Indexed: 12/31/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is a key mediator of various forms of DNA damage repair and plays an important role in the progression of several cancer types. The enzyme is activated by binding to DNA single-strand and double-strand breaks. Its contribution to chromatin remodeling makes PARP1 crucial for gene expression regulation. Inhibition of its activity with small molecules leads to the synthetic lethal effect by impeding DNA repair in the treatment of cancer cells. At first, PARP1 inhibitors (PARPis) were developed to target breast cancer mutated cancer cells. Currently, PARPis are being studied to be used in a broader variety of patients either as single agents or in combination with chemotherapy, antiangiogenic agents, ionizing radiation, and immune checkpoint inhibitors. Ongoing clinical trials on olaparib, rucaparib, niraparib, veliparib, and the recent talazoparib show the advantage of these agents in overcoming PARPi resistance and underline their efficacy in targeted treatment of several hematologic malignancies. In this review, focusing on the crucial role of PARP1 in physiological and pathological effects in myelodysplastic syndrome and acute myeloid leukemia, we give an outline of the enzyme's mechanisms of action and its role in the pathophysiology and prognosis of myelodysplastic syndrome/acute myeloid leukemia and we analyze the available data on the use of PARPis, highlighting their promising advances in clinical application.
Collapse
Affiliation(s)
- Christina-Nefeli Kontandreopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis T. Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina Tiblalexi
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nefeli Giannakopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nora-Athina Viniou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
PARP Inhibitors and Haematological Malignancies-Friend or Foe? Cancers (Basel) 2021; 13:cancers13215328. [PMID: 34771492 PMCID: PMC8582507 DOI: 10.3390/cancers13215328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary PARP inhibitors are a class of orally active drugs that kill a range of cancer types by inducing synthetic lethality. The usefulness of PARP inhibitors for the treatment of haematological malignancies has begun to be explored in a variety of both pre-clinical models and human clinical trials. Despite being largely considered safe and well tolerated, secondary haematological malignancies have arisen in patients following treatment with PARP inhibitors, raising concerns about their use. In this review, we discuss the potential benefits and risks for using PARP inhibitors as treatments for haematological malignancies. Abstract Since their introduction several years ago, poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) have become the standard of care for breast and gynaecological cancers with BRCA gene mutations. Given that PARPi act by exploiting defective DNA repair mechanisms within tumour cells, they should be ideally suited to combatting haematological malignancies where these pathways are notoriously defective, even though BRCA mutations are rare. To date, despite promising results in vitro, few clinical trials in humans for haematological malignancies have been performed, and additional investigation is required. Paradoxically, secondary haematological malignancies have arisen in patients after treatment with PARPi, raising concerns about their potential use as therapies for any blood or bone marrow-related disorders. Here, we provide a comprehensive review of the biological, pre-clinical, and clinical evidence for and against treating individual haematological malignancies with approved and experimental PARPi. We conclude that the promise of effective treatment still exists, but remains limited by the lack of investigation into useful biomarkers unique to these malignancies.
Collapse
|
13
|
Sandhu D, Antolin AA, Cox AR, Jones AM. Identification of different side effects between PARP inhibitors and their polypharmacological multi-target rationale. Br J Clin Pharmacol 2021; 88:742-752. [PMID: 34327724 DOI: 10.1111/bcp.15015] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/05/2021] [Accepted: 07/22/2021] [Indexed: 12/19/2022] Open
Abstract
AIMS The aim of this study was to determine the differences and potential mechanistic rationale for observed adverse drug reactions (ADRs) between four approved PARP inhibitors (PARPi). METHODS The Medicines and Healthcare products Regulatory Authority (MHRA) Yellow Card drug analysis profiles and NHS secondary care medicines database enabled the identification of suspected ADRs associated with the PARPi in the UK from launch to 2020. The polypharmacology of the PARPi were data-mined from several public data sources. RESULTS The overall ADRs per 100 000 Rx identified across the four PARPi are statistically significant (χ2 test, P < .001). Rucaparib has the greatest relative suspected ADRs, which can be explained by its least clean kinome and physicochemical properties. The suspected gastrointestinal ADRs of rucaparib and niraparib can be ascribed to their kinase polypharmacology. Suspected blood and lymphatic system ADRs of PARPi can be linked to their high volume of distribution (Vd ). The thrombocytopenia rate of niraparib > rucaparib > olaparib tracked with the Vd trend. Hypertension is only associated with niraparib and could be explained by the therapeutically achievable inhibition of DYRK1A and/or transporters. Arrhythmia cases are potentially linked to the structural features of hERG ion-channel inhibition found in rucaparib and niraparib. Enhanced psychiatric/nervous disorders associated with niraparib can be interpreted from the diverse neurotransporter off-targets reported. CONCLUSIONS Despite their similar mode of action, the differential polypharmacology of PARP inhibitors influences their ADR profile.
Collapse
Affiliation(s)
- Daranjit Sandhu
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Albert A Antolin
- Department of Data Science and Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Anthony R Cox
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Alan M Jones
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
14
|
Tayeh GA, Alkassis M, Semaan A, Khalil N, Nemr E, Waked C. Neoadjuvant PARPi for urothelial carcinoma: between lifeline and desperation. Future Oncol 2021; 17:3281-3283. [PMID: 34287018 DOI: 10.2217/fon-2021-0443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Georges Abi Tayeh
- Department of Urology, Hotel-Dieu de France Hospital, Beirut, Lebanon
| | - Marwan Alkassis
- Department of Urology, Hotel-Dieu de France Hospital, Beirut, Lebanon
| | - Albert Semaan
- Department of Urology, Hotel-Dieu de France Hospital, Beirut, Lebanon
| | - Nour Khalil
- Department of Urology, Hotel-Dieu de France Hospital, Beirut, Lebanon
| | - Elie Nemr
- Department of Urology, Hotel-Dieu de France Hospital, Beirut, Lebanon
| | - Chady Waked
- Department of Urology, Hotel-Dieu de France Hospital, Beirut, Lebanon
| |
Collapse
|