1
|
Jenks JD, Prattes J, Wurster S, Sprute R, Seidel D, Oliverio M, Egger M, Del Rio C, Sati H, Cornely OA, Thompson GR, Kontoyiannis DP, Hoenigl M. Social determinants of health as drivers of fungal disease. EClinicalMedicine 2023; 66:102325. [PMID: 38053535 PMCID: PMC10694587 DOI: 10.1016/j.eclinm.2023.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023] Open
Abstract
Disparities in social determinants of health (SDOH) play a significant role in causing health inequities globally. The physical environment, including housing and workplace environment, can increase the prevalence and spread of fungal infections. A number of professions are associated with increased fungal infection risk and are associated with low pay, which may be linked to crowded and sub-optimal living conditions, exposure to fungal organisms, lack of access to quality health care, and risk for fungal infection. Those involved and displaced from areas of armed conflict have an increased risk of invasive fungal infections. Lastly, a number of fungal plant pathogens already threaten food security, which will become more problematic with global climate change. Taken together, disparities in SDOH are associated with increased risk for contracting fungal infections. More emphasis needs to be placed on systematic approaches to better understand the impact and reducing the health inequities associated with these disparities.
Collapse
Affiliation(s)
- Jeffrey D. Jenks
- Durham County Department of Public Health, Durham, NC, United States of America
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC, United States of America
| | - Juergen Prattes
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Sebastian Wurster
- Division of Internal Medicine, Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, University of Texas, Houston, TX, United States of America
| | - Rosanne Sprute
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging – Associated Diseases (CECAD), Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, University of Cologne, Center of Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center of Medical Mycology (ECMM), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Danila Seidel
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging – Associated Diseases (CECAD), Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, University of Cologne, Center of Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center of Medical Mycology (ECMM), Cologne, Germany
| | - Matteo Oliverio
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging – Associated Diseases (CECAD), Cologne, Germany
- Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - Matthias Egger
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Carlos Del Rio
- Emory Center for AIDS Research, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Hatim Sati
- Department of Global Coordination and Partnership on Antimicrobial Resistance, World Health Organization, Geneva, Switzerland
| | - Oliver A. Cornely
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging – Associated Diseases (CECAD), Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, University of Cologne, Center of Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center of Medical Mycology (ECMM), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Koln), University of Cologne, Cologne, Germany
| | - George R. Thompson
- University of California Davis Center for Valley Fever, Sacramento, CA, United States of America
- Division of Infectious Diseases, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, United States of America
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
| | - Dimitrios P. Kontoyiannis
- Division of Internal Medicine, Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, University of Texas, Houston, TX, United States of America
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
2
|
Gade L, McCotter OZ, Bowers JR, Waddell V, Brady S, Carvajal JA, Sunenshine R, Komatsu KK, Engelthaler DM, Chiller T, Litvintseva AP. The detection of Coccidioides from ambient air in Phoenix, Arizona: Evidence of uneven distribution and seasonality. Med Mycol 2021; 58:552-559. [PMID: 31506673 DOI: 10.1093/mmy/myz093] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/15/2019] [Accepted: 08/23/2019] [Indexed: 11/12/2022] Open
Abstract
Coccidioidomycosis is a debilitating fungal disease caused by inhalation of arthroconidia. We developed a novel approach for detection of airborne Coccidioides and used it to investigate the distribution of arthroconidia across the Phoenix, Arizona, metropolitan area. Air filters were collected daily from 21 stationary air-sampling units across the area: the first set collected before, during and after a large dust storm on August 25, 2015, and the second over the 45-day period September 25-November 8, 2016. Analysis of DNA extracted from the filters demonstrated that the day of the dust storm was not associated with increase of Coccidioides in air samples, although evidence of the low-level polymerase chain reaction (PCR) inhibition was observed in DNA extracted from samples collected on the day of the dust storm. Testing over 45 days identified uneven geographic distribution suggesting Coccidioides hot spots. In 2016, highest daily concentration of arthroconidia was observed between September 25-October 20, and only sporadic low levels were detected after that. These results provide evidence of seasonality and uneven spatial distribution of Coccidioides in the air. Our results demonstrate that routine air monitoring for arthroconidia is possible and provides an important tool for Coccidioides surveillance, which can address important questions about environmental exposure and human infection.
Collapse
Affiliation(s)
- Lalitha Gade
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Orion Z McCotter
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jolene R Bowers
- Pathogen and Microbiome Division, Translational Genomics Research Institute (TGen-North), Flagstaff, Arizona, USA
| | - Victor Waddell
- Arizona Department of Health Services, Phoenix, Arizona, USA
| | - Shane Brady
- Arizona Department of Health Services, Phoenix, Arizona, USA
| | | | - Rebecca Sunenshine
- Office of Public Health Preparedness and Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.,Maricopa County Department of Public Health, Phoenix, Arizona, USA
| | | | - David M Engelthaler
- Pathogen and Microbiome Division, Translational Genomics Research Institute (TGen-North), Flagstaff, Arizona, USA
| | - Tom Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | |
Collapse
|
3
|
Kollath DR, Miller KJ, Barker BM. The mysterious desert dwellers: Coccidioides immitis and Coccidioides posadasii, causative fungal agents of coccidioidomycosis. Virulence 2019; 10:222-233. [PMID: 30898028 PMCID: PMC6527015 DOI: 10.1080/21505594.2019.1589363] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/07/2019] [Accepted: 02/25/2019] [Indexed: 01/31/2023] Open
Abstract
The genus Coccidioides consists of two species: C. immitis and C. posadasii. Prior to 2000, all disease was thought to be caused by a single species, C. immitis. The organism grows in arid to semiarid alkaline soils throughout western North America and into Central and South America. Regions in the United States, with highest prevalence of disease, include California, Arizona, and Texas. The Mexican states of Baja California, Coahuila, Sonora, and Neuvo Leon currently have the highest skin test positive results. Central America contains isolated endemic areas in Guatemala and Honduras. South America has isolated regions of high endemicity including areas of Colombia, Venezuela, Argentina, Paraguay, and Brazil. Although approximately 15,000 cases per year are reported in the United States, actual disease burden is estimated to be in the hundreds of thousands, as only California and Arizona have dedicated public health outreach, and report and track disease reliably. In this review, we survey genomics, epidemiology, ecology, and summarize aspects of disease, diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Daniel R. Kollath
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Karis J. Miller
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Bridget M. Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
4
|
Bowers JR, Parise KL, Kelley EJ, Lemmer D, Schupp JM, Driebe EM, Engelthaler DM, Keim P, Barker BM. Direct detection of Coccidioides from Arizona soils using CocciENV, a highly sensitive and specific real-time PCR assay. Med Mycol 2019. [PMID: 29534236 DOI: 10.1093/mmy/myy007] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Coccidioides immitis and Coccidioides posadasii are soil fungi endemic to desert regions of the southwestern United States, and the causative agents of valley fever, or coccidioidomycosis. Studies have shown that the distribution of Coccidioides in soils is sporadic and cannot be explained by soil characteristics alone, suggesting that biotic and other abiotic factors should be examined. However, tools to reliably and robustly screen the large number of soils needed to investigate these potential associations have not been available. Thus, we developed a real-time polymerase chain reaction (PCR) assay for testing environmental samples by modifying CocciDx, an assay validated for testing clinical specimens to facilitate coccidioidomycosis diagnosis. For this study, we collected soil samples from previously established locations of C. posadasii in Arizona and new locations in fall 2013 and spring 2014, and screened the extracted DNA with the new assay known as CocciEnv. To verify the presence of Coccidioides in soil using an alternate method, we employed next generation amplicon sequencing targeting the ITS2 region. Results show our modified assay, CocciEnv, is a rapid and robust method for detecting Coccidioides DNA in complex environmental samples. The ability to test a large number of soils for the presence of Coccidioides is a much-needed tool in the understanding of the ecology of the organism and epidemiology of the disease and will greatly improve our understanding of this human pathogen.
Collapse
Affiliation(s)
- J R Bowers
- Pathogen Genomics Division, Translational Genomics Research Institute North, Flagstaff, Arizona
| | - K L Parise
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona
| | - E J Kelley
- Pathogen Genomics Division, Translational Genomics Research Institute North, Flagstaff, Arizona
| | - D Lemmer
- Pathogen Genomics Division, Translational Genomics Research Institute North, Flagstaff, Arizona
| | - J M Schupp
- Pathogen Genomics Division, Translational Genomics Research Institute North, Flagstaff, Arizona
| | - E M Driebe
- Pathogen Genomics Division, Translational Genomics Research Institute North, Flagstaff, Arizona
| | - D M Engelthaler
- Pathogen Genomics Division, Translational Genomics Research Institute North, Flagstaff, Arizona
| | - P Keim
- Pathogen Genomics Division, Translational Genomics Research Institute North, Flagstaff, Arizona.,Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona
| | - B M Barker
- Pathogen Genomics Division, Translational Genomics Research Institute North, Flagstaff, Arizona.,Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona
| |
Collapse
|
5
|
Guo W, Cronk R, Scherer E, Oommen R, Brogan J, Sarr M, Bartram J. A systematic scoping review of environmental health conditions in penal institutions. Int J Hyg Environ Health 2019; 222:790-803. [PMID: 31078437 DOI: 10.1016/j.ijheh.2019.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 11/16/2022]
Abstract
Adequate environmental health conditions in penal institutions are necessary to protect and promote the health of prisoners and prison workers. We conducted a scoping systematic review to: describe the environmental health conditions in penal institutions and the associated exposures and health outcomes; identify effective approaches to prevent environmental health concerns; and identify evidence gaps on environmental health in penal institution populations. PubMed, Web of Science, EBSCOhost, Scopus, and ProQuest were searched. Peer-reviewed studies that reported original data and on environmental health conditions and/or exposures in penal institutions were included. Seventy-three studies met these criteria. The most common risk factor identified was contaminated food and/or beverages prepared or handled in the institution's kitchen. Overcrowding, inadequate ventilation, and a lack of, or sharing of, soap and other hygiene products increased the risk of adverse health outcomes. Common responses included isolating infectious patients, educating prisoners and prison staff on improved sanitation and hygiene practices, improving ventilation, and disinfecting contaminated surfaces and/or water sources. Inadequate environmental health conditions in penal institutions are common, and adversely impact the health of prisoners and prison staff, yet are preventable. Few studies have been conducted in low- and middle-income countries, biasing our results. The development and implementation of national guidelines for essential environmental health in prisons, monitoring of conditions, and greater accountability of facility managers are needed to secure the health, rights, and well-being of prisoners.
Collapse
Affiliation(s)
- Wilson Guo
- The Water Institute, University of North Carolina, Chapel Hill, NC, United States
| | - Ryan Cronk
- The Water Institute, University of North Carolina, Chapel Hill, NC, United States.
| | - Elissa Scherer
- The Water Institute, University of North Carolina, Chapel Hill, NC, United States
| | - Rachel Oommen
- The Water Institute, University of North Carolina, Chapel Hill, NC, United States
| | | | | | - Jamie Bartram
- The Water Institute, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|