1
|
Rathod NB, Meral R, Siddiqui SA, Nirmal N, Ozogul F. Nanoemulsion-based approach to preserve muscle food: A review with current knowledge. Crit Rev Food Sci Nutr 2023; 64:6812-6833. [PMID: 36789616 DOI: 10.1080/10408398.2023.2175347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Muscle foods are regarded as nutritionally dense foods while they are prone to spoilage by action of microorganism and oxidation. Recently, the consumer's preference is mostly toward minimally processed foods as well as preserved with natural preservatives. However, natural extract directly to the food matrix has several drawbacks. Hence development and applications of nanoemulsion has gained importance for the preservation of muscle foods to meet consumer requirements with enhanced food safety. Nanoemulsion utilizes natural extracts at much lower concentration with higher preservative abilities over original components. Nanoemulsions offer protection to the active component from degradation and ensure longer bioavailability. Novel techniques used for formulation of nanoemulsion provide stability to the emulsion with desirable qualities to improve their impacts. The application of nanoemulsion is known to enhance the preservative action of nanoemulsions by improving the microbial safety and oxidative stability in nanoform. This review provides recent updates on different methods used for formulation of nanoemulsions from different sources. Besides, successful application of nanoemulsion derived using natural agents for muscle food preservation and shelf life extension are reviewed. Thus, the application of nanoemulsion to extend shelf life and maintain quality is suggested for muscle foods.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, PG Institute of Post-Harvest Technology and Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth) Roha, Raigad, Maharashtra, India
| | - Raciye Meral
- Faculty of Engineering, Department of Food Engineering, Van Yüzüncü Yıl University, Van, Turkey
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), D-Quakenbrück, Germany
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, Adana, Turkey
| |
Collapse
|
2
|
Wu C, Zhi Z, Duan M, Sun J, Jiang H, Pang J. Insights into the formation of carboxymethyl chitosan-nisin nanogels for sustainable antibacterial activity. Food Chem 2023; 402:134260. [DOI: 10.1016/j.foodchem.2022.134260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
|
3
|
Roque-Borda CA, Bento da Silva P, Rodrigues MC, Di Filippo LD, Duarte JL, Chorilli M, Vicente EF, Garrido SS, Rogério Pavan F. Pharmaceutical nanotechnology: Antimicrobial peptides as potential new drugs against WHO list of critical, high, and medium priority bacteria. Eur J Med Chem 2022; 241:114640. [PMID: 35970075 DOI: 10.1016/j.ejmech.2022.114640] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 12/29/2022]
Abstract
Nanobiotechnology is a relatively unexplored area that has, nevertheless, shown relevant results in the fight against some diseases. Antimicrobial peptides (AMPs) are biomacromolecules with potential activity against multi/extensively drug-resistant bacteria, with a lower risk of generating bacterial resistance. They can be considered an excellent biotechnological alternative to conventional drugs. However, the application of several AMPs to biological systems is hampered by their poor stability and lifetime, inactivating them completely. Therefore, nanotechnology plays an important role in the development of new AMP-based drugs, protecting and carrying the bioactive to the target. This is the first review article on the different reported nanosystems using AMPs against bacteria listed on the WHO priority list. The current shortage of information implies a nanobiotechnological potential to obtain new drugs or repurpose drugs based on the AMP-drug synergistic effect.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, CEP 14800-903, Brazil; Universidad Católica de Santa María, Vicerrectorado de Investigación, Facultad de Ciencias Farmacéuticas Bioquímicas y Biotecnológicas, Brazil
| | - Patricia Bento da Silva
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Mosar Corrêa Rodrigues
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Leonardo Delello Di Filippo
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Jonatas L Duarte
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Eduardo Festozo Vicente
- São Paulo State University (UNESP), School of Sciences and Engineering, Tupã, São Paulo, CEP 17602-496, Brazil
| | - Saulo Santesso Garrido
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, CEP 14801-902, Brazil
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, CEP 14800-903, Brazil.
| |
Collapse
|
4
|
Onion Essential Oil-in-Water Emulsion as a Food Flavoring Agent: Effect of Environmental Stress on Physical Properties and Antibacterial Activity. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:1363590. [PMID: 36245562 PMCID: PMC9556257 DOI: 10.1155/2022/1363590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022]
Abstract
Plant essential oils (EOs), which are acknowledged as generally recognized as safe (GRAS) by the Food and Drug Administration (FDA), have the potential to be used as a flavoring agent. However, there are limitations to some EOs, such as low water solubility and high volatility, which limit their application in food technology. This study was conducted to develop onion (Allium cepa) EO as a flavoring agent and determine its stability against environmental stress via an emulsification technique, with different concentrations of sodium caseinate, as a delivery system. Emulsions containing onion EO were prepared using different concentrations of sodium caseinate (3, 5, and 7% w/w) via the solvent-displacement technique. The physical properties (average droplet size, color, turbidity, and stability measurement) and antibacterial activity (agar disk diffusion method) of emulsions were then determined. Results show that emulsion with 7% (w/w) sodium caseinate was the most desirable sample in terms of physical properties and antibacterial activity. Hence, it was selected for environmental stress studies (i.e., thermal processing, freeze-thaw cycles, and ultraviolet (UV) exposure). Results revealed that all types of environmental stresses had significant (p < 0.05) effects on droplet size, color, turbidity, and stability. Generally, the environmental stresses increased the droplet size except in the freeze-thaw cycle case, while all stresses decreased the stability and lightness. All types of environmental stress treatment did not show a significant (p < 0.05) effect on antibacterial activity enhancement against Salmonella Typhimurium and Listeria monocytogenes except in the case of UV treatment against L. monocytogenes. Therefore, the present work has demonstrated the potential use of emulsion as an encapsulation and delivery system of EO flavors for food applications.
Collapse
|
5
|
Herman R, Ayepa E, Fometu S, Shittu S, Davids J, Wang J. Mulberry fruit post-harvest management: Techniques, composition and influence on quality traits -A review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Shi D, Shi H. The synergistic antibacterial effect and inhibition of biofilm formation of nisin in combination with terpenes against Listeria monocytogenes. Lett Appl Microbiol 2021; 75:632-642. [PMID: 34953143 DOI: 10.1111/lam.13636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022]
Abstract
This study was to investigate the synergistic antibacterial effect and inhibition of biofilm formation of nisin in combination with terpenes (carvacrol, cinnamaldehyde, citral, and thymol) against Listeria monocytogenes. The bactericidal ranking of terpenes combined with nisin was carvacrol > cinnamaldehyde, citral > thymol. The minimum inhibitory concentration assay (MIC) of nisin and carvacrol when used together were determined to be 0.1563 mg/ml + 0.0195 mg/ml (nisin at MIC/2 + carvacrol at MIC/16). The addition of nisin at MIC/2 + carvacrol at MIC/2 caused more decrease in membrane potential than carvacrol or nisin at MIC individually. The decrease rates of hlyA and plcA gene expressions caused by nisin at MIC/2 + carvacrol at MIC/2 were significantly higher than those caused by carvacrol or nisin at MIC individually (P < 0.05). Nisin combined with carvacrol showed the highest inhibition activity to formation of L. monocytogenes biofilm on stainless steel and lettuce. The inhibition effect of nisin at MIC/2 + carvacrol at MIC/16 was significantly higher than that of nisin at MIC/2 and carvacrol at MIC/16 (P < 0.05).
Collapse
Affiliation(s)
- Dongling Shi
- College of Food Science, Southwest University, Chongqing, China, 400715
| | - Hui Shi
- College of Food Science, Southwest University, Chongqing, China, 400715
| |
Collapse
|
7
|
Morphological and metabolomics impact of sublethal doses of natural compounds and its nanoemulsions in Bacillus cereus. Food Res Int 2021; 149:110658. [PMID: 34600660 DOI: 10.1016/j.foodres.2021.110658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/31/2021] [Accepted: 08/17/2021] [Indexed: 01/10/2023]
Abstract
Microbiological safety in food industry are always a concern regarding sublethal tolerance in bacteria for common and natural sanitizers. Natural bacteriocins, such as nisin (NIS), may negatively interfere in the efficiency of major compounds of essential oils against foodborne pathogenic bacteria. However, nanoemulsioned forms increase the bactericidal potential of natural compounds acting synergistically. In this study, cinnamaldehyde (CIN), citral (CIT), and linalool (LIN) were evaluated independently, associated with NIS, and in nanoemulsions (NEs) against Bacillus cereus using untargeted-metabolomics. Results revealed morphological changes in the structure of B. cereus treated with NEs of CIN and CIT, both NIS-associated. In addition, sensibility tests and UHPLC-QTOF-MS analyses indicated that NIS might react together with CIT reducing the bactericidal efficiency, while the nanoemulsion of CIT effect was enhanced by NIS in nanoemulsioned forms. This study highlights the importance of prudent administration of natural compounds as antimicrobial agents to prevent sublethal tolerance in pathogenic bacteria.
Collapse
|
8
|
Abstract
Injudicious consumption of antibiotics in the past few decades has arisen the problem of resistance in pathogenic organisms against most antibiotics and antimicrobial agents. Scenarios of treatment failure are becoming more common in hospitals. This situation demands the frequent need for new antimicrobial compounds which may have other mechanisms of action from those which are in current use. Limonene can be utilized as one of the solutions to the problem of antimicrobial resistance. Limonene is a naturally occurring monoterpene with a lemon-like odor, which mainly present in the peels of citrus plants like lemon, orange, grapefruit, etc. The study aimed to enlighten the antimicrobial properties of limonene as per previous literature. Advantageous contributions have been made by various research groups in the study of the antimicrobial properties of limonene. Previous studies have shown that limonene not only inhibits disease-causing pathogenic microbes, however, it also protects various food products from potential contaminants. This review article contains information about the effectiveness of limonene as an antimicrobial agent. Apart from antimicrobial property, some other uses of limonene are also discussed such as its role as fragrance and flavor additive, as in the formation of nonalcoholic beverages, as solvent and cleaner in the petroleum industry, and as a pesticide. Antibacterial, antifungal, antiviral, and anti-biofilm properties of limonene may help it to be used in the future as a potential antimicrobial agent with minimal adverse effects. Some of the recent studies also showed the action of limonene against COVID-19 (Coronavirus). However, additional studies are requisite to scrutinize the possible mechanism of antimicrobial action of limonene.
Collapse
|
9
|
El-Saber Batiha G, Hussein DE, Algammal AM, George TT, Jeandet P, Al-Snafi AE, Tiwari A, Pagnossa JP, Lima CM, Thorat ND, Zahoor M, El-Esawi M, Dey A, Alghamdi S, Hetta HF, Cruz-Martins N. Application of natural antimicrobials in food preservation: Recent views. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108066] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Effect of Citrus aurantium L. Essential Oil on Streptococcus mutans Growth, Biofilm Formation and Virulent Genes Expression. Antibiotics (Basel) 2021; 10:antibiotics10010054. [PMID: 33429924 PMCID: PMC7827172 DOI: 10.3390/antibiotics10010054] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
In an oral cavity, dental caries, periodontal disease, and endodontic lesions are caused by well-known bacterial and fungal pathogens. Essential oils (EOs) have demonstrated antimicrobial activity suggesting their use for oral hygiene. The goal of this study was to evaluate the interaction of bitter orange flower (Citrus aurantium L.) essential oil with cariogenic bacteria Streptococcus mutans and human gingival epithelial cells. After extraction, the chemical composition of the essential oil was analyzed by gas chromatography, and its antimicrobial activity was evaluated against the growth and the expression of virulent genes in S. mutans. Finally, the effects of this essential oil on human gingival epithelial cell adhesion and growth were assessed using cell adhesion and proliferation assays. We showed that the major constituents of the tested essential oil were limonene, linalool, and β-ocimene. The essential oil reduced the growth of S. mutans, and decreased expression of comC, comD, comE, gtfB, gtfC, and gbpB genes. It should, however, be noted that essential oil at high concentration was toxic to gingival epithelial cells. Overall, this study suggests that C. aurantium L. essential oil could be used to prevent/control oral infections.
Collapse
|
11
|
Guo L, Fang YQ, Liang XR, Xu YY, Chen J, Li YH, Fang S, Meng YC. Influence of polysorbates (Tweens) on structural and antimicrobial properties for microemulsions. Int J Pharm 2020; 590:119939. [PMID: 33011247 DOI: 10.1016/j.ijpharm.2020.119939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/28/2020] [Accepted: 09/27/2020] [Indexed: 11/17/2022]
Abstract
Polysorbates (Tweens) are one of the most used excipients for essential oils encapsulation. In this work, the polysorbate based microemulsions (PMEs) for R-(+)-limonene (LMN) encapsulation were investigated for the structural and antimicrobial properties. PMEs were constructed using the pseudoternary phase diagrams, and then characterized for electrical conductivity, rheology, size distribution and particle geometry. Conductivity and rheological measurement results showed that Tween 80 and Tween 60 based microemulsions have identical phase transitions. Dynamic light scattering demonstrated that hydrodynamic diameters of oil-in-water microemulsions decreased from 30 nm to 25 nm during the dilution, while small-angle X-ray scattering indicated that their spherical geometries were maintained. PMEs exhibited enhanced antimicrobial efficiencies in vitro against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Interestingly, when Tween 80 was replaced by Tween 60, PME was observed more effective against S. aureus. The two PMEs structural analogues exhibited different antimicrobial efficiencies corresponding to the bioactivity of polysorbates. In conclusion, PMEs can be considered as a desirable system for LMN encapsulation to enhance its solubility and antimicrobial efficiency. Furthermore, the difference in the antimicrobial efficiency suggested that the choice of emulsifiers should be concerned to improve further applications.
Collapse
Affiliation(s)
- Liang Guo
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Ya-Qian Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Xian-Rui Liang
- College of Pharmacy, Zhejiang University of Technology, Hangzhou 310018, PR China
| | - Yu-Yan Xu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Jie Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yan-Hua Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Sheng Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yue-Cheng Meng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
12
|
Investigating the effects of nisin and free fatty acid combined treatment on Listeria monocytogenes inactivation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110115] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Navarro-Segura L, Ros-Chumillas M, Martínez-Hernández GB, López-Gómez A. A new advanced packaging system for extending the shelf life of refrigerated farmed fish fillets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4601-4611. [PMID: 32419139 DOI: 10.1002/jsfa.10520] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND An innovative pilot-plant packaging was developed and evaluated for applying oregano essential oil (OEO) vapours in conditions of high vacuum for exploring the antimicrobial effect of essential oil vapours applied immediately before packaging of fish fillets. Farmed sea bream (Sparus aurata) fresh fillets have been used as a model for validating this new technology. These fillets, as a refrigerated product under modified atmosphere packaging (MAP), have a relatively short shelf life (12-14 days) mainly due to the fast microbial growth. The effects of conventional OEO dippings [pretreatment dipping (0.1% of OEO) of whole fish (T1) and filleted sea bream (T2)] were compared with the OEO application in vapour phase (67 μL L-1 ) under vacuum (5-10 hPa) immediately before MAP fillet packaging (T3). RESULTS T3/T2 samples showed the lowest microbial growth after 28 days at 4 °C, with loads up to 1/2.6 log units for Enterobacteria/lactic acid bacteria compared to untreated samples. The initial trimethylamine nitrogen (TMA-N) content (2.6 mg kg-1 ) increased in T1 and T2/T3 samples by 9.6 and 6/7 units, respectively, after 28 days. Quality Index Method (QIM) better reflected the fish fillets shelf life than texture and colour measurements. The shelf life of T3/T2 samples was established in at least 28 days (4 °C), while the QIM threshold (6) was exceeded after 7/21 days in untreated/T1 fillets. CONCLUSION The fish shelf life was extended with vapour OEO treatment using this new technology, similarly to OEO dipping treatment, according to QIM, corroborated by the microbial quality and TMA-N contents. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Laura Navarro-Segura
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - María Ros-Chumillas
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Ginés Benito Martínez-Hernández
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Antonio López-Gómez
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Cartagena, Spain
| |
Collapse
|
14
|
Iseppi R, Camellini S, Sabia C, Messi P. Combined antimicrobial use of essential oils and bacteriocin bacLP17 as seafood biopreservative to control Listeria monocytogenes both in planktonic and in sessile forms. Res Microbiol 2020; 171:351-356. [PMID: 32721519 DOI: 10.1016/j.resmic.2020.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 01/28/2023]
Abstract
The antilisterial activity of Thymus vulgaris, Salvia officinalis essential oils (EOs) and bacteriocin bacLP17 (previously isolated from seafood) was determined, using the compounds alone and in combination. The Disk Diffusion, Minimal Inhibitory Concentration (MIC) and Agar Well Diffusion assays were used to evaluate the effectiveness of the compounds against 12 Listeria monocytogenes in planktonic form, whereas the anti-Listeria biofilm activity was determined against the same strains in optical density (O.D.) at 570 nm, with crystal violet staining method. The lowest MIC values resulted for T. vulgaris EO and bacLp17 (0.5 μl/ml and 2 μl/ml, respectively). The combinations with the best results, expressed as FIC-Index, were T. vulgaris/S. officinalis EOs and EOs/bacLp17. The anti-biofilm activity of single EOs and bacLP17 was similar, whereas the combined use of the two kinds of EOs led to a synergistic activity. Lastly, the best anti-biofilm effect was observed with the combination bacLP17/S. officinalis and bacLP17/T. vulgaris, compared to both control and the single use of the EOs. The present study suggests that the combination of natural compounds such as T. vulgaris, S. officinalis EOs and bacLp17 may be a useful approach to the control of planktonic and sessile cells of L. monocytogenes in seafood products.
Collapse
Affiliation(s)
- Ramona Iseppi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Stefania Camellini
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Carla Sabia
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Patrizia Messi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
15
|
Chitosan nanoemulsions of cold-pressed orange essential oil to preserve fruit juices. Int J Food Microbiol 2020; 331:108786. [PMID: 32659617 DOI: 10.1016/j.ijfoodmicro.2020.108786] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/05/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022]
Abstract
Sweet orange essential oil is obtained from the peels of Citrus sinensis (CSEO) by cold pressing, and used as a valuable product by the food industry. Nanoencapsulation is known as a valid strategy to improve chemical stability, organoleptic properties, and delivery of EO-based products. In the present study we encapsulated CSEO using chitosan nanoemulsions (cn) as nanocarrier, and evaluated its antimicrobial activity in combination with mild heat, as well as its sensorial acceptability in orange and apple juices. CSEO composition was analyzed by GC-MS, and 19 components were identified, with limonene as the predominant constituent (95.1%). cn-CSEO was prepared under low shear conditions and characterized according to droplet size (<60 nm) and polydispersity index (<0.260 nm). Nanoemulsions were stable for at least 3 months at 4 ± 2 °C. cn-CSEO were compared with suspensions of CSEO (s-CSEO) (0.2 μL of CSEO/mL) in terms of antibacterial activity in combination with mild heat (52 °C) against Escherichia coli O157:H7 Sakai. cn-CSEO displayed a greater bactericidal activity than s-CSEO at pH 7.0 and pH 4.0. The validation in fruit juices showed an improved bactericidal effect of cn-CSEO in comparison with s-CSEO when combined with mild heat in apple juice, but not in orange juice. In both juices, the combination of CSEO and mild heat exerted synergistic lethal effects, reducing the treatment time to cause the inactivation of up to 5 Log10 cycles of E. coli O157:H7 Sakai cells. Finally, the sensory characteristics of both juices were acceptable either when using s-CSEO or CSEO nanoemulsified with chitosan. Therefore, as a promising carrier for lipophilic substances, the encapsulation of EOs with chitosan nanoemulsions might represent an advantageous alternative when combined with mild heat to preserve fruit juices.
Collapse
|
16
|
Garre A, Espín JF, Huertas JP, Periago PM, Palop A. Limonene nanoemulsified with soya lecithin reduces the intensity of non-isothermal treatments for inactivation of Listeria monocytogenes. Sci Rep 2020; 10:3656. [PMID: 32107438 PMCID: PMC7046608 DOI: 10.1038/s41598-020-60571-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/13/2020] [Indexed: 11/18/2022] Open
Abstract
Consumers' demands for ready-to-eat, fresh-like products are on the rise during the last years. This type of products have minimal processing conditions that can enable the survival and replication of pathogenic microorganisms. Among them, Listeria monocytogenes is of special concern, due to its relatively high mortality rate and its ability to replicate under refrigeration conditions. Previous research works have shown that nanoemulsified essential oils in combination with thermal treatments are effective for inactivating L. monocytogenes. However, previous research works were limited to isothermal conditions, whereas actual processing conditions in industry are dynamic. Under dynamic conditions, microorganism can respond unexpectedly to the thermal stress (e.g. adaptation, acclimation or increased sensitivity). In this work, we assess the combination of nanoemulsified D-limonene with thermal treatments under isothermal and dynamic conditions. The nanoemulsion was prepared following an innovative methodology using soya lecithin, a natural compound as well as the essential oil. Under isothermal heating conditions, the addition of the antimicrobial enables a reduction of the treatment time by a factor of 25. For time-varying treatments, dynamic effects were relevant. Treatments with a high heating rate (20 °C/min) are more effective than those with a slow heating rate (1 °C/min). This investigation demonstrates that the addition of nanoemulsified D-limonene can greatly reduce the intensity of the thermal treatments currently applied in the food industry. Hence, it can improve the product quality without impacting its safety.
Collapse
Affiliation(s)
- Alberto Garre
- Food Microbiology, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Jennifer F Espín
- Dpto. Ingeniería Agronómica, Instituto de Biotecnología Vegetal, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Juan-Pablo Huertas
- Dpto. Ingeniería Agronómica, Instituto de Biotecnología Vegetal, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Paula M Periago
- Dpto. Ingeniería Agronómica, Instituto de Biotecnología Vegetal, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Alfredo Palop
- Dpto. Ingeniería Agronómica, Instituto de Biotecnología Vegetal, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain.
| |
Collapse
|
17
|
|
18
|
Pu C, Tang W. The antibacterial and antibiofilm efficacies of a liposomal peptide originating from rice bran protein against Listeria monocytogenes. Food Funct 2018; 8:4159-4169. [PMID: 29022979 DOI: 10.1039/c7fo00994a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
With the aim of exploring a natural antilisterial peptide from food-derived origin, an antibacterial peptide named as Alpep7 was purified from the bromelain hydrolysate of rice bran protein (RBP) in this study. The resulting amino acid consequence was identified as KVDHFPL (Lys-Val-Asp-His-Phe-Pro-Leu) by ultraperformance liquid chromatography tandem matrix-assisted laser desorption/ionisation quadrupole time-of-flight mass spectrometry (MALDI Q-TOF MS). In addition, to assess the probability of the targeted delivery of liposome encapsulation of the peptide to Listeria biofilm, Alpep7-loaded liposomes were further prepared from a mixture of dipalmitoylphosphatidylcholine, stearylamine and cholesterol in a molar ratio of 10 : 3 : 2 and characterised by the analysis of particle size, zeta potential, microtopography and storage stability. The results showed that the liposomes exhibited a well-defined spherical shape, with an average diameter below 200 nm. The liposomes maintained favourable stability after storage at 4 °C for 4 weeks. Comparisons between the activities of free and liposomal Alpep7 via microbroth dilution, regrowth analysis and confocal scanning laser microscopy suggested that liposomal delivery was more effective during the initial exposure of the liposomes to the biofilms. The thermodynamic analysis indicated that the adsorption of liposomal Alpep7 to the listerial biofilm was a spontaneous, exothermic process. The results may provide a natural means for the treatment of listerial contamination and guide the potential application of liposomes for the targeted delivery of antimicrobials to pathogenic biofilms in the food industry.
Collapse
Affiliation(s)
- Chuanfen Pu
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | | |
Collapse
|
19
|
Wang R, Vega P, Xu Y, Chen CY, Irudayaraj J. Exploring the anti-quorum sensing activity of a d-limonene nanoemulsion for Escherichia coli O157:H7. J Biomed Mater Res A 2018; 106:1979-1986. [PMID: 29569833 DOI: 10.1002/jbm.a.36404] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/15/2018] [Accepted: 03/15/2018] [Indexed: 01/25/2023]
Abstract
In this study, a d-limonene nanoemulsion was developed by using a spontaneous emulsification method and its potential to inhibit the quorum sensing (QS)-regulated properties of Escherichia coli O157:H7 (E. coli) were revealed. The results in this study showed that d-limonene nanoemulsion inhibited E. coli biofilm formation through the suppression of curli and extracellular polymeric substance (EPS) production without inhibiting cell growth, and decreased swimming and swarming ability. Further analyses showed that d-limonene nanoemulsion interfered with auto-inducer 2 (AI-2) communication and repressed the expression of curli related genes and AI-2 importer genes in E. coli. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1979-1986, 2018.
Collapse
Affiliation(s)
- Renjie Wang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China.,Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana.,Key disciplines laboratory of Novel Micro-nano Devices and System Technology, Chongqing University, Chongqing, China
| | - Pablo Vega
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana
| | - Yi Xu
- Key disciplines laboratory of Novel Micro-nano Devices and System Technology, Chongqing University, Chongqing, China.,Microsystem Research Center, School of Optoelectronic Engineering, Chongqing University, Chongqing, China
| | - Chin-Yi Chen
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania
| | - Joseph Irudayaraj
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana
| |
Collapse
|
20
|
|
21
|
Ramachandraiah K, Choi MJ, Hong GP. Micro- and nano-scaled materials for strategy-based applications in innovative livestock products: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Fat and fibre interfere with the dramatic effect that nanoemulsified d -limonene has on the heat resistance of Listeria monocytogenes. Food Microbiol 2017; 62:270-274. [DOI: 10.1016/j.fm.2016.10.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/11/2016] [Accepted: 10/20/2016] [Indexed: 11/23/2022]
|
23
|
Ros-Chumillas M, Garre A, Maté J, Palop A, Periago PM. Nanoemulsified D-Limonene Reduces the Heat Resistance of Salmonella Senftenberg over 50 Times. NANOMATERIALS 2017; 7:nano7030065. [PMID: 28336899 PMCID: PMC5388167 DOI: 10.3390/nano7030065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/28/2017] [Accepted: 03/07/2017] [Indexed: 11/16/2022]
Abstract
Salmonella Senftenberg is a pathogen agent causative of foodborne disease and it is considered the most heat-resistant serovar within this genus. Food industries use heat treatment and chemical antimicrobials in order to eliminate this microorganism in food, but consumers prefer natural antimicrobials as essential oils and their components. This study evaluates the combined effect of thermal treatments and different concentrations of D-limonene nanoemulsion on the inactivation of Salmonella (S.) Senftenberg. The results showed an important effect of the nanoemulsified D-limonene on the heat resistance of S. Senftenberg. The δ50 °C value was reduced by 85%, 96% and 98% when 0.1, 0.5 and 1 mM of nanoemulsified D-limonene was added to the heating medium. The effect was kept along all the heating temperatures researched and the shape of the survival curves did not change with the addition of the antimicrobial. The results obtained in this research could be very useful for food industries for optimizing or improving heat treatments applied to food.
Collapse
Affiliation(s)
- María Ros-Chumillas
- Food and Agricultural Engineering Department, Regional Campus of International Excellence "Campus Mare Nostrum" School of Agricultural Engineering, Technical University of Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain.
| | - Alberto Garre
- Food and Agricultural Engineering Department, Regional Campus of International Excellence "Campus Mare Nostrum" School of Agricultural Engineering, Technical University of Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain.
| | - Javier Maté
- Food and Agricultural Engineering Department, Regional Campus of International Excellence "Campus Mare Nostrum" School of Agricultural Engineering, Technical University of Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain.
| | - Alfredo Palop
- Food and Agricultural Engineering Department, Regional Campus of International Excellence "Campus Mare Nostrum" School of Agricultural Engineering, Technical University of Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain.
- Institute of Plant Biotechnology, Regional Campus of International Excellence "Campus Mare Nostrum", Technical University of Cartagena, 30202 Cartagena, Spain.
| | - Paula M Periago
- Food and Agricultural Engineering Department, Regional Campus of International Excellence "Campus Mare Nostrum" School of Agricultural Engineering, Technical University of Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain.
- Institute of Plant Biotechnology, Regional Campus of International Excellence "Campus Mare Nostrum", Technical University of Cartagena, 30202 Cartagena, Spain.
| |
Collapse
|
24
|
Salvia-Trujillo L, Soliva-Fortuny R, Rojas-Graü MA, McClements DJ, Martín-Belloso O. Edible Nanoemulsions as Carriers of Active Ingredients: A Review. Annu Rev Food Sci Technol 2017; 8:439-466. [PMID: 28125342 DOI: 10.1146/annurev-food-030216-025908] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There has been growing interest in the use of edible nanoemulsions as delivery systems for lipophilic active substances, such as oil-soluble vitamins, antimicrobials, flavors, and nutraceuticals, because of their unique physicochemical properties. Oil-in-water nanoemulsions consist of oil droplets with diameters typically between approximately 30 and 200 nm that are dispersed within an aqueous medium. The small droplet size usually leads to an improvement in stability, gravitational separation, and aggregation. Moreover, the high droplet surface area associated with the small droplet size often leads to a high reactivity with biological cells and macromolecules. As a result, lipid digestibility and bioactive bioavailability are usually higher in nanoemulsions than conventional emulsions, which is an advantage for the development of bioactive delivery systems. In this review, the most important factors affecting nanoemulsion formation and stability are highlighted, and a critical analysis of the potential benefits of using nanoemulsions in food systems is presented.
Collapse
Affiliation(s)
- Laura Salvia-Trujillo
- Department of Food Technology, Agrotecnio Center, University of Lleida, Lleida, Spain 25198;
| | - Robert Soliva-Fortuny
- Department of Food Technology, Agrotecnio Center, University of Lleida, Lleida, Spain 25198;
| | - M Alejandra Rojas-Graü
- Department of Food Technology, Agrotecnio Center, University of Lleida, Lleida, Spain 25198;
| | - D Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003
| | - Olga Martín-Belloso
- Department of Food Technology, Agrotecnio Center, University of Lleida, Lleida, Spain 25198;
| |
Collapse
|
25
|
Novickij V, Stanevičienė R, Grainys A, Lukša J, Badokas K, Krivorotova T, Sereikaitė J, Novickij J, Servienė E. Electroporation-assisted inactivation of Escherichia coli using nisin-loaded pectin nanoparticles. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Aloui H, Khwaldia K. Natural Antimicrobial Edible Coatings for Microbial Safety and Food Quality Enhancement. Compr Rev Food Sci Food Saf 2016; 15:1080-1103. [DOI: 10.1111/1541-4337.12226] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Hajer Aloui
- Laboratoire des Substances Naturelles (LSN, LR10 INRAP02), Inst. Natl. de Recherche et d'Analyse Physico-chimique (INRAP); Pôle Technologique de Sidi Thabet; 2020 Sidi Thabet Tunisia
| | - Khaoula Khwaldia
- Laboratoire des Substances Naturelles (LSN, LR10 INRAP02), Inst. Natl. de Recherche et d'Analyse Physico-chimique (INRAP); Pôle Technologique de Sidi Thabet; 2020 Sidi Thabet Tunisia
| |
Collapse
|