1
|
Acute intranasal dopamine application counteracts the reversal learning deficit of spontaneously hypertensive rats in an attentional set-shifting task. Psychopharmacology (Berl) 2021; 238:2419-2428. [PMID: 33982142 DOI: 10.1007/s00213-021-05863-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
RATIONALE Studies on the attention-deficit/hyperactivity disorder (ADHD) have concluded that the disorder might be caused by a deficit in the inhibitory control of executive functions because of dopamine hypofunction. Recently, the intranasal route has emerged as an effective alternative means for sending dopamine directly to the brain. However, whether the treatment can ameliorate the deficits of inhibitory control in ADHD remains unknown. OBJECTIVES Investigating the effects of acute intranasal dopamine (IN-DA) on the inhibitory control of executive functions of an ADHD rodent model. METHODS We trained an animal model of ADHD, the spontaneously hypertensive rat (SHR), and Wistar rats as controls, in an attentional set-shifting task (ASST) in which dopamine (0.15 mg/kg, 0.3 mg/kg, or vehicle) was intranasally administered before the final test. RESULTS IN-DA application dose-dependently improved the performance and reduced errors of SHR in the initial reversal learning. The effect size was comparable to that of a peripheral injection of 0.6 mg/kg methylphenidate. In control Wistar rats, the highest dose of intranasal dopamine (0.3 mg/kg) induced deficits in the reversal learning of extradimensional discriminations. CONCLUSIONS The findings suggest that the IN-DA treatment has potential for use in the treatment of ADHD; however, caution must be exercised when determining the dosage to be administered, because too much dopamine may have negative effects.
Collapse
|
2
|
Kaga Y, Ueda R, Tanaka M, Kita Y, Suzuki K, Okumura Y, Egashira Y, Shirakawa Y, Mitsuhashi S, Kitamura Y, Nakagawa E, Yamashita Y, Inagaki M. Executive dysfunction in medication-naïve children with ADHD: A multi-modal fNIRS and EEG study. Brain Dev 2020; 42:555-563. [PMID: 32532641 DOI: 10.1016/j.braindev.2020.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Children with attention deficit hyperactivity disorder (ADHD) exhibit deficits in executive function. Since there are no clear biomarkers for the disorder, this study aimed to investigate the neurophysiological biomarkers for deficits in executive function in children with ADHD using functional near-infrared spectroscopy (fNIRS) and electroencephalography. METHODS Twenty patients diagnosed with ADHD and 19 typically developing children (TDC; 8-11 years old) were included. Event related potentials (ERPs) were recorded using an electroencephalogram (EEG) and oxygenated hemoglobin concentrations (Oxy-Hb) were recorded using fNIRS during a colored Go/NoGo task, simultaneously. Latencies and amplitudes of NoGo-N2 and NoGo/Go-P3 tasks were measured using EEG. RESULTS Children with ADHD showed significantly decreased Oxy-Hb in the right frontal cortex as well as longer NoGo-P3 latencies and a decreased NoGo/Go-P3 amplitude. There was a significant positive correlation between the Oxy-Hb and NoGo/Go-P3 amplitude. CONCLUSIONS These results suggest that children with ADHD experience executive dysfunction. Hemodynamic and electrophysiological findings during the Go/NoGo task might be useful as a biomarker of executive function. SIGNIFICANCE These findings have key implications for understanding the pathophysiology of deficits in executive function in ADHD.
Collapse
Affiliation(s)
- Yoshimi Kaga
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8553, Japan; Department of Pediatrics, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| | - Riyo Ueda
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8553, Japan
| | - Miho Tanaka
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8553, Japan
| | - Yosuke Kita
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8553, Japan; Cognitive Brain Research Unit (CBRU), Faculty of Medicine, University of Helsinki, 3 Haartmaninkatu, Helsinki 00290, Finland
| | - Kota Suzuki
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8553, Japan; Faculty of Education, Shitennoji University, 3-2-1 Gakuenmae, Habikino, Osaka 583-8501, Japan
| | - Yasuko Okumura
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8553, Japan; Japan Society for the Promotion of Science, Research Fellow, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Yuka Egashira
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8553, Japan
| | - Yuka Shirakawa
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8553, Japan
| | - Shota Mitsuhashi
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8553, Japan
| | - Yuzuki Kitamura
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8553, Japan; Japan Society for the Promotion of Science, Research Fellow, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan; Graduate School of Design, Kyushu University, 4-9-1, Shiobaru Minami-ku, Fukuoka 815-8540, Japan
| | - Eiji Nakagawa
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Yushiro Yamashita
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahimachi, Kurume, Fukuoka 830-0011, Japan
| | - Masumi Inagaki
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8553, Japan
| |
Collapse
|