1
|
Fansher D, Besna JN, Fendri A, Pelletier JN. Choose Your Own Adventure: A Comprehensive Database of Reactions Catalyzed by Cytochrome P450 BM3 Variants. ACS Catal 2024; 14:5560-5592. [PMID: 38660610 PMCID: PMC11036407 DOI: 10.1021/acscatal.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
Cytochrome P450 BM3 monooxygenase is the topic of extensive research as many researchers have evolved this enzyme to generate a variety of products. However, the abundance of information on increasingly diversified variants of P450 BM3 that catalyze a broad array of chemistry is not in a format that enables easy extraction and interpretation. We present a database that categorizes variants by their catalyzed reactions and includes details about substrates to provide reaction context. This database of >1500 P450 BM3 variants is downloadable and machine-readable and includes instructions to maximize ease of gathering information. The database allows rapid identification of commonly reported substitutions, aiding researchers who are unfamiliar with the enzyme in identifying starting points for enzyme engineering. For those actively engaged in engineering P450 BM3, the database, along with this review, provides a powerful and user-friendly platform to understand, predict, and identify the attributes of P450 BM3 variants, encouraging the further engineering of this enzyme.
Collapse
Affiliation(s)
- Douglas
J. Fansher
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Jonathan N. Besna
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| | - Ali Fendri
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Joelle N. Pelletier
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| |
Collapse
|
2
|
Smith MD, Robinson SL, Molomjamts M, Wackett LP. In Vivo Assay Reveals Microbial OleA Thiolases Initiating Hydrocarbon and β-Lactone Biosynthesis. mBio 2020; 11:e00111-20. [PMID: 32156808 PMCID: PMC7064751 DOI: 10.1128/mbio.00111-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 12/29/2022] Open
Abstract
OleA, a member of the thiolase superfamily, is known to catalyze the Claisen condensation of long-chain acyl coenzyme A (acyl-CoA) substrates, initiating metabolic pathways in bacteria for the production of membrane lipids and β-lactone natural products. OleA homologs are found in diverse bacterial phyla, but to date, only one homodimeric OleA has been successfully purified to homogeneity and characterized in vitro A major impediment for the identification of new OleA enzymes has been protein instability and time-consuming in vitro assays. Here, we developed a bioinformatic pipeline to identify OleA homologs and a new rapid assay to screen OleA enzyme activity in vivo and map their taxonomic diversity. The screen is based on the discovery that OleA displayed surprisingly high rates of p-nitrophenyl ester hydrolysis, an activity not shared by other thiolases, including FabH. The high rates allowed activity to be determined in vitro and with heterologously expressed OleA in vivo via the release of the yellow p-nitrophenol product. Seventy-four putative oleA genes identified in the genomes of diverse bacteria were heterologously expressed in Escherichia coli, and 25 showed activity with p-nitrophenyl esters. The OleA proteins tested were encoded in variable genomic contexts from seven different phyla and are predicted to function in distinct membrane lipid and β-lactone natural product metabolic pathways. This study highlights the diversity of unstudied OleA proteins and presents a rapid method for their identification and characterization.IMPORTANCE Microbially produced β-lactones are found in antibiotic, antitumor, and antiobesity drugs. Long-chain olefinic membrane hydrocarbons have potential utility as fuels and specialty chemicals. The metabolic pathway to both end products share bacterial enzymes denoted as OleA, OleC, and OleD that transform acyl-CoA cellular intermediates into β-lactones. Bacteria producing membrane hydrocarbons via the Ole pathway additionally express a β-lactone decarboxylase, OleB. Both β-lactone and olefin biosynthesis pathways are initiated by OleA enzymes that define the overall structure of the final product. There is currently very limited information on OleA enzymes apart from the single representative from Xanthomonas campestris In this study, bioinformatic analysis identified hundreds of new, putative OleA proteins, 74 proteins were screened via a rapid whole-cell method, leading to the identification of 25 stably expressed OleA proteins representing seven bacteria phyla.
Collapse
Affiliation(s)
- Megan D Smith
- Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Serina L Robinson
- Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mandkhai Molomjamts
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lawrence P Wackett
- Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
3
|
Oeggl R, Neumann T, Gätgens J, Romano D, Noack S, Rother D. Citrate as Cost-Efficient NADPH Regenerating Agent. Front Bioeng Biotechnol 2018; 6:196. [PMID: 30631764 PMCID: PMC6315136 DOI: 10.3389/fbioe.2018.00196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/28/2018] [Indexed: 11/15/2022] Open
Abstract
The economically efficient utilization of NAD(P)H-dependent enzymes requires the regeneration of consumed reduction equivalents. Classically, this is done by substrate supplementation, and if necessary by addition of one or more enzymes. The simplest method thereof is whole cell NADPH regeneration. In this context we now present an easy-to-apply whole cell cofactor regeneration approach, which can especially be used in screening applications. Simply by applying citrate to a buffer or directly using citrate/-phosphate buffer NADPH can be regenerated by native enzymes of the TCA cycle, practically present in all aerobic living organisms. Apart from viable-culturable cells, this regeneration approach can also be applied with lyophilized cells and even crude cell extracts. This is exemplarily shown for the synthesis of 1-phenylethanol from acetophenone with several oxidoreductases. The mechanism of NADPH regeneration by TCA cycle enzymes was further investigated by a transient isotopic labeling experiment feeding [1,5-13C]citrate. This revealed that the regeneration mechanism can further be optimized by genetic modification of two competing internal citrate metabolism pathways, the glyoxylate shunt, and the glutamate dehydrogenase.
Collapse
Affiliation(s)
- Reinhard Oeggl
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany.,Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Timo Neumann
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany
| | - Jochem Gätgens
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany
| | - Diego Romano
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Stephan Noack
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany
| | - Dörte Rother
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany.,Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Biocatalyst Screening with a Twist: Application of Oxygen Sensors Integrated in Microchannels for Screening Whole Cell Biocatalyst Variants. Bioengineering (Basel) 2018; 5:bioengineering5020030. [PMID: 29642515 PMCID: PMC6027248 DOI: 10.3390/bioengineering5020030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/21/2022] Open
Abstract
Selective oxidative functionalization of molecules is a highly relevant and often demanding reaction in organic chemistry. The use of biocatalysts allows the stereo- and regioselective introduction of oxygen molecules in organic compounds at milder conditions and avoids the use of complex group-protection schemes and toxic compounds usually applied in conventional organic chemistry. The identification of enzymes with the adequate properties for the target reaction and/or substrate requires better and faster screening strategies. In this manuscript, a microchannel with integrated oxygen sensors was applied to the screening of wild-type and site-directed mutated variants of naphthalene dioxygenase (NDO) from Pseudomonas sp. NICB 9816-4. The oxygen sensors were used to measure the oxygen consumption rate of several variants during the conversion of styrene to 1-phenylethanediol. The oxygen consumption rate allowed the distinguishing of endogenous respiration of the cell host from the oxygen consumed in the reaction. Furthermore, it was possible to identify the higher activity and different reaction rate of two variants, relative to the wild-type NDO. The meander microchannel with integrated oxygen sensors can therefore be used as a simple and fast screening platform for the selection of dioxygenase mutants, in terms of their ability to convert styrene, and potentially in terms of substrate specificity.
Collapse
|
5
|
P450 BM3 fused to phosphite dehydrogenase allows phosphite-driven selective oxidations. Appl Microbiol Biotechnol 2016; 101:2319-2331. [PMID: 27900443 PMCID: PMC5320008 DOI: 10.1007/s00253-016-7993-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/30/2016] [Accepted: 11/05/2016] [Indexed: 11/24/2022]
Abstract
To facilitate the wider application of the NADPH-dependent P450BM3, we fused the monooxygenase with a phosphite dehydrogenase (PTDH). The resulting monooxygenase-dehydrogenase fusion enzyme acts as a self-sufficient bifunctional catalyst, accepting phosphite as a cheap electron donor for the regeneration of NADPH. The well-expressed fusion enzyme was purified and analyzed in comparison to the parent enzymes. Using lauric acid as substrate for P450BM3, it was found that the fusion enzyme had similar substrate affinity and hydroxylation selectivity while it displayed a significantly higher activity than the non-fused monooxygenase. Phosphite-driven conversions of lauric acid at restricted NADPH concentrations confirmed multiple turnovers of the cofactor. Interestingly, both the fusion enzyme and the native P450BM3 displayed enzyme concentration dependent activity and the fused enzyme reached optimal activity at a lower enzyme concentration. This suggests that the fusion enzyme has an improved tendency to form functional oligomers. To explore the constructed phosphite-driven P450BM3 as a biocatalyst, conversions of the drug compounds omeprazole and rosiglitazone were performed. PTDH-P450BM3 driven by phosphite was found to be more efficient in terms of total turnover when compared with P450BM3 driven by NADPH. The results suggest that PTDH-P450BM3 is an attractive system for use in biocatalytic and drug metabolism studies.
Collapse
|
6
|
Wong TS, Wu N, Roccatano D, Zacharias M, Schwaneberg U. Sensitive Assay for Laboratory Evolution of Hydroxylases toward Aromatic and Heterocyclic Compounds. ACTA ACUST UNITED AC 2016; 10:246-52. [PMID: 15809320 DOI: 10.1177/1087057104273336] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Powerful directed evolution methods have been developed for tailoring proteins to our needs in industrial applications. Here, the authors report a medium-throughput assay system designed for screening mutant libraries of oxygenases capable of inserting a hydroxyl group into a C-H bond of aromatic or O-heterocyclic compounds and for exploring the substrate profile of oxygenases. The assay system is based on 4-aminoantipyrine (4-AAP), a colorimetric phenol detection reagent. By using 2 detection wavelengths (509 nm and 600 nm), the authors achieved a linear response from 50 to 800 μM phenol and standard deviations below 11% in 96-well plate assays. The monooxygenase P450 BM-3 and its F87A mutant were used as a model system for medium-throughput assay development, identification of novel substrates (e.g., phenoxytoluene, phenylallyether, and coumarone), and discovery of P450 BM-3 F87A mutants with 8-fold improvement in 3-phenoxytoluene hydroxylation activity. This activity increase was achieved by screening a saturation mutagenesis library of amino acid position Y51 using the 4-AAP protocol in the 96-well format.
Collapse
Affiliation(s)
- T S Wong
- International University Bremen (IUB), Campus Ring 8, 28759 Bremen, Germany
| | | | | | | | | |
Collapse
|
7
|
Evaluation of coumarin-based fluorogenic P450 BM3 substrates and prospects for competitive inhibition screenings. Anal Biochem 2014; 456:70-81. [PMID: 24708937 DOI: 10.1016/j.ab.2014.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 12/17/2022]
Abstract
Fluorescence-based assays for the cytochrome P450 BM3 monooxygenase from Bacillus megaterium address an attractive biotechnological challenge by facilitating enzyme engineering and the identification of potential substrates of this highly promising biocatalyst. In the current study, we used the scarcity of corresponding screening systems as an opportunity to evaluate a novel and continuous high-throughput assay for this unique enzyme. A set of nine catalytically diverse P450 BM3 variants was constructed and tested toward the native substrate-inspired fluorogenic substrate 12-(4-trifluoromethylcoumarin-7-yloxy)dodecanoic acid. Particularly high enzyme-mediated O-dealkylation yielding the fluorescent product 7-hydroxy-4-trifluoromethylcoumarin was observed with mutants containing the F87V substitution, with A74G/F87V showing the highest catalytic efficiency (0.458 min(-1)μM(-1)). To simplify the assay procedure and show its versatility, different modes of application were successfully demonstrated, including (i) the direct use of NADPH or its oxidized form NADP(+) along with diverse NADPH recycling systems for electron supply, (ii) the use of cell-free lysates and whole-cell preparations as the biocatalyst source, and (iii) its use for competitive inhibition screens to identify or characterize substrates and inhibitors. A detailed comparison with known, fluorescence-based P450 BM3 assays finally emphasizes the relevance of our contribution to the ongoing research.
Collapse
|
8
|
Kim KR, Oh DK. Production of hydroxy fatty acids by microbial fatty acid-hydroxylation enzymes. Biotechnol Adv 2013; 31:1473-85. [PMID: 23860413 DOI: 10.1016/j.biotechadv.2013.07.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/03/2013] [Accepted: 07/06/2013] [Indexed: 10/26/2022]
Abstract
Hydroxy fatty acids are widely used in chemical, food, and cosmetic industries as starting materials for the synthesis of polymers and as additives for the manufacture of lubricants, emulsifiers, and stabilizers. They have antibiotic, anti-inflammatory, and anticancer activities and therefore can be applied for medicinal uses. Microbial fatty acid-hydroxylation enzymes, including P450, lipoxygenase, hydratase, 12-hydroxylase, and diol synthase, synthesize regio-specific hydroxy fatty acids. In this article, microbial fatty acid-hydroxylation enzymes, with a focus on region-specificity and diversity, are summarized and the production of mono-, di-, and tri-hydroxy fatty acids is introduced. Finally, the production methods of regio-specific and diverse hydroxy fatty acids, such as gene screening, protein engineering, metabolic engineering, and combinatory biosynthesis, are suggested.
Collapse
Affiliation(s)
- Kyoung-Rok Kim
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-Dong Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | | |
Collapse
|
9
|
Kuper J, Tee KL, Wilmanns M, Roccatano D, Schwaneberg U, Wong TS. The role of active-site Phe87 in modulating the organic co-solvent tolerance of cytochrome P450 BM3 monooxygenase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1013-7. [PMID: 22949185 PMCID: PMC3433188 DOI: 10.1107/s1744309112031570] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/11/2012] [Indexed: 11/10/2022]
Abstract
Understanding the effects of organic co-solvents on protein structure and function is pivotal to engineering enzymes for biotransformation in non-aqueous solvents. The effects of DMSO on the catalytic activity of cytochrome P450 BM3 have previously been investigated and the importance of Phe87 in its organic co-solvent tolerance was identified. To probe the DMSO inactivation mechanism and the functional role of Phe87 in modulating the organic co-solvent tolerance of P450 BM3, the haem domain (Thr1-Leu455) of the F87A variant was cocrystallized in the presence of 14%(v/v) and 28%(v/v) DMSO. At both DMSO concentrations the protein retained the canonical structure of the P450 haem domain without any sign of partial or global unfolding. Interestingly, a DMSO molecule was found in the active site of both structures, with its O atom pointing towards the haem iron. The orientation of the DMSO molecule indicated a dynamic coordination process that was in competition with the active-site water molecule. The ability of the DMSO molecule to coordinate the haem iron is plausibly the main reason why P450 BM3 is inactivated at elevated DMSO concentrations. The data allowed an interesting comparison with the wild-type structures reported previously. A DMSO molecule was found when the wild-type protein was placed in 28%(v/v) DMSO, in which the DMSO molecule coordinated the haem iron directly via its S atom. Intriguingly, no DMSO molecule was observed at 14%(v/v) DMSO for the wild-type structure. These results suggested that the bulky phenyl side chain of Phe87 protects the haem from being accessed by the DMSO molecule and explains the higher tolerance of the wild-type enzyme towards organic co-solvents compared with its F87A variant.
Collapse
Affiliation(s)
- Jochen Kuper
- Rudolf Virchow Centre for Biomedical Research, Josef Schneider Strasse 2, 97070 Würzburg, Germany
| | - Kang Lan Tee
- Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, England
| | - Matthias Wilmanns
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
| | - Danilo Roccatano
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Ulrich Schwaneberg
- Department of Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Tuck Seng Wong
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, England
| |
Collapse
|
10
|
Kumar S. Engineering cytochrome P450 biocatalysts for biotechnology, medicine and bioremediation. Expert Opin Drug Metab Toxicol 2010; 6:115-31. [PMID: 20064075 DOI: 10.1517/17425250903431040] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
IMPORTANCE OF THE FIELD Cytochrome P450 enzymes comprise a superfamily of heme monooxygenases that are of considerable interest for the: i) synthesis of novel drugs and drug metabolites; ii) targeted cancer gene therapy; iii) biosensor design; and iv) bioremediation. However, their applications are limited because cytochrome P450, especially mammalian P450 enzymes, show a low turnover rate and stability, and require a complex source of electrons through cytochrome P450 reductase and NADPH. AREAS COVERED IN THIS REVIEW In this review, we discuss the recent progress towards the use of P450 enzymes in a variety of the above-mentioned applications. We also present alternate and cost-effective ways to perform P450-mediated reaction, especially using peroxides. Furthermore, we expand upon the current progress in P450 engineering approaches describing several recent examples that are utilized to enhance heterologous expression, stability, catalytic efficiency and utilization of alternate oxidants. WHAT THE READER WILL GAIN The review provides a comprehensive knowledge in the design of P450 biocatalysts for potentially practical purposes. Finally, we provide a prospective on the future aspects of P450 engineering and its applications in biotechnology, medicine and bioremediation. TAKE HOME MESSAGE Because of its wide applications, academic and pharmaceutical researchers, environmental scientists and healthcare providers are expected to gain current knowledge and future prospects of the practical use of P450 biocatalysts.
Collapse
Affiliation(s)
- Santosh Kumar
- University of Missouri-Kansas City, School of Pharmacy, Division of Pharmacology and Toxicology, 2464 Charlotte St., Kansas City, MO 64108, USA.
| |
Collapse
|
11
|
Kamrat T, Nidetzky B. Entrapment in E. coli improves the operational stability of recombinant β-glycosidase CelB from Pyrococcus furiosus and facilitates biocatalyst recovery. J Biotechnol 2007; 129:69-76. [PMID: 17212972 DOI: 10.1016/j.jbiotec.2006.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 07/07/2006] [Accepted: 07/18/2006] [Indexed: 11/16/2022]
Abstract
beta-Glycosidase CelB from the hyperthermophilic archaeon Pyrococcus furiosus is a versatile biocatalyst that has been used for the hydrolysis and synthesis of beta-d-glycosidic compounds at high temperatures and in non-conventional solvents. In spite of its outstanding thermal stability, CelB is prone to inactivation in the presence of reducing sugars and through recirculation in loop enzyme reactors. Entrapment into E. coli cells was used here to improve the stability of recombinant CelB under conditions promoting strong inactivation. Glutardialdehyde-mediated protein cross-linking or rigidification of the cell membrane by adding magnesium ions was required to prevent release of CelB from within the cell into the bulk solution. In the presence of 1M glucose or when applying recirculation rates of 2.6 min(-1), the entrapped enzyme was around two-fold more stable at 80 degrees C than free CelB. The significance of the stabilisation was attenuated by the decrease in CelB initial activity which was due to cross-linking and glutardialdehyde concentration-dependent. Entrapment facilitated downstream processing of CelB and biocatalyst recovery in repeated batchwise conversions of lactose at elevated temperatures.
Collapse
Affiliation(s)
- Thomas Kamrat
- Research Centre Applied Biocatalysis, Petersgasse 14, c/o Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, A-8010 Graz, Austria
| | | |
Collapse
|
12
|
Funhoff EG, Bauer U, García-Rubio I, Witholt B, van Beilen JB. CYP153A6, a soluble P450 oxygenase catalyzing terminal-alkane hydroxylation. J Bacteriol 2006; 188:5220-7. [PMID: 16816194 PMCID: PMC1539980 DOI: 10.1128/jb.00286-06] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 05/08/2006] [Indexed: 11/20/2022] Open
Abstract
The first and key step in alkane metabolism is the terminal hydroxylation of alkanes to 1-alkanols, a reaction catalyzed by a family of integral-membrane diiron enzymes related to Pseudomonas putida GPo1 AlkB, by a diverse group of methane, propane, and butane monooxygenases and by some membrane-bound cytochrome P450s. Recently, a family of cytoplasmic P450 enzymes was identified in prokaryotes that allow their host to grow on aliphatic alkanes. One member of this family, CYP153A6 from Mycobacterium sp. HXN-1500, hydroxylates medium-chain-length alkanes (C6 to C11) to 1-alkanols with a maximal turnover number of 70 min(-1) and has a regiospecificity of > or =95% for the terminal carbon atom position. Spectroscopic binding studies showed that C6-to-C11 aliphatic alkanes bind in the active site with Kd values varying from approximately 20 nM to 3.7 microM. Longer alkanes bind more strongly than shorter alkanes, while the introduction of sterically hindering groups reduces the affinity. This suggests that the substrate-binding pocket is shaped such that linear alkanes are preferred. Electron paramagnetic resonance spectroscopy in the presence of the substrate showed the formation of an enzyme-substrate complex, which confirmed the binding of substrates observed in optical titrations. To rationalize the experimental observations on a molecular scale, homology modeling of CYP153A6 and docking of substrates were used to provide the first insight into structural features required for terminal alkane hydroxylation.
Collapse
Affiliation(s)
- Enrico G Funhoff
- Institute of Biotechnology, Swiss Federal Institute of Technology Zürich, Wolfgang-Pauli-Strasse 16, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
13
|
Landwehr M, Hochrein L, Otey CR, Kasrayan A, Bäckvall JE, Arnold FH. Enantioselective alpha-hydroxylation of 2-arylacetic acid derivatives and buspirone catalyzed by engineered cytochrome P450 BM-3. J Am Chem Soc 2006; 128:6058-9. [PMID: 16669674 PMCID: PMC2551755 DOI: 10.1021/ja061261x] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we report that an engineered microbial cytochrome P450 BM-3 (CYP102A subfamily) efficiently catalyzes the alpha-hydroxylation of phenylacetic acid esters. This P450 BM-3 variant also produces the authentic human metabolite of buspirone, R-6-hydroxybuspirone, with 99.5% ee.
Collapse
Affiliation(s)
- Marco Landwehr
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena, California 91125-4100, USA
| | | | | | | | | | | |
Collapse
|
14
|
Bernhardt R. Cytochromes P450 as versatile biocatalysts. J Biotechnol 2006; 124:128-45. [PMID: 16516322 DOI: 10.1016/j.jbiotec.2006.01.026] [Citation(s) in RCA: 599] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 11/09/2005] [Accepted: 01/10/2006] [Indexed: 10/24/2022]
Abstract
Cytochromes P450 are ubiquitously distributed enzymes, which were discovered about 50 years ago and which possess high complexity and display a broad field of activity. They are hemoproteins encoded by a superfamily of genes converting a broad variety of substrates and catalysing a variety of interesting chemical reactions. This enzyme family is involved in the biotransformation of drugs, the bioconversion of xenobiotics, the metabolism of chemical carcinogens, the biosynthesis of physiologically important compounds such as steroids, fatty acids, eicosanoids, fat-soluble vitamins, bile acids, the conversion of alkanes, terpenes, and aromatic compounds as well as the degradation of herbicides and insecticides. There is also a broad versatility of reactions catalysed by cytochromes P450 such as carbon hydroxylation, heteroatom oxygenation, dealkylation, epoxidation, aromatic hydroxylation, reduction, dehalogenation (Sono, M., Roach, M.P., Coulter, E.D., Dawson, J.H., 1996. Heme-containing oxygenases. Chem. Rev. 96, 2841-2888), (Werck-Reichhart, D., Feyereisen, R., 2000. Cytochromes P450: a success story. Genome Biol. 1 (REVIEWS3003)), (Bernhardt, R., 2004. Cytochrome P-450. Encyclopedia Biol. Chem. 1, 544-549), (Bernhardt, R., 2004. Optimized chimeragenesis; creating diverse P450 functions. Chem. Biol. 11, 287-288), (Guengerich, F.P., 2004. Cytochrome P450: what have we learned and what are the future issues? Drug Metab. Rev. 36, 159-197). More than 5000 different P450 genes have been cloned up to date (for details see: ). Members of the same gene family are defined as usually having > or =40% sequence identity to a P450 protein from any other family. Mammalian sequences within the same subfamily are always >55% identical. The numbers of individual P450 enzymes in different species differ significantly, showing the highest numbers observed so far in plants. The structure-function relationships of cytochromes P450 are far from being well understood and their catalytic power has so far hardly been used for biotechnological processes. Nevertheless, the set of interesting reactions being catalysed by these systems and the availability of new genetic engineering techniques allowing to heterologously express them and to improve and change their activity, stability and selectivity as well as the increasing interest of the industry in life sciences makes them promising candidates for biotechnological application in the future.
Collapse
Affiliation(s)
- Rita Bernhardt
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
15
|
Rowe LA, Geddie ML, Alexander OB, Matsumura I. A comparison of directed evolution approaches using the beta-glucuronidase model system. J Mol Biol 2003; 332:851-60. [PMID: 12972256 DOI: 10.1016/s0022-2836(03)00972-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Protein engineers can alter the properties of enzymes by directing their evolution in vitro. Many methods to generate molecular diversity and to identify improved clones have been developed, but experimental evolution remains as much an art as a science. We previously used DNA shuffling (sexual recombination) and a histochemical screen to direct the evolution of Escherichia coli beta-glucuronidase (GUS) variants with improved beta-galactosidase (BGAL) activity. Here, we employ the same model evolutionary system to test the efficiencies of several other techniques: recursive random mutagenesis (asexual), combinatorial cassette mutagenesis (high-frequency recombination) and a versatile high-throughput microplate screen. GUS variants with altered specificity evolved in each trial, but different combinations of mutagenesis and screening techniques effected the fixation of different beneficial mutations. The new microplate screen identified a broader set of mutations than the previously employed X-gal colony screen. Recursive random mutagenesis produced essentially asexual populations, within which beneficial mutations drove each other into extinction (clonal interference); DNA shuffling and combinatorial cassette mutagenesis led instead to the accumulation of beneficial mutations within a single allele. These results explain why recombinational approaches generally increase the efficiency of laboratory evolution.
Collapse
Affiliation(s)
- Lori A Rowe
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
16
|
Abstract
Recent studies on microbial cytochrome P450 enzymes have covered several new areas. Advances have been made in structure-function analysis and new non-enzymatic/electrochemical systems for the replacement of NAD(P)H in biocatalysis have been developed. Furthermore, the properties of some enzymes have been re-engineered by site-directed mutagenesis or by methods of directed evolution and new P450s have been functionally expressed and characterized. It is thought that a combination of these approaches will facilitate the use of isolated P450 monooxygenases in biocatalysis.
Collapse
Affiliation(s)
- Vlada Urlacher
- Institute for Technical Biochemistry, University of Stuttgart, Allmandring 31, D-70569, Stuttgart, Germany.
| | | |
Collapse
|
17
|
Abstract
Oxygenase enzymes have seen limited practical applications because of their complexity, poor stabilities, and often low catalytic rates. However, their ability to perform difficult chemistry with high selectivity and specificity has kept oxygenases at the forefront of engineering efforts. Growing understanding of structure-function relationships and improved protein engineering methods are paving the way for applications of oxygenases in chemical synthesis and bioremediation.
Collapse
Affiliation(s)
- Patrick C Cirino
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|