1
|
Maus H, Müller P, Meta M, Hoba SN, Hammerschmidt SJ, Zimmermann RA, Zimmer C, Fuchs N, Schirmeister T, Barthels F. Next Generation of Fluorometric Protease Assays: 7-Nitrobenz-2-oxa-1,3-diazol-4-yl-amides (NBD-Amides) as Class-Spanning Protease Substrates. Chemistry 2023; 29:e202301855. [PMID: 37313627 DOI: 10.1002/chem.202301855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/15/2023]
Abstract
Fluorometric assays are one of the most frequently used methods in medicinal chemistry. Over the last 50 years, the reporter molecules for the detection of protease activity have evolved from first-generation colorimetric p-nitroanilides, through FRET substrates, and 7-amino-4-methyl coumarin (AMC)-based substrates. The aim of further substrate development is to increase sensitivity and reduce vulnerability to assay interferences. Herein, we describe a new generation of substrates for protease assays based on 7-nitrobenz-2-oxa-1,3-diazol-4-yl-amides (NBD-amides). In this study, we synthesized and tested substrates for 10 different proteases from the serine-, cysteine-, and metalloprotease classes. Enzyme- and substrate-specific parameters as well as the inhibitory activity of literature-known inhibitors confirmed their suitability for application in fluorometric assays. Hence, we were able to present NBD-based alternatives for common protease substrates. In conclusion, these NBD substrates are not only less susceptible to common assay interference, but they are also able to replace FRET-based substrates with the requirement of a prime site amino acid residue.
Collapse
Affiliation(s)
- Hannah Maus
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Patrick Müller
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Mergim Meta
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Sabrina N Hoba
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Stefan J Hammerschmidt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Robert A Zimmermann
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Collin Zimmer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Natalie Fuchs
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Fabian Barthels
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| |
Collapse
|
2
|
Valverde-Pozo J, Paredes JM, Widmann TJ, Griñan-Lison C, Ceccarelli G, Gioiello A, Garcia-Rubiño ME, Marchal JA, Alvarez-Pez JM, Talavera EM. Ratiometric Two-Photon Near-Infrared Probe to Detect DPP IV in Human Plasma, Living Cells, Human Tissues, and Whole Organisms Using Zebrafish. ACS Sens 2023; 8:1064-1075. [PMID: 36847549 PMCID: PMC10043939 DOI: 10.1021/acssensors.2c02025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
DPP IV, otherwise known as CD26 lymphocyte T surface antigen, is a transmembrane glycoprotein also found in circulation in the blood. It plays an important role in several processes like glucose metabolism and T-cell stimulation. Moreover, it is overexpressed in renal, colon, prostate, and thyroid human carcinoma tissues. It can also serve as a diagnostic in patients with lysosomal storage diseases. The biological and clinical importance of having readouts for the activity of this enzyme, in physiological and disease conditions, has led us to design a near-infrared (NIR) fluorimetric probe that also has the characteristics of being ratiometric and excitable by two simultaneous NIR photons. The probe consists of assembling an enzyme recognition group (Gly-Pro) (Mentlein, 1999; Klemann et al., 2016) on the two-photon (TP) fluorophore (derivative of dicyanomethylene-4H-pyran, DCM-NH2) disturbing its NIR characteristic internal charge transfer (ICT) emission spectrum. When the dipeptide group is released by the DPP IV-specific enzymatic action, the donor-acceptor DCM-NH2 is restored, forming a system that shows high ratiometric fluorescence output. With this new probe, we have been able to detect, quickly and efficiently, the enzymatic activity of DPP IV in living cells, human tissues, and whole organisms, using zebrafish. In addition, due to the possibility of being excited by two photons, we can avoid the autofluorescence and subsequent photobleaching that the raw plasma has when it is excited by visible light, achieving detection of the activity of DPP IV in that medium without interference.
Collapse
Affiliation(s)
- Javier Valverde-Pozo
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
| | - Jose M Paredes
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
| | - Thomas J Widmann
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain
| | - Carmen Griñan-Lison
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- UGC de Oncología Médica, Complejo Hospitalario de Jaen, 23007 Jaen, Spain
| | - Giada Ceccarelli
- Laboratory of Medicinal and Advanced Synthetic Chemistry (Lab MASC), Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Antimo Gioiello
- Laboratory of Medicinal and Advanced Synthetic Chemistry (Lab MASC), Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - M Eugenia Garcia-Rubiño
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
| | - Juan A Marchal
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Jose M Alvarez-Pez
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
| | - Eva M Talavera
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
| |
Collapse
|
3
|
Brewitz L, Kamps JJAG, Lukacik P, Strain‐Damerell C, Zhao Y, Tumber A, Malla TR, Orville AM, Walsh MA, Schofield CJ. Mass Spectrometric Assays Reveal Discrepancies in Inhibition Profiles for the SARS-CoV-2 Papain-Like Protease. ChemMedChem 2022; 17:e202200016. [PMID: 35085423 PMCID: PMC9015526 DOI: 10.1002/cmdc.202200016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/26/2022] [Indexed: 11/20/2022]
Abstract
The two SARS-CoV-2 proteases, i. e. the main protease (Mpro ) and the papain-like protease (PLpro ), which hydrolyze the viral polypeptide chain giving functional non-structural proteins, are essential for viral replication and are medicinal chemistry targets. We report a high-throughput mass spectrometry (MS)-based assay which directly monitors PLpro catalysis in vitro. The assay was applied to investigate the effect of reported small-molecule PLpro inhibitors and selected Mpro inhibitors on PLpro catalysis. The results reveal that some, but not all, PLpro inhibitor potencies differ substantially from those obtained using fluorescence-based assays. Some substrate-competing Mpro inhibitors, notably PF-07321332 (nirmatrelvir) which is in clinical development, do not inhibit PLpro . Less selective Mpro inhibitors, e. g. auranofin, inhibit PLpro , highlighting the potential for dual PLpro /Mpro inhibition. MS-based PLpro assays, which are orthogonal to widely employed fluorescence-based assays, are of utility in validating inhibitor potencies, especially for inhibitors operating by non-covalent mechanisms.
Collapse
Affiliation(s)
- Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of Oxford12 Mansfield RoadOX1 3TAOxfordUK
| | - Jos J. A. G. Kamps
- Diamond Light Source Ltd.Harwell Science and Innovation CampusOX11 0DEDidcotUK
- Research Complex at HarwellHarwell Science and Innovation CampusOX11 0FADidcotUK
| | - Petra Lukacik
- Diamond Light Source Ltd.Harwell Science and Innovation CampusOX11 0DEDidcotUK
- Research Complex at HarwellHarwell Science and Innovation CampusOX11 0FADidcotUK
| | - Claire Strain‐Damerell
- Diamond Light Source Ltd.Harwell Science and Innovation CampusOX11 0DEDidcotUK
- Research Complex at HarwellHarwell Science and Innovation CampusOX11 0FADidcotUK
| | - Yilin Zhao
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of Oxford12 Mansfield RoadOX1 3TAOxfordUK
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of Oxford12 Mansfield RoadOX1 3TAOxfordUK
| | - Tika R. Malla
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of Oxford12 Mansfield RoadOX1 3TAOxfordUK
| | - Allen M. Orville
- Diamond Light Source Ltd.Harwell Science and Innovation CampusOX11 0DEDidcotUK
- Research Complex at HarwellHarwell Science and Innovation CampusOX11 0FADidcotUK
| | - Martin A. Walsh
- Diamond Light Source Ltd.Harwell Science and Innovation CampusOX11 0DEDidcotUK
- Research Complex at HarwellHarwell Science and Innovation CampusOX11 0FADidcotUK
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of Oxford12 Mansfield RoadOX1 3TAOxfordUK
| |
Collapse
|
4
|
Deddouche-Grass S, Andouche C, Bärenz F, Halter C, Hohwald A, Lebrun L, Membré N, Morales R, Muzet N, Poirot M, Reynaud M, Roujean V, Weber F, Zimmermann A, Heng R, Basse N. Discovery and Optimization of a Series of Benzofuran Selective ERAP1 Inhibitors: Biochemical and In Silico Studies. ACS Med Chem Lett 2021; 12:1137-1142. [PMID: 34267884 DOI: 10.1021/acsmedchemlett.1c00235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/03/2021] [Indexed: 01/22/2023] Open
Abstract
ERAP1 is a key aminopeptidase involved in peptide trimming before major histocompatibility complex (MHC) presentation. A single nucleotide polymorphism (SNP) in the ERAP1 gene can lead to impaired trimming activity and affect ERAP1 function. ERAP1 genetic variations have been linked to an increased susceptibility to cancer and autoimmune disease. Here, we report the discovery of novel ERAP1 inhibitors using a high throughput screening approach. Due to ERAP1 broad substrate specificity, the hit finding strategy included testing inhibitors with a range of biochemical assays. Based on the hit potency, selectivity, and in vitro absorption, distribution, metabolism, excretion, and toxicity, the benzofuran series was selected. Fifteen derivatives were designed and synthesized, the compound potency was improved to the nanomolar range, and the structure-activity relationship supported by modeling studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Rama Heng
- Evotec, 31036 Toulouse cedex, France
| | | |
Collapse
|
5
|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors. Proc Natl Acad Sci U S A 2020; 117:31365-31375. [PMID: 33229545 DOI: 10.1073/pnas.2005463117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.
Collapse
|
6
|
Neumann C, Slagboom J, Somsen GW, Vonk F, Casewell NR, Cardoso CL, Kool J. Development of a generic high-throughput screening assay for profiling snake venom protease activity after high-resolution chromatographic fractionation. Toxicon 2020; 178:61-68. [PMID: 32112787 DOI: 10.1016/j.toxicon.2020.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/22/2020] [Accepted: 02/11/2020] [Indexed: 11/21/2022]
Abstract
Snakebites cause upwards of 1.8 million envenomings, 138,000 deaths and 500,000 cases of long term morbidity each year. Viper snake venoms (family Viperidae) generally contain a high proportion of proteases which can cause devastating effects such as hemorrhage, coagulopathy, edema, necrosis, and severe pain, in envenomed victims. In this study, analytical techniques were combined with enzymatic assays to develop a novel method for the detection of snake venom protease activity by using rhodamine-110-peptide substrate. In the so called at-line nanofractionation set up, crude venoms were first separated with reversed phase liquid chromatography, after which fractions were collected onto 384-well plates. Protease activity assays were then performed in the 384-well plates and bioassay chromatograms were constructed revealing protease activity. Parallel obtained UV absorbance, MS and proteomics data from a previous study facilitated toxin identification. The application of the rhodamine-110-peptide substrate assay showed significantly greater sensitivity compared to prior assays using casein-FITC as the substrate. Moreover, cross referencing UV and MS data and resulted in the detection of a number of tentative proteases suspected to exhibit protease activity, including snake venom serine proteases from Calloselasma rhodostoma and Daboia russelli venom and a snake venom metalloproteinase from the venom of Echis ocellatus. Our data demonstrate that his methodology can be a useful tool for selectively identifying snake venom proteases, and can be applied to provide a better understanding of protease-induced pathologies and the development of novel therapeutics for treating snakebite.
Collapse
Affiliation(s)
- Coleen Neumann
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Julien Slagboom
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Freek Vonk
- Naturalis Biodiversity Center, 2333 CR, Leiden, the Netherlands
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Carmen L Cardoso
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - Universidade de São Paulo, Brazil
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Guo X, Mu S, Li J, Zhang Y, Liu X, Zhang H, Gao H. Fabrication of a water-soluble near-infrared fluorescent probe for selective detection and imaging of dipeptidyl peptidase IV in biological systems. J Mater Chem B 2020; 8:767-775. [PMID: 31897456 DOI: 10.1039/c9tb02301a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dipeptidyl peptidase IV (DPP-IV) is a transmembrane glycoprotein known to regulate T cell activation, which is related to various pathological processes and has become a potential target to treat type 2 diabetes mellitus. Therefore, it is significant for the evaluation of endogenous DPP-IV activity in various biological systems. Herein, a water-soluble near-infrared (NIR) fluorescent probe HCA-D based on cyanine dyes as the fluorophore and glycyl-prolyl peptide as the specific recognition sequence was developed for the assay of dipeptidyl peptidase IV (DPP-IV) activity. Upon addition of DPP-IV, HCA-D can emit a significant turn-on NIR fluorescence signal under physiological conditions and exhibit high selectivity toward DPP-IV. This feature was available for quantifying DPP-IV in the range from 0.62 to 10 ng mL-1 with a detection limit of 0.19 ng mL-1. Furthermore, the present probe was successfully employed for monitoring DPP-IV in serum samples from diabetic and healthy people, and imaging of DPP-IV in living cells and tumor mice models. These results demonstrate that the designed probe provides a promising tool to explore the relationship between DPP-IV and diabetes mellitus or other diseases. Perhaps, it may become a prospective image-guided tumor resection indicator based on the abnormal expression of DPP-IV activity in the future.
Collapse
Affiliation(s)
- Xiumei Guo
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Shuai Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Jian Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Xiaoyan Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Hong Gao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
8
|
Reinke AA, Li SH, Warnock M, Shaydakov ME, Guntaka NS, Su EJ, Diaz JA, Emal CD, Lawrence DA. Dual-reporter high-throughput screen for small-molecule in vivo inhibitors of plasminogen activator inhibitor type-1 yields a clinical lead candidate. J Biol Chem 2018; 294:1464-1477. [PMID: 30510136 DOI: 10.1074/jbc.ra118.004885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/30/2018] [Indexed: 12/15/2022] Open
Abstract
Plasminogen activator inhibitor type-1 (PAI-1) is a serine protease inhibitor (serpin) implicated in numerous pathological processes, including coronary heart disease, arterial and venous thrombosis, and chronic fibrotic diseases. These associations have made PAI-1 an attractive pharmaceutical target. However, the complexity of the serpin inhibitory mechanism, the inherent metastability of serpins, and the high-affinity association of PAI-1 with vitronectin in vivo have made it difficult to identify pharmacologically effective small-molecule inhibitors. Moreover, the majority of current small-molecule PAI-1 inhibitors are poor pharmaceutical candidates. To this end and to find leads that can be efficiently applied to in vivo settings, we developed a dual-reporter high-throughput screen (HTS) that reduced the rate of nonspecific and promiscuous hits and identified leads that inhibit human PAI-1 in the high-protein environments present in vivo Using this system, we screened >152,000 pure compounds and 27,000 natural product extracts (NPEs), reducing the apparent hit rate by almost 10-fold compared with previous screening approaches. Furthermore, screening in a high-protein environment permitted the identification of compounds that retained activity in both ex vivo plasma and in vivo Following lead identification, subsequent medicinal chemistry and structure-activity relationship (SAR) studies identified a lead clinical candidate, MDI-2268, having excellent pharmacokinetics, potent activity against vitronectin-bound PAI-1 in vivo, and efficacy in a murine model of venous thrombosis. This rigorous HTS approach eliminates promiscuous candidate leads, significantly accelerates the process of identifying PAI-1 inhibitors that can be rapidly deployed in vivo, and has enabled identification of a potent lead compound.
Collapse
Affiliation(s)
- Ashley A Reinke
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Shih-Hon Li
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109
| | - Mark Warnock
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Maxim E Shaydakov
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | | | - Enming J Su
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Jose A Diaz
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Cory D Emal
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197
| | - Daniel A Lawrence
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109.
| |
Collapse
|
9
|
Ren L, Yu D, Wang Y, Shen L, Zhang J, Wang Y, Fang X. Inhibiting effects of common trivalent metal ions on transmembrane-type 2 matrix metalloproteinase. Int J Biol Macromol 2018; 119:683-691. [PMID: 30048727 DOI: 10.1016/j.ijbiomac.2018.07.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/14/2018] [Accepted: 07/23/2018] [Indexed: 11/29/2022]
Abstract
Transmembrane-type 2 matrix metalloproteinase (MT2-MMP) degrades connective extracellular matrix between cells and enables tumor cells to migrate and metastasize, making this substance a potential therapeutic target in various diseases. In this work, the interactions between MT2-MMP and common trivalent metal ions, including aluminum (Al3+) and ferrum (Fe3+) ions, were investigated. Enzymatic detection revealed that Al3+ and Fe3+ strongly inhibited the MT2-MMP. Fluorescence spectrography elucidated a static quenching interaction between the negatively charged amino acids on MT2-MMP and the inhibitory trivalent metal ions, indicating that a stable complex was formed between MT2-MMP and metal ions. In addition, fluorescence data and molecular modeling analysis of the binding characteristics revealed that one trivalent metal ion bound with a protein in the stable complex formation process. The potential inhibitory effect of Al3+ on MT2-MMP was further examined in an MT2-MMP-overexpressed cell line, HT1080, by using flow cytometry. As a result, Al3+ can promote HT1080 cell apoptosis in a micromolar concentration-dependent manner. This work illustrated that common trivalent metal ions can potentially inhibit MT2-MMP-related tumors.
Collapse
Affiliation(s)
- Li Ren
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Street, Changchun, Jilin 130062, PR China; State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yanyan Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Liqiao Shen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Jinrui Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Ye Wang
- School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, Jilin 130012, PR China.
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| |
Collapse
|
10
|
Helgren TR, Seven ES, Chen C, Edwards TE, Staker BL, Abendroth J, Myler PJ, Horn JR, Hagen TJ. The identification of inhibitory compounds of Rickettsia prowazekii methionine aminopeptidase for antibacterial applications. Bioorg Med Chem Lett 2018; 28:1376-1380. [PMID: 29551481 PMCID: PMC5908248 DOI: 10.1016/j.bmcl.2018.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 11/25/2022]
Abstract
Methionine aminopeptidase (MetAP) is a dinuclear metalloprotease responsible for the cleavage of methionine initiator residues from nascent proteins. MetAP activity is necessary for bacterial proliferation and is therefore a projected novel antibacterial target. A compound library consisting of 294 members containing metal-binding functional groups was screened against Rickettsia prowazekii MetAP to determine potential inhibitory motifs. The compounds were first screened against the target at a concentration of 10 µM and potential hits were determined to be those exhibiting greater than 50% inhibition of enzymatic activity. These hit compounds were then rescreened against the target in 8-point dose-response curves and 11 compounds were found to inhibit enzymatic activity with IC50 values of less than 10 µM. Finally, compounds (1-5) were docked against RpMetAP with AutoDock to determine potential binding mechanisms and the results were compared with crystal structures deposited within the PDB.
Collapse
Affiliation(s)
- Travis R Helgren
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Elif S Seven
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Congling Chen
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Thomas E Edwards
- Beryllium Discovery Corp., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA; Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
| | - Bart L Staker
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA; Center for Infectious Disease Research, Formerly Seattle Biomedical Research Institute, 307 Westlake Avenue N., Seattle, WA 98109, USA
| | - Jan Abendroth
- Beryllium Discovery Corp., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA; Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA; Center for Infectious Disease Research, Formerly Seattle Biomedical Research Institute, 307 Westlake Avenue N., Seattle, WA 98109, USA
| | - James R Horn
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Timothy J Hagen
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA.
| |
Collapse
|
11
|
Rumlová M, Ruml T. In vitro methods for testing antiviral drugs. Biotechnol Adv 2018; 36:557-576. [PMID: 29292156 PMCID: PMC7127693 DOI: 10.1016/j.biotechadv.2017.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022]
Abstract
Despite successful vaccination programs and effective treatments for some viral infections, humans are still losing the battle with viruses. Persisting human pandemics, emerging and re-emerging viruses, and evolution of drug-resistant strains impose continuous search for new antiviral drugs. A combination of detailed information about the molecular organization of viruses and progress in molecular biology and computer technologies has enabled rational antivirals design. Initial step in establishing efficacy of new antivirals is based on simple methods assessing inhibition of the intended target. We provide here an overview of biochemical and cell-based assays evaluating the activity of inhibitors of clinically important viruses.
Collapse
Affiliation(s)
- Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| |
Collapse
|
12
|
Liu T, Ning J, Wang B, Dong B, Li S, Tian X, Yu Z, Peng Y, Wang C, Zhao X, Huo X, Sun C, Cui J, Feng L, Ma X. Activatable Near-Infrared Fluorescent Probe for Dipeptidyl Peptidase IV and Its Bioimaging Applications in Living Cells and Animals. Anal Chem 2018; 90:3965-3973. [PMID: 29493228 DOI: 10.1021/acs.analchem.7b04957] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Visualization of endogenous disease-associated enzymes is of great clinical significance, as it could allow earlier clinical diagnosis and timely intervention. Herein, we first synthesized and characterized an enzyme-activatable near-infrared fluorescent probe, GP-DM, for determining the activity of dipeptidyl peptidase IV (DPP IV), which is associated with various pathological processes, especially in diabetes and malignant tumors. GP-DM emitted significant turn-on NIR fluorescent signals simultaneously in response to DPP IV, making it favorable for accurately and dynamically monitoring DPP IV activity in vitro and in vivo. GP-DM exhibited excellent specificity and sensitivity in DPP IV imaging, as indicated by its higher catalytic activity than other human serine hydrolases and by its strong anti-interference ability to a complex biological matrix, which was fully characterized in a series of phenotyping reactions and inhibition assays. Encouraged by the advantages mentioned above, we successfully used GP-DM to evaluate endogenous DPP IV activity in various biological samples (plasma and tissue preparations) and living tumor cells and performed real-time in vivo bioimaging of DPP IV in zebrafish and tumor-bearing nude mice. All of the results reflected and highlighted the potential application value of GP-DM in the early detection of pathologies, individual tailoring of drug therapy, and image-guided tumor resection. Furthermore, our results revealed that DPP IV, a key target enzyme, is closely associated with the migration and proliferation of cancer cells and regulating the biological activity of DPP IV may be a useful approach for cancer therapy.
Collapse
Affiliation(s)
- Tao Liu
- College of Pharmacy, Academy of Integrative Medicine , Dalian Medical University , Lvshun South Road No 9 , Dalian 116044 , China.,State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Jing Ning
- College of Pharmacy, Academy of Integrative Medicine , Dalian Medical University , Lvshun South Road No 9 , Dalian 116044 , China
| | - Bo Wang
- College of Pharmacy, Academy of Integrative Medicine , Dalian Medical University , Lvshun South Road No 9 , Dalian 116044 , China
| | - Bin Dong
- School of Physics and Materials Engineering , Dalian Nationalities University , 18 Liaohe West Road , Dalian 116600 , China
| | - Song Li
- College of Pharmacy, Academy of Integrative Medicine , Dalian Medical University , Lvshun South Road No 9 , Dalian 116044 , China
| | - Xiangge Tian
- College of Pharmacy, Academy of Integrative Medicine , Dalian Medical University , Lvshun South Road No 9 , Dalian 116044 , China
| | - Zhenlong Yu
- College of Pharmacy, Academy of Integrative Medicine , Dalian Medical University , Lvshun South Road No 9 , Dalian 116044 , China
| | - Yulin Peng
- College of Pharmacy, Academy of Integrative Medicine , Dalian Medical University , Lvshun South Road No 9 , Dalian 116044 , China
| | - Chao Wang
- College of Pharmacy, Academy of Integrative Medicine , Dalian Medical University , Lvshun South Road No 9 , Dalian 116044 , China
| | - Xinyu Zhao
- College of Pharmacy, Academy of Integrative Medicine , Dalian Medical University , Lvshun South Road No 9 , Dalian 116044 , China
| | - Xiaokui Huo
- College of Pharmacy, Academy of Integrative Medicine , Dalian Medical University , Lvshun South Road No 9 , Dalian 116044 , China
| | - Chengpeng Sun
- College of Pharmacy, Academy of Integrative Medicine , Dalian Medical University , Lvshun South Road No 9 , Dalian 116044 , China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Lei Feng
- College of Pharmacy, Academy of Integrative Medicine , Dalian Medical University , Lvshun South Road No 9 , Dalian 116044 , China.,State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Xiaochi Ma
- College of Pharmacy, Academy of Integrative Medicine , Dalian Medical University , Lvshun South Road No 9 , Dalian 116044 , China
| |
Collapse
|
13
|
Xing J, Gong Q, Zhang R, Sun S, Zou R, Wu A. A novel non-enzymatic hydrolytic probe for dipeptidyl peptidase IV specific recognition and imaging. Chem Commun (Camb) 2018; 54:8773-8776. [DOI: 10.1039/c8cc05048a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel non-enzymatic hydrolytic probe for DPP IV is obtained.
Collapse
Affiliation(s)
- Jie Xing
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- China
| | - Qiuyu Gong
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- China
| | - Renshuai Zhang
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Shan Sun
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- China
| | - Ruifen Zou
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- China
| | - Aiguo Wu
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- China
| |
Collapse
|
14
|
Bermingham A, Price E, Marchand C, Chergui A, Naumova A, Whitson EL, Krumpe LRH, Goncharova EI, Evans JR, McKee TC, Henrich CJ, Pommier Y, O'Keefe BR. Identification of Natural Products That Inhibit the Catalytic Function of Human Tyrosyl-DNA Phosphodiesterase (TDP1). SLAS DISCOVERY 2017; 22:1093-1105. [PMID: 28697309 DOI: 10.1177/2472555217717200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an enzyme crucial for cleavage of the covalent topoisomerase 1-DNA complex, an intermediate in DNA repair. TDP1 plays a role in reversing inhibition of topoisomerase I by camptothecins, a series of potent and effective inhibitors used in the treatment of colorectal, ovarian, and small-cell lung cancers. It is hypothesized that inhibition of TDP1 activity may enhance camptothecin sensitivity in tumors. Here, we describe the design, development, and execution of a novel assay to identify inhibitors of TDP1 present in natural product extracts. The assay was designed to address issues with fluorescent "nuisance" molecules and to minimize the detection of false-positives caused by polyphenolic molecules known to nonspecifically inhibit enzyme activity. A total of 227,905 purified molecules, prefractionated extracts, and crude natural product extracts were screened. This yielded 534 initial positives (0.23%). Secondary prioritization reduced this number to 117 (0.05% final hit rate). Several novel inhibitors have been identified showing micromolar affinity for human TDP1, including halenaquinol sulfate, a pentacyclic hydroquinone from the sponge Xestospongia sp.
Collapse
Affiliation(s)
- Alun Bermingham
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Edmund Price
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Christophe Marchand
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Adel Chergui
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alena Naumova
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily L Whitson
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Lauren R H Krumpe
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, USA
| | | | | | - Tawnya C McKee
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Curtis J Henrich
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.,Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, USA
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Barry R O'Keefe
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.,Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
15
|
Zou LW, Wang P, Qian XK, Feng L, Yu Y, Wang DD, Jin Q, Hou J, Liu ZH, Ge GB, Yang L. A highly specific ratiometric two-photon fluorescent probe to detect dipeptidyl peptidase IV in plasma and living systems. Biosens Bioelectron 2017; 90:283-289. [PMID: 27923191 PMCID: PMC7127234 DOI: 10.1016/j.bios.2016.11.068] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/17/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
Abstract
In this study, a highly specific ratiometric two-photon fluorescent probe GP-BAN was developed and well-characterized to monitor dipeptidyl peptidase IV in plasma and living systems. GP-BAN was designed on the basis of the catalytic properties and substrate preference of DPP-IV, and it could be readily hydrolyzed upon addition of DPP-IV under physiological conditions. Both reaction phenotyping and inhibition assays demonstrated that GP-BAN displayed good reactivity and high selectivity towards DPP-IV over other human serine hydrolases including FAP, DPP-VIII, and DPP-IX. The probe was successfully used to monitor the real activities of DPP-IV in complex biological systems including diluted plasma, while it could be used for high throughput screening of DPP-IV inhibitors by using human plasma or tissue preparations as enzyme sources. As a two-photon fluorescent probe, GP-BAN was also successfully used for two-photon imaging of endogenous DPP-IV in living cells and tissues, and showed high ratiometric imaging resolution and deep-tissue penetration ability. Taken together, a ratiometric two-photon fluorescent probe GP-BAN was developed and well-characterized for highly selective and sensitive detection of DPP-IV in complex biological systems, which could serve as a promising imaging tool to explore the biological functions and physiological roles of this key enzyme in living systems.
Collapse
Affiliation(s)
- Li-Wei Zou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xing-Kai Qian
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lei Feng
- Dalian Medical University, Dalian 116044, China
| | - Yang Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dan-Dan Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiang Jin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jie Hou
- Dalian Medical University, Dalian 116044, China
| | - Zhi-Hong Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Guang-Bo Ge
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Ling Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
16
|
Helgren TR, Chen C, Wangtrakuldee P, Edwards TE, Staker BL, Abendroth J, Sankaran B, Housley NA, Myler PJ, Audia JP, Horn JR, Hagen TJ. Rickettsia prowazekii methionine aminopeptidase as a promising target for the development of antibacterial agents. Bioorg Med Chem 2017; 25:813-824. [PMID: 28089350 PMCID: PMC5319851 DOI: 10.1016/j.bmc.2016.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/06/2016] [Accepted: 11/08/2016] [Indexed: 01/07/2023]
Abstract
Methionine aminopeptidase (MetAP) is a class of ubiquitous enzymes essential for the survival of numerous bacterial species. These enzymes are responsible for the cleavage of N-terminal formyl-methionine initiators from nascent proteins to initiate post-translational modifications that are often essential to proper protein function. Thus, inhibition of MetAP activity has been implicated as a novel antibacterial target. We tested this idea in the present study by targeting the MetAP enzyme in the obligate intracellular pathogen Rickettsia prowazekii. We first identified potent RpMetAP inhibitory species by employing an in vitro enzymatic activity assay. The molecular docking program AutoDock was then utilized to compare published crystal structures of inhibited MetAP species to docked poses of RpMetAP. Based on these in silico and in vitro screens, a subset of 17 compounds was tested for inhibition of R. prowazekii growth in a pulmonary vascular endothelial cell (EC) culture infection model system. All compounds were tested over concentration ranges that were determined to be non-toxic to the ECs and 8 of the 17 compounds displayed substantial inhibition of R. prowazekii growth. These data highlight the therapeutic potential for inhibiting RpMetAP as a novel antimicrobial strategy and set the stage for future studies in pre-clinical animal models of infection.
Collapse
Affiliation(s)
- Travis R Helgren
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Congling Chen
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Phumvadee Wangtrakuldee
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Thomas E Edwards
- Beryllium Discovery Corp., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA; Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
| | - Bart L Staker
- Center for Infectious Disease Research, Formerly Seattle Biomedical Research Institute, 307 Westlake Avenue N., Seattle, WA 98109, USA; Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
| | - Jan Abendroth
- Beryllium Discovery Corp., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA; Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nicole A Housley
- Department of Microbiology and Immunology and The Center for Lung Biology, University of South Alabama College of Medicine, Laboratory of Infectious Diseases, 307 North University Blvd, Mobile, AL 36688, USA
| | - Peter J Myler
- Center for Infectious Disease Research, Formerly Seattle Biomedical Research Institute, 307 Westlake Avenue N., Seattle, WA 98109, USA; Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA; Department of Global Health and Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA
| | - Jonathon P Audia
- Department of Microbiology and Immunology and The Center for Lung Biology, University of South Alabama College of Medicine, Laboratory of Infectious Diseases, 307 North University Blvd, Mobile, AL 36688, USA
| | - James R Horn
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Timothy J Hagen
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA.
| |
Collapse
|
17
|
Gong Q, Shi W, Li L, Wu X, Ma H. Ultrasensitive Fluorescent Probes Reveal an Adverse Action of Dipeptide Peptidase IV and Fibroblast Activation Protein during Proliferation of Cancer Cells. Anal Chem 2016; 88:8309-14. [PMID: 27444320 DOI: 10.1021/acs.analchem.6b02231] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dipeptide peptidase IV (DPPIV) and fibroblast activation protein (FAP) are isoenzymes. Evidence shows that DPPIV is related to antitumor immunity, and FAP may be a drug target in cancer therapy, making it seem that the two enzymes might have a synergistic role during the proliferation of cancer cells. Surprisingly, herein, we find an adverse action of DPPIV and FAP in the proliferation process by analyzing their changes with two tailor-made ultrasensitive fluorescent probes. First, the up-regulation of DPPIV and down-regulation of FAP in cancer cells under the stimulation of genistein are detected. Then, we find that MGC803 cells with a higher FAP but lower DPPIV level than SGC7901 cells exhibit a faster proliferation rate. Importantly, inhibiting the DPPIV expression with siRNA increases the proliferation rate of MGC803 cells, whereas the FAP inhibition decreases the rate. These findings suggest that the two enzymes play an adverse role during the proliferation of cancer cells, which provides us a new viewpoint for cancer studies.
Collapse
Affiliation(s)
- Qiuyu Gong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Lihong Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Xiaofeng Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
18
|
Gong Q, Shi W, Li L, Ma H. Leucine aminopeptidase may contribute to the intrinsic resistance of cancer cells toward cisplatin as revealed by an ultrasensitive fluorescent probe. Chem Sci 2016; 7:788-792. [PMID: 28966770 PMCID: PMC5580032 DOI: 10.1039/c5sc03600c] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/22/2015] [Indexed: 01/18/2023] Open
Abstract
Cisplatin, a typical anticancer drug, is often used to treat different cancers, and leucine aminopeptidase (LAP) is known to be widely distributed in organisms from bacteria to humans, including various cancer cells. However, cancer cells display different intrinsic or acquired resistance toward cisplatin, and it is unclear whether intracellular LAP plays a role in the intrinsic drug resistance, mainly due to the lack of a sensitive detection approach for LAP because this enzyme usually exists at trace levels in cancer cells. Herein, by developing an ultrasensitive LAP fluorescent probe (detection limit 0.42 ng mL-1) and combining it with confocal fluorescence imaging, we analyze the concentration change of LAP in cancer cells such as HepG2 and A549 cells under cisplatin treatment. We find that a large increase in the LAP concentration occurs in HepG2 rather than in A549 cells. These different changes are further confirmed by an ELISA kit. A cell viability assay reveals that HepG2 cells with a higher level of LAP have much stronger resistance toward cisplatin than A549 cells, suggesting that LAP may serve as a simple indicator to reflect the relative resistance of different cancer cells. Importantly, inhibiting the expression of LAP with siRNA further decreases cell viability. These findings support that LAP may contribute to the intrinsic resistance of cancer cells toward cisplatin. In addition, the proposed probe may find more uses in studying the cellular LAP function, and improving chemotherapeutic cancer treatment.
Collapse
Affiliation(s)
- Qiuyu Gong
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China .
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China .
| | - Lihong Li
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China .
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China .
| |
Collapse
|
19
|
A thin-layer chromatography-bioautographic method for detecting dipeptidyl peptidase IV inhibitors in plants. J Chromatogr A 2015; 1411:116-22. [PMID: 26283532 DOI: 10.1016/j.chroma.2015.07.123] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/26/2015] [Accepted: 07/31/2015] [Indexed: 01/23/2023]
Abstract
A thin-layer chromatography (TLC)-bioautographic method was developed with the aim to detect dipeptidyl peptidase IV (DPP IV) inhibitors from plant extracts. The basic principle of the method is that the enzyme (DPP IV) hydrolyzes substrate (Gly-Pro-p-nitroaniline) into p-nitroaniline (pNA), which diazotizes with sodium nitrite, and then reacts with N-(1-naphthyl) ethylenediamine dihydrochloride in turn to form a rose-red azo dye which provides a rose-red background on the TLC plates. The DPP IV inhibitors showed white spots on the background as they blocked enzymolysis of the substrate to produce pNA. The method was validated with respect to selectivity, sensitivity, linearity, precision, recovery, and stability after optimizing key parameters including plate type, time and temperature of incubation, concentration of substrate, enzyme and derivatization reagents, and absorption wavelength. The results showed good lineary within amounts over 0.01-0.1μg range for the positive control, diprotin A, with the coefficient of determination (r(2))=0.9668. The limits of detection (LOD) and quantification (LOQ) were 5 and 10ng, respectively. The recoveries ranged from 98.9% to 107.5%. The averages of the intra- and inter-plate reproducibility were in the range of 4.1-9.7% and 7.6-14.7%, respectively. Among the nine methanolic extracts of medicinal herbs screened for DPP IV inhibitors by the newly developed method, Peganum nigellastrum Bunge was found to have one white active spot, which was then isolated and identified as harmine. By spectrophotometric method, harmine hydrochloride was found to have DPP-IV inhibitory activity of 32.4% at 10mM comparing to that of 54.8% at 50μM for diprotin A.
Collapse
|
20
|
O'Brien MA, Moravec RA, Riss TL, Bulleit RF. Homogeneous, bioluminescent proteasome assays. Methods Mol Biol 2015; 1219:95-114. [PMID: 25308265 DOI: 10.1007/978-1-4939-1661-0_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Protein degradation is mediated predominantly through the ubiquitin-proteasome pathway. The importance of the proteasome in regulating degradation of proteins involved in cell-cycle control, apoptosis, and angiogenesis led to the recognition of the proteasome as a therapeutic target for cancer. The proteasome is also essential for degrading misfolded and aberrant proteins, and impaired proteasome function has been implicated in neurodegerative and cardiovascular diseases. Robust, sensitive assays are essential for monitoring proteasome activity and for developing inhibitors of the proteasome. Peptide-conjugated fluorophores are widely used as substrates for monitoring proteasome activity, but fluorogenic substrates can exhibit significant background and can be problematic for screening because of cellular autofluorescence or interference from fluorescent library compounds. Furthermore, fluorescent proteasome assays require column-purified 20S or 26S proteasome (typically obtained from erythrocytes), or proteasome extracts from whole cells, as their samples. To provide assays more amenable to high-throughput screening, we developed a homogeneous, bioluminescent method that combines peptide-conjugated aminoluciferin substrates and a stabilized luciferase. Using substrates for the chymotrypsin-like, trypsin-like, and caspase-like proteasome activities in combination with a selective membrane permeabilization step, we developed single-step, cell-based assays to measure each of the proteasome catalytic activities. The homogeneous method eliminates the need to prepare individual cell extracts as samples and has adequate sensitivity for 96- and 384-well plates. The simple "add and read" format enables sensitive and rapid proteasome assays ideal for inhibitor screening.
Collapse
Affiliation(s)
- Martha A O'Brien
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI, 53711, USA,
| | | | | | | |
Collapse
|
21
|
Abstract
Multiplexed assay chemistries provide for multiple measurements of cellular parameters within a single assay well. This experimental practice is not only more cost efficient, but also provides more information about a compound or treatment. The ability to combine the activity profiles within the same sample provides a level of normalization not possible with parallel assays. Furthermore, multiplexing caspase activity assays with viability and/or cytotoxicity assays can support conclusions regarding cytotoxic mechanism and provide normalization, which may help correct for differences in cell number.
Collapse
Affiliation(s)
- Andrew L Niles
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI, 53711, USA,
| | | |
Collapse
|
22
|
Hassig CA, Zeng FY, Kung P, Kiankarimi M, Kim S, Diaz PW, Zhai D, Welsh K, Morshedian S, Su Y, O'Keefe B, Newman DJ, Rusman Y, Kaur H, Salomon CE, Brown SG, Baire B, Michel AR, Hoye TR, Francis S, Georg GI, Walters MA, Divlianska DB, Roth GP, Wright AE, Reed JC. Ultra-High-Throughput Screening of Natural Product Extracts to Identify Proapoptotic Inhibitors of Bcl-2 Family Proteins. JOURNAL OF BIOMOLECULAR SCREENING 2014; 19:1201-11. [PMID: 24870016 PMCID: PMC4521994 DOI: 10.1177/1087057114536227] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/26/2014] [Indexed: 12/30/2022]
Abstract
Antiapoptotic Bcl-2 family proteins are validated cancer targets composed of six related proteins. From a drug discovery perspective, these are challenging targets that exert their cellular functions through protein-protein interactions (PPIs). Although several isoform-selective inhibitors have been developed using structure-based design or high-throughput screening (HTS) of synthetic chemical libraries, no large-scale screen of natural product collections has been reported. A competitive displacement fluorescence polarization (FP) screen of nearly 150,000 natural product extracts was conducted against all six antiapoptotic Bcl-2 family proteins using fluorochrome-conjugated peptide ligands that mimic functionally relevant PPIs. The screens were conducted in 1536-well format and displayed satisfactory overall HTS statistics, with Z'-factor values ranging from 0.72 to 0.83 and a hit confirmation rate between 16% and 64%. Confirmed active extracts were orthogonally tested in a luminescent assay for caspase-3/7 activation in tumor cells. Active extracts were resupplied, and effort toward the isolation of pure active components was initiated through iterative bioassay-guided fractionation. Several previously described altertoxins were isolated from a microbial source, and the pure compounds demonstrate activity in both Bcl-2 FP and caspase cellular assays. The studies demonstrate the feasibility of ultra-high-throughput screening using natural product sources and highlight some of the challenges associated with this approach.
Collapse
Affiliation(s)
| | - Fu-Yue Zeng
- Sanford Burnham Medical Research Institute, La Jolla, CA, USA
| | - Paul Kung
- Sanford Burnham Medical Research Institute, La Jolla, CA, USA
| | | | - Sylvia Kim
- Sanford Burnham Medical Research Institute, La Jolla, CA, USA
| | - Paul W Diaz
- Sanford Burnham Medical Research Institute, La Jolla, CA, USA
| | - Dayong Zhai
- Sanford Burnham Medical Research Institute, La Jolla, CA, USA
| | - Kate Welsh
- Sanford Burnham Medical Research Institute, La Jolla, CA, USA
| | | | - Ying Su
- Sanford Burnham Medical Research Institute, La Jolla, CA, USA
| | | | | | - Yudi Rusman
- Center for Drug Design, University of Minnesota, Minneapolis, MN, USA
| | - Harneet Kaur
- Center for Drug Design, University of Minnesota, Minneapolis, MN, USA
| | | | - Susan G Brown
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Beeraiah Baire
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Andrew R Michel
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Subhashree Francis
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Gunda I Georg
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Michael A Walters
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | | | - Gregory P Roth
- Sanford-Burnham Medical Research Institute at Lake Nona, Orlando, FL, USA
| | - Amy E Wright
- Harbor Branch Oceanographic Institute at Florida Atlantic University, Fort Pierce, FL, USA
| | - John C Reed
- Sanford Burnham Medical Research Institute, La Jolla, CA, USA Roche Pharmaceuticals, Basel, Switzerland
| |
Collapse
|
23
|
Zhang N, Scorsone K, Ge G, Kaffes CC, Dobrolecki LE, Mukherjee M, Lewis MT, Berg S, Stephan CC, Pati D. Identification and Characterization of Separase Inhibitors (Sepins) for Cancer Therapy. ACTA ACUST UNITED AC 2014; 19:878-89. [PMID: 24525869 DOI: 10.1177/1087057114520972] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/03/2014] [Indexed: 11/15/2022]
Abstract
Separase is an endopeptidase that cleaves cohesin subunit Rad21, facilitating the repair of DNA damage during interphase and the resolution of sister chromatid cohesion at anaphase. Separase activity is negatively regulated by securin and Cdk1-cyclin B in vivo. Separase overexpression is reported in a broad range of human tumors, and its overexpression in mouse models results in tumorigenesis. To elucidate further the mechanism of separase function and to test if inhibition of overexpressed separase can be used as a strategy to inhibit tumor-cell proliferation, small-molecule inhibitors of separase enzyme are essential. Here, we report a high-throughput screening for separase inhibitors (Sepins). We developed a fluorogenic separase assay using rhodamine 110-conjugated Rad21 peptide as substrate and screened a small-molecule compound library. We identified a noncompetitive inhibitor of separase called Sepin-1 that inhibits separase enzymatic activity with a half maximal inhibitory concentration (IC50) of 14.8 µM. Sepin-1 can inhibit the growth of human cancer cell lines and breast cancer xenograft tumors in mice by inhibiting cell proliferation and inducing apoptosis. The sensitivity to Sepin-1 in most cases is positively correlated to the level of separase in both cancer cell lines and tumors.
Collapse
Affiliation(s)
- Nenggang Zhang
- Texas Children's Cancer Center, and Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Kathleen Scorsone
- Texas Children's Cancer Center, and Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Gouqing Ge
- Texas Children's Cancer Center, and Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Caterina C Kaffes
- Texas Children's Cancer Center, and Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Lacey E Dobrolecki
- Lester & Sue Smith Breast Center, and Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Malini Mukherjee
- Texas Children's Cancer Center, and Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Michael T Lewis
- Lester & Sue Smith Breast Center, and Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Stacey Berg
- Texas Children's Cancer Center, and Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | | - Debananda Pati
- Texas Children's Cancer Center, and Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
24
|
Barooah N, Mohanty J, Pal H, Bhasikuttan AC. Cucurbituril-Induced Supramolecular pK a Shift in Fluorescent Dyes and Its Prospective Applications. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES 2013. [DOI: 10.1007/s40010-013-0101-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Henrich CJ, Beutler JA. Matching the power of high throughput screening to the chemical diversity of natural products. Nat Prod Rep 2013; 30:1284-98. [PMID: 23925671 PMCID: PMC3801163 DOI: 10.1039/c3np70052f] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Covering up to 2013. Application of high throughput screening technologies to natural product samples demands alterations in assay design as well as sample preparation in order to yield meaningful hit structures at the end of the campaign.
Collapse
Affiliation(s)
- Curtis J. Henrich
- Basic Science Program, SAIC-Frederick, Inc. Frederick National Lab
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA
| | - John A. Beutler
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA
| |
Collapse
|
26
|
Niles AL, Moravec RA, Riss TL. Update on in vitro cytotoxicity assays for drug development. Expert Opin Drug Discov 2013; 3:655-69. [PMID: 23506147 DOI: 10.1517/17460441.3.6.655] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND in vitro cytotoxicity testing provides a crucial means of ranking compounds for consideration in drug discovery. The choice of using a particular viability or cytotoxicity assay technology may be influenced by specific research goals. OBJECTIVE Although the high-throughput screening (HTS) utility is typically dependent upon sensitivity and scalability, it is also impacted by signal robustness and resiliency to assay interferences. Further consideration should be given to data quality, ease-of-use, reagent stability, and matters of cost-effectiveness. METHODS Here we focus on three main classes of assays that are at present the most popular, useful, and practical for HTS drug discovery efforts. These methods measure: i) viability by metabolism reductase activities; ii) viability by bioluminescent ATP assays; or iii) cytotoxicity by enzymes 'released' into culture medium. Multi-parametric technologies are also briefly discussed. RESULTS/CONCLUSION Each of these methods has its relative merits and detractions; however multi-parametric methods using both viability and cytotoxicity markers may mitigate the inherent shortcomings of single parameter measures.
Collapse
Affiliation(s)
- Andrew L Niles
- Senior Research Scientist Promega Corporation, Research and Development, 2800 Woods Hollow Road, Madison, Wisconsin, 53711, USA +1 608 247 4330, ext. 1447 ; +1 608 298 4818 ;
| | | | | |
Collapse
|
27
|
Sinclair A, Mulcahy LE, Geldeard L, Malik S, Fielder MD, Le Gresley A. Development of an in situ culture-free screening test for the rapid detection of Staphylococcus aureus within healthcare environments. Org Biomol Chem 2013; 11:3307-13. [DOI: 10.1039/c3ob40150b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Abstract
The early detection of many human diseases is crucial if they are to be treated successfully. Therefore, the development of imaging techniques that can facilitate early detection of disease is of high importance. Changes in the levels of enzyme expression are known to occur in many diseases, making their accurate detection at low concentrations an area of considerable active research. Activatable fluorescent probes show immense promise in this area. If properly designed they should exhibit no signal until they interact with their target enzyme, reducing the level of background fluorescence and potentially endowing them with greater sensitivity. The mechanisms of fluorescence changes in activatable probes vary. This review aims to survey the field of activatable probes, focusing on their mechanisms of action as well as illustrating some of the in vitro and in vivo settings in which they have been employed.
Collapse
Affiliation(s)
- Christopher R Drake
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry Street, Suite 350, Box 0946, San Francisco, CA, 94107, USA
| | | | | |
Collapse
|
29
|
Bhasikuttan AC, Pal H, Mohanty J. Cucurbit[n]uril based supramolecular assemblies: tunable physico-chemical properties and their prospects. Chem Commun (Camb) 2011; 47:9959-71. [DOI: 10.1039/c1cc12091c] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Abstract
Plasminogen activator inhibitor-1 (PAI-1) belongs to the serine protease inhibitor super family (serpin) and is the primary inhibitor of both the tissue-type (tPA) and urokinase-type (uPA) plasminogen activators. PAI-1 has been implicated in a wide range of pathological processes where it may play a direct role in a variety of diseases. These observations have made PAI-1 an attractive target for small molecule drug development. However, PAI-1's structural plasticity and its capacity to interact with multiple ligands have made the identification and development of such small molecule PAI-1 inactivating agents challenging. In the following pages, we discuss the difficulties associated with screening for small molecule inactivators of PAI-1, in particular, and of serpins, in general. We discuss strategies for high-throughput screening (HTS) of chemical and natural product libraries, and validation steps necessary to confirm identified hits. Finally, we describe steps essential to confirm specificity of active compounds, and strategies to examine potential mechanisms of compound action.
Collapse
|
31
|
Kunzelmann S, Webb MR. A fluorescent, reagentless biosensor for ADP based on tetramethylrhodamine-labeled ParM. ACS Chem Biol 2010; 5:415-25. [PMID: 20158267 PMCID: PMC2855616 DOI: 10.1021/cb9003173] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
Fluorescence assays for ADP detection are of considerable current interest, both in basic research and in drug discovery, as they provide a generic method for measuring the activity of ATPases and kinases. The development of a novel fluorescent biosensor is described that is based on a tetramethylrhodamine-labeled, bacterial actin homologue, ParM. The design of the biosensor takes advantage of the large conformational change of ParM on ADP binding and the strong quenching of the tetramethylrhodamine fluorescence by stacking of the dye. ParM was labeled with two tetramethylrhodamines in close proximity, whereby the fluorophores are able to interact with each other. ADP binding alters the distance and relative orientation of the tetramethylrhodamines, which leads to a change in this stacking interaction and so in the fluorescence intensity. The final ADP biosensor shows ∼15-fold fluorescence increase in response to ADP binding. It has relatively weak affinity for ADP (Kd = 30 μM), enabling it to be used at substoichiometric concentrations relative to ADP, while reporting ADP concentration changes in a wide range around the Kd value, namely, submicromolar to tens of micromolar. The biosensor strongly discriminates against ATP (>100-fold), allowing ADP detection against a background of millimolar ATP. At 20 °C, the labeled ParM binds ADP with a rate constant of 9.5 × 104 M−1 s−1 and the complex dissociates at 2.9 s−1. Thus, the biosensor is suitable for real-time measurements, and its performance in such assays is demonstrated using a sugar kinase and a mammalian protein kinase.
Collapse
Affiliation(s)
- Simone Kunzelmann
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Martin R. Webb
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| |
Collapse
|
32
|
Zhang XB, Waibel M, Hasserodt J. An Autoimmolative Spacer Allows First-Time Incorporation of a Unique Solid-State Fluorophore into a Detection Probe for Acyl Hydrolases. Chemistry 2009; 16:792-5. [DOI: 10.1002/chem.200902412] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Niles AL, Moravec RA, Riss TL. In vitro viability and cytotoxicity testing and same-well multi-parametric combinations for high throughput screening. CURRENT CHEMICAL GENOMICS 2009; 3:33-41. [PMID: 20161834 PMCID: PMC2802765 DOI: 10.2174/1875397300903010033] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/04/2009] [Accepted: 04/17/2009] [Indexed: 11/22/2022]
Abstract
In vitro cytotoxicity testing has become an integral aspect of drug discovery because it is a convenient, costeffective, and predictive means of characterizing the toxic potential of new chemical entities. The early and routine implementation of this testing is testament to its prognostic importance for humans. Although a plethora of assay chemistries and methods exist for 96-well formats, few are practical and sufficiently sensitive enough for application in high throughput screening (HTS). Here we briefly describe a handful of the currently most robust and validated HTS assays for accurate and efficient assessment of cytotoxic risk. We also provide guidance for successful HTS implementation and discuss unique merits and detractions inherent in each method. Lastly, we discuss the advantages of combining specific HTS compatible assays into multi-parametric, same-well formats.
Collapse
Affiliation(s)
- Andrew L Niles
- Research Department, Promega Corporation, 2800 Woods Hollow Road, Madison, WI, USA.
| | | | | |
Collapse
|
34
|
An Improved End-Point Fluorimetric Procedure for the Determination of Low Amounts of Trypsin Activity in Biological Samples Using Rhodamine-110-Based Substrates. Appl Biochem Biotechnol 2009; 160:1-8. [DOI: 10.1007/s12010-008-8520-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 12/29/2008] [Indexed: 10/21/2022]
|
35
|
Cali JJ, Niles A, Valley MP, O'Brien MA, Riss TL, Shultz J. Bioluminescent assays for ADMET. Expert Opin Drug Metab Toxicol 2008; 4:103-20. [PMID: 18370862 DOI: 10.1517/17425255.4.1.103] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Bioluminescent assays couple a limiting component of a luciferase-catalyzed photon-emitting reaction to a variable parameter of interest, while holding the other components constant or non-limiting. In this way light output varies with the parameter of interest. This review describes three bioluminescent assay types that use firefly luciferase to measure properties of drugs and other xenobiotics which affect their absorption, distribution, metabolism, elimination and toxicity. First, levels of the luciferase enzyme itself are measured in gene reporter assays that place a luciferase cDNA under the control of regulatory sequences from ADMET-related genes. This approach identifies activators of nuclear receptors that regulate expression of genes encoding drug-metabolizing enzymes and drug transporters. Second, drug effects on enzyme activities are monitored with luminogenic probe substrates that are inactive derivatives of the luciferase substrate luciferin. The enzymes of interest convert the substrates to free luciferin, which is detected in a second reaction with luciferase. This approach is used with the drug-metabolizing CYP and monoamine oxidase enzymes, apoptosis-associated caspase proteases, a marker protease for non-viable cells and with glutathione-S-transferase to measure glutathione levels in cell lysates. Third, ATP concentration is monitored as a marker of cell viability or cell death and as a way of identifying substrates for the ATP-dependent drug transporter, P-glycoprotein. Luciferase activity is measured in the presence of a sample that supplies the requisite luciferase substrate, ATP, so that light output varies with ATP concentration. The bioluminescent ADMET assays are rapid and sensitive, amenable to automated high-throughput applications and offer significant advantages over alternative methods.
Collapse
Affiliation(s)
- James J Cali
- Promega Corp., 2800 Woods Hollow Road, Madison, WI 53711, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Simeonov A, Jadhav A, Thomas CJ, Wang Y, Huang R, Southall NT, Shinn P, Smith J, Austin CP, Auld DS, Inglese J. Fluorescence Spectroscopic Profiling of Compound Libraries. J Med Chem 2008; 51:2363-71. [DOI: 10.1021/jm701301m] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anton Simeonov
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-3370
| | - Ajit Jadhav
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-3370
| | - Craig J. Thomas
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-3370
| | - Yuhong Wang
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-3370
| | - Ruili Huang
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-3370
| | - Noel T. Southall
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-3370
| | - Paul Shinn
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-3370
| | - Jeremy Smith
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-3370
| | - Christopher P. Austin
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-3370
| | - Douglas S. Auld
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-3370
| | - James Inglese
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-3370
| |
Collapse
|
37
|
Sasiela CA, Stewart DH, Kitagaki J, Safiran YJ, Yang Y, Weissman AM, Oberoi P, Davydov IV, Goncharova E, Beutler JA, McMahon JB, O'Keefe BR. Identification of inhibitors for MDM2 ubiquitin ligase activity from natural product extracts by a novel high-throughput electrochemiluminescent screen. ACTA ACUST UNITED AC 2008; 13:229-37. [PMID: 18270365 DOI: 10.1177/1087057108315038] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
High-throughput screening technologies have revolutionized the manner in which potential therapeutics are identified. Although they are the source of lead compounds for ~65% of anticancer and antimicrobial drugs approved by the Food and Drug Administration between 1981 and 2002, natural products have largely been excluded from modern screening programs. This is due, at least in part, to the inherent difficulties in testing complex extract mixtures, which often contain nuisance compounds, in modern bioassay systems. In this article, the authors present a novel electrochemiluminescent assay system for inhibition of MDM2 activity that is suitable for testing natural product extracts in high-throughput screening systems. The assay was used to screen more than 144,000 natural product extracts. The authors identified 1 natural product, sempervirine, that inhibited MDM2 auto-ubiquitination, MDM2-mediated p53 degradation, and led to accumulation of p53 in cells. Sempervirine preferentially induced apoptosis in transformed cells expressing wild-type p53, suggesting that it could be a potential lead for anticancer therapeutics.
Collapse
Affiliation(s)
- Christy A Sasiela
- Molecular Targets Development Program, National Cancer Institute, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Homogeneous, bioluminescent proteasome assays. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008; 414:163-81. [PMID: 18175819 DOI: 10.1007/978-1-59745-339-4_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Protein degradation is mediated predominantly through the ubiquitin-proteasome pathway. The importance of the proteasome in regulating degradation of proteins involved in cell-cycle control, apoptosis, and angiogenesis led to the recognition of the proteasome as a therapeutic target for cancer . The importance of the proteasome for general cell homeostasis has been established, and the 2004 Nobel Prize for Chemistry honored the researchers that discovered the ubiquitin-proteasome pathway. Robust, sensitive assays are essential for monitoring proteasome activity and for developing inhibitors of the proteasome. Peptide-conjugated fluorophores are widely used as substrates for monitoring proteasome activity, but fluorogenic substrates can exhibit significant background and can be problematic for screening because of cellular autoflorescence or fluorescent library compounds. To address these issues, we developed a homogeneous, bioluminescent method that combines peptide-conjugated aminoluciferin substrates and a stabilized luciferase. We have developed homogeneous, bioluminescent assays for all three proteasome activities, the chymotrypsin-like, trypsin-like, and caspase-like, using purified proteasome. We have also applied this technology to a cellular assay using the substrate for the chymotrypsin-like activity in combination with a selective membrane permeabilization step (patent pending). The proteasome assays are designed in a simple "add and read" format and have been tested in 96-and 384-well plates. The bioluminescent, coupled-enzyme format enables sensitive and rapid protease assays ideal for inhibitor screening.
Collapse
|
39
|
Abstract
Multiplexed assay chemistries provide for multiple measurements of cellular parameters within a single assay well. This experimental practice not only is more cost efficient but provides more informational content about a compound or treatment. For instance, multiplexed caspase activity assays can help establish the kinetics and magnitude of initiator and effector caspase induction by candidate compounds or treatments. The ability to combine the activity profiles within the same sample provides a level of normalization not possible with parallel assays. Furthermore, multiplexing caspase activity assays with viability and/or cytotoxicity assays can support conclusions regarding cytotoxic mechanism and provide normalization that may help correct for differences in cell number.
Collapse
|
40
|
Inglese J, Johnson RL, Simeonov A, Xia M, Zheng W, Austin CP, Auld DS. High-throughput screening assays for the identification of chemical probes. Nat Chem Biol 2007; 3:466-79. [PMID: 17637779 DOI: 10.1038/nchembio.2007.17] [Citation(s) in RCA: 434] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
High-throughput screening (HTS) assays enable the testing of large numbers of chemical substances for activity in diverse areas of biology. The biological responses measured in HTS assays span isolated biochemical systems containing purified receptors or enzymes to signal transduction pathways and complex networks functioning in cellular environments. This Review addresses factors that need to be considered when implementing assays for HTS and is aimed particularly at investigators new to this field. We discuss assay design strategies, the major detection technologies and examples of HTS assays for common target classes, cellular pathways and simple cellular phenotypes. We conclude with special considerations for configuring sensitive, robust, informative and economically feasible HTS assays.
Collapse
MESH Headings
- Animals
- Catalysis
- Chemistry, Pharmaceutical/instrumentation
- Chemistry, Pharmaceutical/methods
- Drug Design
- Drug Evaluation, Preclinical/instrumentation
- Drug Evaluation, Preclinical/methods
- Enzymes/chemistry
- Humans
- Ions
- Kinetics
- Models, Biological
- Models, Chemical
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction
- Technology, Pharmaceutical/instrumentation
- Technology, Pharmaceutical/methods
- Transcription, Genetic
Collapse
Affiliation(s)
- James Inglese
- US National Institutes of Health Chemical Genomics Center, National Institutes of Health, 9800 Medical Center Drive, Bethesda, Maryland 20892-3370, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Lai KS, Ho NH, Cheng JD, Tung CH. Selective fluorescence probes for dipeptidyl peptidase activity-fibroblast activation protein and dipeptidyl peptidase IV. Bioconjug Chem 2007; 18:1246-50. [PMID: 17489551 PMCID: PMC2562575 DOI: 10.1021/bc0603586] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Development of suitable tools to assess enzyme activity directly from their complex cellular environment has a dramatic impact on understanding the functional roles of proteins as well as on the discovery of new drugs. In this study, a novel fluorescence-based chemosensor strategy for the direct readout of dipeptidase activities within intact living cells is described. Selective activity-based probes were designed to sense two important type II transmembrane serine proteases, fibroblast activation protein (FAP) and dipeptidyl peptidase IV (DPP-IV). These serine proteases have been implicated in diverse cellular activities, including blood coagulation, digestion, immune responses, wound healing, tumor growth, tumor invasion, and metastasis. Here, we validated that Ac-GPGP-2SBPO and GPGP-2SBPO probes are excellent reporters of both proteolytic activities. Furthermore, the novel probes can differentiate between FAP and DPP-IV proteolytic activities in cellular assay. Potentially, this assay platform is immediately useful for novel drug discovery.
Collapse
Affiliation(s)
- Koon Siew Lai
- Center of Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | |
Collapse
|
42
|
Hanna ML, Tarasow TM, Perkins J. Mechanistic differences between in vitro assays for hydrazone-based small molecule inhibitors of anthrax lethal factor. Bioorg Chem 2007; 35:50-8. [PMID: 16949126 DOI: 10.1016/j.bioorg.2006.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 07/18/2006] [Accepted: 07/21/2006] [Indexed: 10/24/2022]
Abstract
A systematically generated series of hydrazones were analyzed as potential inhibitors of anthrax lethal factor. The hydrazones were screened using one UV-based and two fluorescence-based in vitro assays. The study identified several inhibitors with IC50 values in the micromolar range, and importantly, significant differences in the types of inhibition were observed with the different assays.
Collapse
Affiliation(s)
- M Leslie Hanna
- Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94551, USA
| | | | | |
Collapse
|
43
|
Hamill P, Hudson D, Kao RY, Chow P, Raj M, Xu H, Richer MJ, Jean F. Development of a red-shifted fluorescence-based assay for SARS-coronavirus 3CL protease: identification of a novel class of anti-SARS agents from the tropical marine sponge Axinella corrugata. Biol Chem 2006; 387:1063-74. [PMID: 16895476 DOI: 10.1515/bc.2006.131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
SARS-coronavirus (SARS-CoV) encodes a main protease, 3CLpro, which plays an essential role in the viral life cycle and is currently the prime target for discovering new anti-coronavirus agents. In this article, we report our success in developing a novel red-shifted (RS) fluorescence-based assay for 3CLpro and its application for identifying small-molecule anti-SARS agents from marine organisms. We have synthesised and characterised the first generation of a red-shifted internally quenched fluorogenic substrate (RS-IQFS) for 3CLpro based on resonance energy transfer between the donor and acceptor pair CAL Fluor Red 610 and Black Hole Quencher-1 (Km and kcat values of 14 microM and 0.65 min-1). The RS-IQFS primary sequence was selected based on the results of our screening analysis of 3CLpro performed using a series of blue-shifted (BS)-IQFSs corresponding to the 3CLpro-mediated cleavage junctions of the SARS-CoV polyproteins. In contrast to BS-IQFSs, the RS-IQFS was not susceptible to fluorescence interference from coloured samples and allowed for successful screening of marine natural products and identification of a coumarin derivative, esculetin-4-carboxylic acid ethyl ester, a novel 3CLpro inhibitor (IC50=46 microM) and anti-SARS agent (EC50=112 microM; median toxic concentration>800 microM) from the tropical marine sponge Axinella corrugata.
Collapse
Affiliation(s)
- Pamela Hamill
- Department of Microbiology and Immunology, Life Sciences Centre, University of British Columbia, 3559-2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Valley MP, Zhou W, Hawkins EM, Shultz J, Cali JJ, Worzella T, Bernad L, Good T, Good D, Riss TL, Klaubert DH, Wood KV. A bioluminescent assay for monoamine oxidase activity. Anal Biochem 2006; 359:238-46. [PMID: 17084801 DOI: 10.1016/j.ab.2006.09.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 09/29/2006] [Accepted: 09/30/2006] [Indexed: 11/24/2022]
Abstract
This article describes a novel two-step homogeneous bioluminescent assay for monoamine oxidase (MAO) that is simple, sensitive, and amenable to high-throughput screening. In the first step, MAO reacts with an aminopropylether analog of methyl ester luciferin. In the second step, a luciferin detection reagent inactivates MAO and converts the product of the first step into a luminescent signal. The amount of light produced is proportional to the amount of MAO and the time of incubation in the first step, but the luminescent signal is stable in the second step with a half-life greater than 5h. The assay has high precision, is more sensitive than current fluorescent methods, and can accurately measure the binding constants of known substrates and inhibitors. An automated screen of the Sigma-RBI Library of Pharmacologically Active Compounds (LOPAC(1280)) revealed a surprisingly high percentage of MAO inhibitors (16%) with a low false hit rate (0.9%). This implies that a significant number of compounds interact with the MAO enzymes and suggests that it is important to include MAO assays in drug metabolism studies. Other advantages of this bioluminescent assay over comparable fluorescent assays are discussed.
Collapse
|
45
|
Ausseil F, Samson A, Aussagues Y, Vandenberghe I, Creancier L, Pouny I, Kruczynski A, Massiot G, Bailly C. High-Throughput Bioluminescence Screening of Ubiquitin-Proteasome Pathway Inhibitors from Chemical and Natural Sources. ACTA ACUST UNITED AC 2006; 12:106-16. [PMID: 17175525 DOI: 10.1177/1087057106296494] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To discover original inhibitors of the ubiquitin-proteasome pathway, the authors have developed a cell-based bioluminescent assay and used it to screen collections of plant extracts and chemical compounds. They first established a DLD-1 human colon cancer cell line that stably expresses a 4Ubiquitin-Luciferase (4Ub-Luc) reporter protein, efficiently targeted to the ubiquitinproteasome degradation pathway. The assay was then adapted to 96- and 384-well plate formats and calibrated with reference proteasome inhibitors. Assay robustness was carefully assessed, particularly cell toxicity, and the statistical Ź factor value was calculated to 0.83, demonstrating a good performance level of the assay. A total of 18,239 molecules and 15,744 plant extracts and fractions thereof were screened for their capacity to increase the luciferase activity in DLD-1 4Ub-Luc cells, and 21 molecules and 66 extracts inhibiting the ubiquitin-proteasome pathway were identified. The fractionation of an active methanol extract of Physalis angulata L. aerial parts was performed to isolate 2 secosteroids known as physalin B and C. In a cell-based Western blot assay, the ubiquitinated protein accumulation was confirmed after a physalin treatment confirming the accuracy of the screening process. The method reported here thus provides a robust approach to identify novel ubiquitin-proteasome pathway inhibitors in large collections of chemical compounds and natural products.
Collapse
Affiliation(s)
- Frederic Ausseil
- Centre de Criblage Pharmacologique, CNRS-Pierre Fabre Joint Service Unit #2646, Toulouse, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Clavé G, Bernardin A, Massonneau M, Renard PY, Romieu A. Latent fluorophores based on a Mannich cyclisation trigger. Tetrahedron Lett 2006. [DOI: 10.1016/j.tetlet.2006.06.138] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Graziano V, McGrath WJ, DeGruccio AM, Dunn JJ, Mangel WF. Enzymatic activity of the SARS coronavirus main proteinase dimer. FEBS Lett 2006; 580:2577-83. [PMID: 16647061 PMCID: PMC7094300 DOI: 10.1016/j.febslet.2006.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 03/23/2006] [Accepted: 04/03/2006] [Indexed: 02/01/2023]
Abstract
The enzymatic activity of the SARS coronavirus main proteinase dimer was characterized by a sensitive, quantitative assay. The new, fluorogenic substrate, (Ala‐Arg‐Leu‐Gln‐NH)2‐Rhodamine, contained a severe acute respiratory syndrome coronavirus (SARS CoV) main proteinase consensus cleavage sequence and Rhodamine 110, one of the most detectable compounds known, as the reporter group. The gene for the enzyme was cloned in the absence of purification tags, expressed in Escherichia coli and the enzyme purified. Enzyme activity from the SARS CoV main proteinase dimer could readily be detected at low pM concentrations. The enzyme exhibited a high Km, and is unusually sensitive to ionic strength and reducing agents.
Collapse
Affiliation(s)
- Vito Graziano
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - William J. McGrath
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - John J. Dunn
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Walter F. Mangel
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
48
|
Ho NH, Weissleder R, Tung CH. Development of a dual fluorogenic and chromogenic dipeptidyl peptidase IV substrate. Bioorg Med Chem Lett 2006; 16:2599-602. [PMID: 16517162 DOI: 10.1016/j.bmcl.2006.02.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 02/13/2006] [Accepted: 02/15/2006] [Indexed: 10/24/2022]
Abstract
A new far-red dual fluorogenic and chromogenic substrate, 5-glycylprolylglycylprolyl-9-di-3-sulfonyl-propylaminobenza[a]phenoxazonium perchlorate (GPGP-2SBPO), was developed for dipeptidyl peptidase IV (DPP-IV) sensing. The glycylprolylglycylprolyl tetrapeptide was chosen as the recognition sequence due to its stability under physiological conditions. In contrast, the truncated substrate, GP-2SBPO, containing only a glycylprolyl peptide, is unstable. Proteolysis of GPGP-2SBPO was assayed by monitoring the absorbance and fluorescence signals from the released fluorochrome, 2SBPO, at 625 and 670nm, respectively.
Collapse
Affiliation(s)
- Nan-Hui Ho
- Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
49
|
Drexler D, Barlow DJ, Falk P, Cantone J, Hernandez D, Ranasinghe A, Sanders M, Warrack B, McPhee F. Development of an on-line automated sample clean-up method and liquid chromatography-tandem mass spectrometry analysis: application in an in vitro proteolytic assay. Anal Bioanal Chem 2006; 384:1145-54. [PMID: 16468024 DOI: 10.1007/s00216-005-0263-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 11/29/2005] [Accepted: 11/30/2005] [Indexed: 10/25/2022]
Abstract
Fluorescence detection has been a method of choice in industry for screening assays, including identification of enzyme inhibitors, owing to its high-throughput capabilities, excellent reproducibility, and sensitivity. Occasionally, inhibitors are identified that challenge the fluorescence assay limit, necessitating the development of more sensitive detection methods to assess these compounds. For data mining purposes, however, original assay conditions may be required. A direct method transfer to highly sensitive and specific LC-MS-based methods has not always been possible due to the presence of MS-incompatible neutral detergents and non-volatile salts in the assay matrix. Utilizing an in vitro proteolytic screening assay for the serine protease hepatitis C virus (HCV) nonstructural (NS) 3 protease as a test case, we report the development of an automated sample clean-up procedure implemented on-line with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis to complement fluorescence detection. Ion exchange and peptide microtraps were employed to remove MS-incompatible assay matrix components. Three protease inhibitors were used to validate the MS/MS method. Comparable potencies were achieved for these compounds when assessed by fluorescence and MS/MS detection. Furthermore, four-fold less enzyme could be utilized when employing the MS/MS method compared to fluorescence detection. The longer analysis time, however, resulted in reduced sample capacity. The potency of our designed HCV NS3 protease inhibitors are thus routinely evaluated using a continuous fluorescence-based assay. Only pertinent inhibitors approaching the fluorescence assay sensitivity limit are subsequently analyzed further by LC-MS/MS. This methodology allows us to maintain a database and to compare results independent of the detection method. Despite the relatively slow sample turnaround time of this LC-MS approach, the versatility of the automated on-line clean-up procedure and sample analysis can be applied to assays containing reagents which were historically considered to be MS incompatible.
Collapse
Affiliation(s)
- Dieter Drexler
- Bristol-Myers Squibb Company, Pharmaceutical Research Institute, Pharmaceutical Candidate Optimization-Discovery Analytical Sciences, 5 Research Parkway, Wallingford, CT 06492, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ho NH, Weissleder R, Tung CH. Development of water-soluble far-red fluorogenic dyes for enzyme sensing. Tetrahedron 2006. [DOI: 10.1016/j.tet.2005.10.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|