1
|
Patt J, Alenfelder J, Pfeil EM, Voss JH, Merten N, Eryilmaz F, Heycke N, Rick U, Inoue A, Kehraus S, Deupi X, Müller CE, König GM, Crüsemann M, Kostenis E. An experimental strategy to probe Gq contribution to signal transduction in living cells. J Biol Chem 2021; 296:100472. [PMID: 33639168 PMCID: PMC8024710 DOI: 10.1016/j.jbc.2021.100472] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Heterotrimeric G protein subunits Gαq and Gα11 are inhibited by two cyclic depsipeptides, FR900359 (FR) and YM-254890 (YM), both of which are being used widely to implicate Gq/11 proteins in the regulation of diverse biological processes. An emerging major research question therefore is whether the cellular effects of both inhibitors are on-target, that is, mediated via specific inhibition of Gq/11 proteins, or off-target, that is, the result of nonspecific interactions with other proteins. Here we introduce a versatile experimental strategy to discriminate between these possibilities. We developed a Gαq variant with preserved catalytic activity, but refractory to FR/YM inhibition. A minimum of two amino acid changes were required and sufficient to achieve complete inhibitor resistance. We characterized the novel mutant in HEK293 cells depleted by CRISPR–Cas9 of endogenous Gαq and Gα11 to ensure precise control over the Gα-dependent cellular signaling route. Using a battery of cellular outcomes with known and concealed Gq contribution, we found that FR/YM specifically inhibited cellular signals after Gαq introduction via transient transfection. Conversely, both inhibitors were inert across all assays in cells expressing the drug-resistant variant. These findings eliminate the possibility that inhibition of non-Gq proteins contributes to the cellular effects of the two depsipeptides. We conclude that combined application of FR or YM along with the drug-resistant Gαq variant is a powerful in vitro strategy to discern on-target Gq against off-target non-Gq action. Consequently, it should be of high value for uncovering Gq input to complex biological processes with high accuracy and the requisite specificity.
Collapse
Affiliation(s)
- Julian Patt
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Judith Alenfelder
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Eva Marie Pfeil
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Jan Hendrik Voss
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Nicole Merten
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Funda Eryilmaz
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Nina Heycke
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Uli Rick
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Stefan Kehraus
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Xavier Deupi
- Laboratory of Biomolecular Research and Condensed Matter Theory Group, Paul Scherrer Institute, Villigen, Switzerland
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany.
| |
Collapse
|
2
|
Nielsen CDT, Dhasmana D, Floresta G, Wohland T, Cilibrizzi A. Illuminating the Path to Target GPCR Structures and Functions. Biochemistry 2020; 59:3783-3795. [PMID: 32956586 DOI: 10.1021/acs.biochem.0c00606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G-Protein-coupled receptors (GPCRs) are ubiquitous within eukaryotes, responsible for a wide array of physiological and pathological processes. Indeed, the fact that they are the most drugged target in the human genome is indicative of their importance. Despite the clear interest in GPCRs, most information regarding their activity has been so far obtained by analyzing the response from a "bulk medium". As such, this Perspective summarizes some of the common methods for this indirect observation. Nonetheless, by inspecting approaches applying super-resolution imaging, we argue that imaging is perfectly situated to obtain more detailed structural and spatial information, assisting in the development of new GPCR-targeted drugs and clinical strategies. The benefits of direct optical visualization of GPCRs are analyzed in the context of potential future directions in the field.
Collapse
Affiliation(s)
- Christian D-T Nielsen
- Imperial College London, White City Campus, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, U.K
| | - Divya Dhasmana
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Giuseppe Floresta
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| |
Collapse
|
3
|
Otvos RA, Still KBM, Somsen GW, Smit AB, Kool J. Drug Discovery on Natural Products: From Ion Channels to nAChRs, from Nature to Libraries, from Analytics to Assays. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2019; 24:362-385. [PMID: 30682257 PMCID: PMC6484542 DOI: 10.1177/2472555218822098] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/16/2018] [Accepted: 12/07/2018] [Indexed: 12/21/2022]
Abstract
Natural extracts are complex mixtures that may be rich in useful bioactive compounds and therefore are attractive sources for new leads in drug discovery. This review describes drug discovery from natural products and in explaining this process puts the focus on ion-channel drug discovery. In particular, the identification of bioactives from natural products targeting nicotinic acetylcholine receptors (nAChRs) and serotonin type 3 receptors (5-HT3Rs) is discussed. The review is divided into three parts: "Targets," "Sources," and "Approaches." The "Targets" part will discuss the importance of ion-channel drug targets in general, and the α7-nAChR and 5-HT3Rs in particular. The "Sources" part will discuss the relevance for drug discovery of finding bioactive compounds from various natural sources such as venoms and plant extracts. The "Approaches" part will give an overview of classical and new analytical approaches that are used for the identification of new bioactive compounds with the focus on targeting ion channels. In addition, a selected overview is given of traditional venom-based drug discovery approaches and of diverse hyphenated analytical systems used for screening complex bioactive mixtures including venoms.
Collapse
Affiliation(s)
- Reka A. Otvos
- The Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Kristina B. M. Still
- The Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Govert W. Somsen
- The Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jeroen Kool
- The Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Darwish KM, Salama I, Mostafa S, Gomaa MS, Khafagy ES, Helal MA. Synthesis, biological evaluation, and molecular docking investigation of benzhydrol- and indole-based dual PPAR-γ/FFAR1 agonists. Bioorg Med Chem Lett 2018; 28:1595-1602. [DOI: 10.1016/j.bmcl.2018.03.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022]
|
5
|
Daily NJ, Santos R, Vecchi J, Kemanli P, Wakatsuki T. Calcium Transient Assays for Compound Screening with Human iPSC-derived Cardiomyocytes: Evaluating New Tools. JOURNAL OF EVOLVING STEM CELL RESEARCH 2017; 1:1-11. [PMID: 28966998 PMCID: PMC5621642 DOI: 10.14302/issn.2574-4372.jesr-16-1395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Calcium (Ca2+) plays a central role in regulating many biological processes in the cell from muscle contraction to neurotransmitter release. The need for reliable fluorescent calcium indicator dyes is of vast importance for studying many aspects of cell biology as well as screening compounds using phenotypic high throughput assays. We have assessed two of the latest generation of calcium indicator dyes, FLIPR Calcium 6 and Cal-520 AM for studying calcium transients (CaTs) in induced pluripotent stem cell (iPSC) -derived human cardiomyocytes. FLIPR Calcium 6 and Cal-520 dyes both displayed robust CaTs with a high signal-to-noise ratio (SNR) and were non-toxic to the cells. The analysis showed that CaT amplitudes were stable between measurements, but CaT duration was more variable and tended to increase between reads. Two methods were compared for drug-screening hit-selection; difference in average (unstandardized) and standardized difference. The unstandardized difference was better for assessing CaT amplitude, whereas standardized difference was equal to or better for assessing CaT duration. In summary, FLIPR Calcium 6 and Cal-520 are suitable dyes for drug-screening using iPSC-derived human cardiomyocytes.
Collapse
Affiliation(s)
| | - Radleigh Santos
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL
| | | | | | | |
Collapse
|
6
|
Xin H, Wang Y, Todd MJ, Qi J, Minor LK. Evaluation of No-Wash Calcium Assay Kits: Enabling Tools for Calcium Mobilization. ACTA ACUST UNITED AC 2016; 12:705-14. [PMID: 17537987 DOI: 10.1177/1087057107301522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The no-wash calcium assay kits developed by Molecular Devices Corporation have greatly enhanced the throughput of cell-based calcium mobilization high-throughput screening (HTS) assays and enabled screening using nonadherent cells. The fluorescent imaging plate reader (FLIPR) Calcium 3 Assay Kit, optimal for targets that have proteins or peptides as agonists, has 2 potential drawbacks: 1) a significant downward spike in fluorescence signal upon liquid transfer that can be the same magnitude as the agonist response, making data analysis difficult; and 2) medium removal is required for some targets, which essentially reintroduces a wash step. Several no-wash products were introduced in 2005. The authors compare the Fluo-4 NW Calcium Assay Kit and the BD™ Calcium Assay Kit with the FLIPR Calcium 3 Assay Kit using human native rhabdomyosarcoma cells expressing the urotensin-II receptor (UT). The BD™ Calcium Assay Kit gives the best performance in the true no-wash mode, in which both agonist and antagonist activity are easily quantified. Although these new products provide additional options for measuring calcium mobilization, the different results observed with each kit, using the UT receptor as an example, suggest that one should characterize all dyes against each target in a systematic way prior to choosing one for HTS. ( Journal of Biomolecular Screening 2007:705-714)
Collapse
Affiliation(s)
- Hong Xin
- Johnson & Johnson Pharmaceutical Research & Development, L.L.C., Spring House, Pennsylvania 19477-0776, USA.
| | | | | | | | | |
Collapse
|
7
|
|
8
|
Design, synthesis, and biological evaluation of novel thiazolidinediones as PPARγ/FFAR1 dual agonists. Eur J Med Chem 2016; 109:157-72. [DOI: 10.1016/j.ejmech.2015.12.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/27/2015] [Accepted: 12/28/2015] [Indexed: 01/29/2023]
|
9
|
Present and future approaches to screening of G-protein-coupled receptors. Future Med Chem 2013; 5:523-38. [PMID: 23573971 DOI: 10.4155/fmc.13.9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
As G-protein-coupled receptors (GPCRs) mediate a multitude of cellular signal transduction events, affecting more or less all human disease areas, it is, therefore, no surprise that they comprise the largest family of current drug targets. Screening of compounds interacting with GPCRs has developed during the past decade from receptor binding assays, to various functional determination of coupling to G-proteins, and, more recently, G-protein-independent signal transduction events. Additional opportunities have been presented in drug discovery through novel pharmacological properties obtained for receptor dimers and by identification of ligands for orphan GPCRs. Furthermore, high-throughput formats and automation has substantially facilitated and accelerated the screening process providing powerful tools in improving modern drug discovery.
Collapse
|
10
|
McLoughlin D, Bertelli F, Williams C. The A, B, Cs of G-protein-coupled receptor pharmacology in assay development for HTS. Expert Opin Drug Discov 2013; 2:603-19. [PMID: 23488953 DOI: 10.1517/17460441.2.5.603] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
G-protein-coupled receptors represent one of the most important areas of research in the pharmaceutical industry, being one of the largest druggable gene families. Recognising this fact, manufacturers have developed a huge variety of homogeneous assay technologies that facilitate the quantification of receptor ligand binding events and their downstream signalling cascades. However, while early emphasis was placed on the most sensitive, high-throughput and cost-effective screening technologies to enable identification of the most lead matter for further development, in recent years emphasis has shifted to a focus on maximising the identification of compounds that are new and developing assays that are more biologically/pharmacologically relevant. Therefore, this review provides an overview of the binding and functional techniques available for high-throughput screening, with particular attention on how assay application and configuration can be maximised to ensure their successful identification of relevant chemical matter and thereby optimising project success.
Collapse
Affiliation(s)
- Dj McLoughlin
- HTS CoE, Pfizer Global Research and Development, Ramsgate Road, Sandwich, Kent, CT13 9NJ, UK +44(0)1304644616 ; +44(0)1304655592 ;
| | | | | |
Collapse
|
11
|
Abstract
G-protein-coupled receptors (GPCRs) mediate many important physiological functions and
are considered as one of the most successful therapeutic targets for a broad spectrum of
diseases. The design and implementation of high-throughput GPCR assays that allow the
cost-effective screening of large compound libraries to identify novel drug candidates are
critical in early drug discovery. Early functional GPCR assays depend primarily on the
measurement of G-protein-mediated 2nd messenger generation. Taking advantage of the
continuously deepening understanding of GPCR signal transduction, many
G-protein-independent pathways are utilized to detect the activity of GPCRs, and may
provide additional information on functional selectivity of candidate compounds. With the
combination of automated imaging systems and label-free detection systems, such assays are
now suitable for high-throughput screening (HTS). In this review, we summarize the most
widely used GPCR assays and recent advances in HTS technologies for GPCR drug
discovery.
Collapse
|
12
|
Li X, Li PCH. Strategies for the real-time detection of Ca2+ channel events of single cells: recent advances and new possibilities. Expert Rev Clin Pharmacol 2012; 3:267-80. [PMID: 22111609 DOI: 10.1586/ecp.10.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ca(2+) ion channels play key roles in cell physiology and they are important drug targets. The Ca(2+) channel events are mainly measurable by fluorescent and patch clamp methods. This review summarizes the recent advances of these techniques for the detection of Ca(2+) channel events and the prospect of their new directions in the near future. Conventional bulk fluorescent methods are amenable to high-throughput applications, but they are not real-time single-cell measurements, which provide kinetic data on individual cells and offer unparalleled sensitive data for rare cells. Recent advances on real-time single-cell fluorescent measurements are conducted on microfluidic chips with scalable cell-retention sites, integrated with electrical stimulation and fluorescent measuring features. Patch clamp techniques are real-time measurements conducted on single cells, but the measurements are of low throughput. Recent advances are conducted on microfluidic patch clamp chips for high-throughput applications. Future real-time single-cell Ca(2+) channel event measurements will be conducted in a multiparametric manner in an integrated and automated microfluidic chip.
Collapse
Affiliation(s)
- XiuJun Li
- University of California at Berkeley, CA 94720, USA
| | | |
Collapse
|
13
|
Fisher GW, Adler SA, Fuhrman MH, Waggoner AS, Bruchez MP, Jarvik JW. Detection and quantification of beta2AR internalization in living cells using FAP-based biosensor technology. ACTA ACUST UNITED AC 2010; 15:703-9. [PMID: 20488980 DOI: 10.1177/1087057110370892] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ligand-dependent receptor internalization is a feature of numerous signaling systems. In this article, the authors describe a new kind of live-cell biosensor of receptor internalization that takes advantage of fluorogen-activating protein (FAP) technology. Recombinant genes that express the human beta2 adrenergic receptor (beta2AR) with FAP domains at their extracellular N-termini were transduced into mammalian cells. Exposure of the cells to membrane-impermeant fluorogens led to a strong fluorescent signal from the cell surface. Agonist-dependent translocation of the receptor from the surface to the cell interior was readily observed and quantified by fluorescence microscopy or flow cytometry in a homogeneous format without wash or separation steps. The approach described here is generalizable to other receptors and cell surface proteins and is adaptable to a variety of fluorescence-based high-throughput screening platforms.
Collapse
Affiliation(s)
- Gregory W Fisher
- Technology Center for Networks and Pathways, Molecular Biosensor and Imaging Center, Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
14
|
Zhang JY, Kowal DM, Nawoschik SP, Dunlop J, Pausch MH, Peri R. Development of an improved IP(1) assay for the characterization of 5-HT(2C) receptor ligands. Assay Drug Dev Technol 2010; 8:106-13. [PMID: 19922239 DOI: 10.1089/adt.2009.0205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The 5-hydroxytryptamine 2C (5-HT(2C)) receptor is a member of the serotonin 5-HT(2) subfamily of G-protein-coupled receptors signaling predominantly via the phospholipase C (PLC) pathway. Stimulation of phosphoinositide (PI) hydrolysis upon 5-HT(2C) receptor activation is traditionally assessed by measuring inositol monophosphate (IP(1)) using time-consuming and labor-intensive anion exchange radioactive assays. In this study, we have developed and optimized a cellular IP(1) assay using homogeneous time-resolved fluorescence (HTRF), a fluorescence resonance energy transfer (FRET)-based technology (Cisbio; Gif sur Yvette, France). The measurement is simple to carry out without the cumbersome steps associated with radioactive assays and may therefore be used as an alternative tool to evaluate PI hydrolysis activated by 5-HT(2C) agonists. In Chinese hamster ovary (CHO) cells stably expressing 5-HT(2C) receptors, characterization of 5-HT(2C) agonists with the HTRF platform revealed a rank order of potency (EC(50), nM) comparable to that from intracellular calcium mobilization studies measured by the fluorometric imaging plate reader (FLIPR). A similar rank order of potency was seen with conventional radioactive PI assay with the exception of 5-HT. Lastly, the new assay data correlated better with agonist-induced calcium responses in FLIPR (R(2) = 0.78) than with values determined by radioactive IP(1) method (R(2) = 0.64). Our study shows that the HTRF FRET-based assay detects IP(1) with good sensitivity and may be streamlined for high-throughput (HTS) applications.
Collapse
Affiliation(s)
- Jean Y Zhang
- Department of Neuroscience, Wyeth Research, 865 Ridge Road, Monmouth Junction, NJ 08852, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Liu K, Samuel M, Tillett J, Hennan JK, Mekonnen B, Soloveva V, Harrison RK, Paslay JW, Larocque J. High-Throughput Screening for Kv1.3 Channel Blockers Using an Improved FLIPR-Based Membrane-Potential Assay. ACTA ACUST UNITED AC 2009; 15:185-95. [DOI: 10.1177/1087057109356209] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Voltage-gated K+ channels are potential drug targets for an increasing number of disease indications. Searching for compounds that modulate K+ channel activities by high-throughput screening (HTS) is becoming a standard approach in the drug discovery effort. Here the authors report an improved fluorometric imaging plate reader (FLIPR) membrane potential assay for Kv1.3 K+ channel HTS. They have found that the Chinese hamster ovary (CHO) cells have endogenous membrane electrogenic transporters that contribute to maintaining membrane potential. Blocking the recombinant K+ channels in the overexpressing CHO cell line hardly changed the membrane potential. Inhibition of the endogenous transporters is essential to achieve the required assay robustness. The authors identified the optimal assay conditions and designed a simple assay format. After an HTS campaign using this assay, various chemical series of Kv1.3 channel blockers have been identified and confirmed by the automated electrophysiological IonWorks assay. The correlation in dose response between FLIPR and IonWorks was established by biophysical modeling and experimental data. After characterization using patch-clamp recording, both use-dependent and use-independent compounds were identified. Some compounds possess nanomolar potency, indicating that the FLIPR assay is effective for successfully identifying K+ channel blockers as novel drug candidates.
Collapse
Affiliation(s)
- Kun Liu
- Department of Screening Sciences
| | | | - Jeff Tillett
- Department of Cardiovascular and Metabolic Diseases
| | | | - Belew Mekonnen
- Department of Medicinal Chemistry, Wyeth Research, Collegeville, Pennsylvania
| | | | | | | | | |
Collapse
|
16
|
Oh KS, Ryu SY, Lee S, Seo HW, Oh BK, Kim YS, Lee BH. Melanin-concentrating hormone-1 receptor antagonism and anti-obesity effects of ethanolic extract from Morus alba leaves in diet-induced obese mice. JOURNAL OF ETHNOPHARMACOLOGY 2009; 122:216-220. [PMID: 19330910 DOI: 10.1016/j.jep.2009.01.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Korea, Morus alba leaves have been traditionally administered as natural therapeutic agent for the alleviating dropsy and diabetes. AIM OF THE STUDY The present study was performed to evaluate melanin-concentrating hormone receptor subtype 1 (MCH1) antagonism of the ethanol extract of Morus alba leaves (EMA) and its anti-obesity effect in diet-induced obese (DIO) mice. MATERIALS AND METHODS The binding affinity of EMA for the MCH1 receptor with europium-labeled MCH (Eu-MCH), the function of recombinant MCH1 receptors expressed in CHO cells, and the anti-obesity effects in DIO mice were evaluated. RESULTS MCH1 receptor binding studies showed, EMA exhibited a potent inhibitory activity with IC50 value of 2.3+/-1.0 microg/ml. EMA (10-100 microg/ml) also inhibited the intracellular calcium mobilization with the recombinant MCH1 receptors expressed in CHO cells. In an anti-obesity study with DIO mice, longterm oral administrations of EMA for 32 consecutive days produced a dose-dependent decrease in body weight and hepatic lipid accumulation. CONCLUSIONS These results suggest that chronic treatment with EMA exerts an anti-obesity effect in DIO mice, and its direct MCH1 receptor antagonism may contribute to decrease body weight.
Collapse
Affiliation(s)
- Kwang-Seok Oh
- Drug Discovery Division, Korea Research Institute of Chemical Technology, 100 Jangdong, Yuseong, Daejeon 305-343, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Eglen RM, Reisine T. Photoproteins: important new tools in drug discovery. Assay Drug Dev Technol 2009; 6:659-71. [PMID: 19035847 DOI: 10.1089/adt.2008.160] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The G protein-coupled receptor (GPCR) family is a major target for drug discovery, and most, if not all, GPCRs can couple to Ca2+ signaling. Consequently, there are a number of cellbased, primary, high-throughput screening (HTS) assays used for drug discovery that assess changes in intracellular Ca2+ as a functional readout of GPCR activation. Historically, changes in intracellular Ca2+ levels have been readily detected using fluorescent dyes that emit light in proportion to changes in intracellular Ca2+ concentration. An alternative approach to indirectly measure changes in Ca2+ concentrations involves the use of recombinantly expressed biosensor photoproteins, of which aequorin is a prototypic example. These biosensors have the advantage that they provide an intense luminescent signal in response to elevations in intracellular Ca2+. This exquisite sensitivity, the high signal-to-noise ratios, and the ability to target expression to discrete subcellular sites (in order to detect Ca2+ microdomains) have made photoproteins a principal choice in a wide range of GPCR drug discovery programs. Photoproteins are also finding increasing use in detecting activation of other molecular target classes such as ligand-gated ion channels and transporters. This review focuses upon the use of calcium photoproteins principally for use in GPCR drug discovery and HTS.
Collapse
Affiliation(s)
- Richard M Eglen
- Bio-discovery, PerkinElmer Life and Analytical Sciences, Waltham, MA 02451, USA.
| | | |
Collapse
|
18
|
Abstract
G protein-coupled receptors (GPCRs) are a large family of proteins that represent targets for approximately 40% of all approved drugs. They possess unique structural motifs that allow them to interact with a diverse series of extracellular ligands, as well as intracellular signaling proteins, such as G proteins, RAMPs, arrestins, and indeed other receptors. Extensive efforts are under way to discover new generations of drugs against GPCRs with unique targeted therapeutic uses, including "designer" drugs such as allosteric regulators, inverse agonists, and drugs targeting hetero-oligomeric complexes. This has been facilitated by the development of new screening technologies to identify novel drugs against both known and orphan GPCRs.
Collapse
|
19
|
Li X, Llorente I, Brasch M. Improvements in live cell analysis of G protein coupled receptors using second generation BD calcium assay kits. CURRENT CHEMICAL GENOMICS 2008; 2:10-5. [PMID: 20161839 PMCID: PMC2803433 DOI: 10.2174/1875397300802010010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 08/21/2008] [Accepted: 08/23/2008] [Indexed: 11/22/2022]
Abstract
BD™ Calcium Assay Kits are designed for cell-based calcium mobilization high-throughput screening assays. The kits use a proprietary formulation including a non-fluorescent calcium indicator that becomes activated inside the cell and shows increased fluorescence upon calcium binding. The formulation includes a signal-enhancing reagent to maximize the signal over background in a homogeneous, no-wash assay format, based on a technology developed at BD. We have compared the next generation BD calcium assay kit product family to previous versions of the formulation, and to other commercially available homogeneous calcium assay kits. The improvements have enabled better performance on the cell lines and receptors that we have tested in all plate formats including 1536.
Collapse
Affiliation(s)
- Xiao Li
- Bioimaging Systems, BD Biosciences, Rockville, Maryland, USA.
| | | | | |
Collapse
|
20
|
Liu K, Titus S, Southall N, Zhu P, Inglese J, Austin CP, Zheng W. Comparison on functional assays for Gq-coupled GPCRs by measuring inositol monophospate-1 and intracellular calcium in 1536-well plate format. CURRENT CHEMICAL GENOMICS 2008; 1:70-8. [PMID: 20161830 PMCID: PMC2774619 DOI: 10.2174/1875397300801010070] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 05/17/2008] [Accepted: 05/21/2008] [Indexed: 12/15/2022]
Abstract
Cell-based functional assays used for compound screening and lead optimization play an important role in drug discovery for G-protein coupled receptors (GPCRs). Cell-based assays can define the role of a compound as an agonist, antagonist or inverse agonist and can provide detailed information about the potency and efficacy of a compound. In addition, cell-based screens can be used to identify allosteric modulators that interact with sites other than the binding site of the endogenous ligand. Intracellular calcium assays which use a fluorescent calcium binding dye (such as Fluo-3, Fluo-4 or Fura-2) have been used in compound screening campaigns to measure the activity of Gq-coupled GPCRs. However, such screening methodologies require a special instrumentation to record the rapid change in intracellular free calcium concentration over time. The radioactive inositol 1,4,5- triphosphate (IP(3)) assay measures (3)H-inositol incorporation and is another traditional assay for the assessment of Gq-coupled GPCR activity, but it is not suitable for screening of large size compound collections because it requires a cell wash step and generates radioactive waste. To avoid these limitations, we have optimized and miniaturized a TR-FRET based IP-One assay that measures inositol monophosphate in a 1536-well plate format. This assay is homogenous, non-radioactive and does not require a kinetic readout. It has been tested with the cell lines expressing M(1) acetylcholine, FFAR1, vasopressin V1b, or Neuropeptide S receptors. The activities of antagonists determined in the IP-One assay correlated well with these measured in the intracellular calcium assay while the correlation of agonist activities might vary from cell line to cell line. This IP-One assay offers an alternative method for high throughput screening of Gq-coupled GPCRs without using costly kinetic plate readers.
Collapse
Affiliation(s)
- Ke Liu
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3370, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Leonard SK, Dwyer JM, Sukoff Rizzo SJ, Platt B, Logue SF, Neal SJ, Malberg JE, Beyer CE, Schechter LE, Rosenzweig-Lipson S, Ring RH. Pharmacology of neuropeptide S in mice: therapeutic relevance to anxiety disorders. Psychopharmacology (Berl) 2008; 197:601-11. [PMID: 18311561 DOI: 10.1007/s00213-008-1080-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 01/10/2008] [Indexed: 11/29/2022]
Abstract
RATIONALE Neuropeptide S (NPS) and its receptor (NPSR) comprise a recently deorphaned G protein-coupled receptor system. Recent reports implicate NPS in the mediation of anxiolytic-like activity in rodents. OBJECTIVES To extend the characterization of NPS, the present studies examined the in vitro pharmacology of mouse NPSR and the in vivo pharmacology of NPS in three preclinical mouse models predictive of anxiolytic action: the four-plate test (FPT), elevated zero maze (EZM), and stress-induced hyperthermia (SIH). The ability of NPS to produce antidepressant-like effects in the tail suspension test (TST) was also investigated. RESULTS In vitro, mouse NPS 1-20 (mNPS 1-20) and the C-terminal glutamine-truncated mouse NPS 1-19 bound mNPSR with high affinity (Ki = 0.203 +/- 0.060, 0.635 +/- 0.141 nM, respectively) and potently activated intracellular calcium release (EC50 = 3.73 +/- 1.08, 4.10 +/- 1.25 nM). NPS produced effects in vivo consistent with anxiolytic-like activity. In FPT, NPS increased punished crossings (minimal effective dose [MED]: mNPS 1-20 = 0.2 microg, mNPS(1-19) = 0.02 microg), similar to the reference anxiolytic, alprazolam (MED 0.5 microg). NPS increased the percentage of time spent in the open quadrants of EZM (MED: mNPS 1-20 = 0.1 microg, mNPS 1-19 = 1.0 microg), like the reference anxiolytic, chlordiazepoxide (MED 56 microg). In SIH, NPS attenuated stress-induced increases in body temperature similar to alprazolam but with a large potency difference between the NPS peptides (MED: mNPS 1-20 = 2.0 microg, mNPS 1-19 = 0.0002 microg) and mNPS 1-20 increased baseline temperature. Unlike fluoxetine, NPS did not effect immobility time in TST, indicating a lack of antidepressant-like activity. CONCLUSIONS These data provide an important confirmation and expansion of the anxiolytic-like effects of NPS and implicate the NPS system as a novel target for anxiolytic drug discovery.
Collapse
Affiliation(s)
- Sarah K Leonard
- Depression and Anxiety Disorders, Discovery Neuroscience, Wyeth Research, CN8000, Princeton, NJ 08543, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Eglen RM, Bosse R, Reisine T. Emerging concepts of guanine nucleotide-binding protein-coupled receptor (GPCR) function and implications for high throughput screening. Assay Drug Dev Technol 2007; 5:425-51. [PMID: 17638542 DOI: 10.1089/adt.2007.062] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Guanine nucleotide binding protein (G protein) coupled receptors (GPCRs) comprise one of the largest families of proteins in the human genome and are a target for 40% of all approved drugs. GPCRs have unique structural motifs that allow them to interact with a wide and diverse series of extracellular ligands, as well as intracellular proteins, G proteins, receptor activity-modifying proteins, arrestins, and indeed other receptors. This distinctive structure has led to numerous efforts to discover drugs against GPCRs with targeted therapeutic uses. Such "designer" drugs currently include allosteric regulators, inverse agonists, and drugs targeting hetero-oligomeric complexes. Moreover, the large family of orphan GPCRs provides a rich and novel field of targets to discover drugs with unique therapeutic properties. The numerous technologies to discover GPCR drugs have also greatly advanced over the years, facilitating compound screening against known and orphan GPCRs, as well as in the identification of unique designer GPCR drugs. Indeed, high throughput screening (HTS) technologies employing functional cell-based approaches are now widely used. These include measurement of second messenger accumulation such as cyclic AMP, calcium ions, and inositol phosphates, as well as mitogen-activated protein kinase activation, protein-protein interactions, and GPCR oligomerization. This review focuses on how the improved understanding of the molecular pharmacology of GPCRs, coupled with a plethora of novel HTS technologies, is leading to the discovery and development of an entirely new generation of GPCR-based therapeutics.
Collapse
Affiliation(s)
- Richard M Eglen
- Discovery and Research Reagents, PerkinElmer Life and Analytical Sciences, Waltham, MA 02451, USA.
| | | | | |
Collapse
|
23
|
Cassutt KJ, Orsini MJ, Abousleiman M, Colone D, Tang W. Identifying nonselective hits from a homogeneous calcium assay screen. ACTA ACUST UNITED AC 2007; 12:285-7. [PMID: 17289936 DOI: 10.1177/1087057106298538] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The authors used a homogeneous calcium dye kit with a cell line transfected using a recombinant protein construct to screen a 50,000 compound library for G-protein coupled receptor (GPCR) agonists. Only 1 of the 365 primary hits activated Gq-coupled GPCRs, as shown using IP-ONE HTRF. Furthermore, an agonist screen against the entire compound library and same heterologous cell line using AequoScreen technology generated no false positives and identified the same positive hit. Next, a multiplex assay composed of both Fluo-3 and Fura-2-loaded cells identified 1 false positive and the same true-positive hit out of the 365 primary hits. Finally, rescreening the 365 primary hits against the parental cell line loaded using the homogeneous calcium dye kit confirmed the specificity of the same true-positive hit only. In summary, the results suggest that AequoScreen technology, IP-ONE HTRF, and multiplex assays are unique, orthogonal technologies to identify nonspecific hits.
Collapse
|
24
|
Zhang R, Yan PK, Zhou CH, Liao JY, Wang MW. Development of a homogeneous calcium mobilization assay for high throughput screening of mas-related gene receptor agonists. Acta Pharmacol Sin 2007; 28:125-31. [PMID: 17184592 DOI: 10.1111/j.1745-7254.2007.00451.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AIM To develop homogeneous calcium mobilization assay for high-throughput screening (HTS) of mas-related gene (Mrg) receptor agonists. METHODS CHO-K1 cells stably expressing the full-length MrgD receptor and a calcium-sensitive dye were used to develop an HTS assay based on intracellular calcium influx. This method was applied to large-scale screening of a library containing 8000 synthetic compounds and natural product extracts. cAMP measurements were carried out to verify the bioactivities of the hits found by the calcium mobilization assay. Similar approaches were also employed in the identification of the MrgA1 receptor agonists following HTS of 16,000 samples. RESULTS EC(50) values of the positive control compounds (beta-alanine for MrgD receptor and dynorphin A for MrgA1 receptor) determined by the calcium mobilization assay were consistent with those reported in the literature, and the Z' factors were 0.65 and 0.50 for MrgD and MrgA1 receptor assay, respectively. About 31 compounds for the MrgD receptor and 48 compounds for the MrgA1 receptor showing > or =20% of the maximal agonist activities found in the controls were initially identified as hits. Secondary screening confirmed that 2 compounds for each receptor possessed specific agonist activities. Intracellular cAMP level measurements indicated that the 2 confirmed hits displayed the functionality of the MrgD receptor agonists. CONCLUSION A series of validation studies demonstrated that the homogeneous calcium mobilization assay developed was highly efficient, amenable to automation and a robust tool to screen potential MrgD and MrgA1 receptor agonists. Its application may be expanded to other G-protein coupled receptors that mobilize calcium influx upon activation.
Collapse
Affiliation(s)
- Rui Zhang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | |
Collapse
|
25
|
de Paulis T, Hemstapat K, Chen Y, Zhang Y, Saleh S, Alagille D, Baldwin RM, Tamagnan GD, Conn PJ. Substituent Effects ofN-(1,3-Diphenyl-1H-pyrazol-5-yl)benzamides on Positive Allosteric Modulation of the Metabotropic Glutamate-5 Receptor in Rat Cortical Astrocytes. J Med Chem 2006; 49:3332-44. [PMID: 16722652 DOI: 10.1021/jm051252j] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CDPPB [3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide] was recently described as the first centrally active, positive allosteric modulator of rat and human metabotropic glutamate receptor (mGluR) mGluR5 subtype. We explored the structural requirements for potentiation of glutamate-induced calcium release in naturally expressed mGluR5 in cultured rat astrocytes and increasing affinity for the allosteric antagonist binding site by evaluating 50 analogues of CDPPB. In the fluorometric calcium assay, CDPPB exhibited an EC50 value of 77 +/- 15 nM in potentiating mGluR5-mediated responses in cortical astrocytes and a Ki value of 3760 +/- 430 nM in displacing [3H]methoxyPEPy binding in membranes of cultured HEK-293 cells expressing rat mGluR5. The structure-activity relationships showed that electronegative aromatic substituents in the para-position of the benzamide moiety of CDPPB increase potency. Both binding and functional activities were further increased with a halogen atom in the ortho-position of the 1-phenyl ring. These effects of substitution do not match those of either aromatic ring of MPEP [2-methyl-6-(phenylethynyl)pyridine] for the antagonist allosteric binding site. Combination of the optimal substituents and aromatic positions resulted in 4-nitro-N-(1-(2-fluorophenyl)-3-phenyl-1H-pyrazol-5-yl)benzamide (VU-1545) showing Ki = 156 +/- 29 nM and EC50 = 9.6 +/- 1.9 nM in the binding and functional assays, respectively.
Collapse
Affiliation(s)
- Tomas de Paulis
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gribbon P, Chambers C, Palo K, Kupper J, Mueller J, Sewing A. A Novel Method for Analyzing [Ca2+] Flux Kinetics in High-Throughput Screening. ACTA ACUST UNITED AC 2006; 11:511-8. [PMID: 16760374 DOI: 10.1177/1087057106287929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Driven by multiparameter fluorescence readouts and the analysis of kinetic responses from biological assay systems, the amount and complexity of high-throughput screening data are constantly increasing. As a consequence, the reduction of data to a simple number, reflecting a percentage activity/inhibition, is no longer an adequate approach because valuable additional information, for example, about compound-or process-induced artifacts, is lost. Time series data such as the transient calcium flux observed after activation of Gq-coupled G protein-coupled receptors (GPCRs), are especially challenging with respect to quantity of data; typically, responses are followed for several minutes. Based on measurements taken on the fluorometric imaging plate reader, the authors have introduced a mathematical model to describe the time traces of cellular calcium fluxes mediated by the activation of GPCRs. The model describes the time series using 13 parameters, reducing the amount of data by 90% while guiding the detection of compound-induced artifacts as well as the selection of compounds for further characterization.
Collapse
|
27
|
Dautzenberg FM, Higelin J, Pflieger P, Neidhart W, Guba W. Establishment of robust functional assays for the characterization of neuropeptide Y (NPY) receptors: identification of 3-(5-benzoyl-thiazol-2-ylamino)-benzonitrile as selective NPY type 5 receptor antagonist. Neuropharmacology 2005; 48:1043-55. [PMID: 15857631 DOI: 10.1016/j.neuropharm.2005.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 01/24/2005] [Accepted: 01/25/2005] [Indexed: 01/26/2023]
Abstract
The human Neuropeptide Y (NPY) receptors 1 (hY1), 2 (hY2), 4 (hY4), and the mouse type 5 (mY5) receptor were expressed in human embryonic kidney 293 (HEK293) cells. The receptors bound a radioiodinated NPY ligand with high affinity and various NPY analogs competed for binding in a receptor selective-manner. Similarly, cAMP-inhibition and GTPgammaS binding assays were established. The four NPY receptors were further tested in the fluorimetric imaging plate reader (FLIPR) format, a cellular high-throughput assay, in the absence and presence of chimeric G proteins, Gqo5, Gqi5 and Gqi9. The receptors stimulated transient calcium release only in the presence of chimeric G proteins. While hY1, hY2 and hY4 receptors coupled to Gqo5, Gqi5 and Gqi9, the mY5 receptor stimulated transient calcium release only when co-expressed with Gqi9. Using an in silico screening approach we identified a small molecule 3-(5-benzoyl-thiazol-2-ylamino)-benzonitrile (compound 1), which bound to the mY5 receptor with high affinity (Ki=32.1+/-1.8 nM), competitively antagonized NPY-mediated GTPgammaS binding and calcium stimulation with high potency, and had no affinity for other NPY receptors. These data show that NPY receptors can be functionally coupled to the FLIPR readout, allowing for high throughput compound testing and identification of novel molecules.
Collapse
|
28
|
Hodder P, Mull R, Cassaday J, Berry K, Strulovici B. Miniaturization of intracellular calcium functional assays to 1536-well plate format using a fluorometric imaging plate reader. ACTA ACUST UNITED AC 2005; 9:417-26. [PMID: 15296641 DOI: 10.1177/1087057104264038] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The measurement of intracellular calcium response transients in living mammalian cells is a popular functional assay for identification of agonists and antagonists to receptors or channels of pharmacological interest. In recent years, advances in fluorescence-based detection techniques and automation technologies have facilitated the adaptation of this assay to 384-well microplate format high-throughput screening (HTS) assays. However, the cost and time required performing the intracellular calcium HTS assays in the 384-well format can be prohibitive for HTS campaigns of greater than 1 x 10(6) wells. For these reasons, it is attractive to miniaturize intracellular calcium functional assays to the 1536-well microplate format, where assay volumes and plate throughput can be decreased by several fold. The focus of the research described in this article is the miniaturization of an intracellular calcium assay to 1536-well plate format. This was accomplished by modifying the hardware and software of a fluorometric imaging plate reader (FLIPR) to enable transfer of nanoliters of test compound directly to a 1536-well assay plate, and measure the resulting calcium response from all 1536 wells simultaneously. An intracellular calcium functional assay against the rat muscarinic acetylcholine receptor subtype 1 (rmAchR1) G-protein coupled receptor (GPCR) was miniaturized and executed on this modified instrument. In experiments measuring the activity of known muscarinic receptor agonists and antagonists, the miniaturized FLIPR assay gave EC(50) and IC(50) values and rank order potency comparable to the 384-well format assays. Calculated Z' factors for the miniaturized agonist and antagonist assays were, respectively, 0.56 +/- 0.21 and 0.53 +/- 0.22, which were slightly higher (Z'(agonist) = 0.55 +/- 0.33) and lower (Z'(antagonist) = 0.70 +/- 0.18) than the corresponding values in the 384-well assays. A mock agonist HTS campaign against the muscarinic receptor in miniaturized format was able to identify all wells spiked with the rmAchR1 agonist carbachol.
Collapse
Affiliation(s)
- Peter Hodder
- Department of Automated Biotechnology, Merck Research Laboratories, North Wales, PA 19454, USA.
| | | | | | | | | |
Collapse
|