1
|
Zhang D, Jin Q, Jiang C, Gao M, Ni Y, Zhang J. Imaging Cell Death: Focus on Early Evaluation of Tumor Response to Therapy. Bioconjug Chem 2020; 31:1025-1051. [PMID: 32150392 DOI: 10.1021/acs.bioconjchem.0c00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell death plays a prominent role in the treatment of cancer, because most anticancer therapies act by the induction of cell death including apoptosis, necrosis, and other pathways of cell death. Imaging cell death helps to identify treatment responders from nonresponders and thus enables patient-tailored therapy, which will increase the likelihood of treatment response and ultimately lead to improved patient survival. By taking advantage of molecular probes that specifically target the biomarkers/biochemical processes of cell death, cell death imaging can be successfully achieved. In recent years, with the increased understanding of the molecular mechanism of cell death, a variety of well-defined biomarkers/biochemical processes of cell death have been identified. By targeting these established cell death biomarkers/biochemical processes, a set of molecular imaging probes have been developed and evaluated for early monitoring treatment response in tumors. In this review, we mainly present the recent advances in identifying useful biomarkers/biochemical processes for both apoptosis and necrosis imaging and in developing molecular imaging probes targeting these biomarkers/biochemical processes, with a focus on their application in early evaluation of tumor response to therapy.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Yicheng Ni
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| |
Collapse
|
2
|
Khoshbakht S, Beiki D, Geramifar P, Kobarfard F, Sabzevari O, Amini M, Bolourchian N, Shamshirian D, Shahhosseini S. Design, Synthesis, Radiolabeling, and Biologic Evaluation of Three 18F-FDG-Radiolabeled Targeting Peptides for the Imaging of Apoptosis. Cancer Biother Radiopharm 2019; 34:271-279. [PMID: 30835137 DOI: 10.1089/cbr.2018.2709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Early detection of apoptosis is very important for therapy and follow-up treatment in various pathologic conditions. Annexin V interacts strongly and specifically with phosphatidylserine, specific biomarkers of apoptosis with some limitations. Small peptides are suitable alternatives to annexin V. A reliable and noninvasive in vivo technique for the detection of apoptosis is in great demand. Based on our previous studies, three new peptide analogs of LIKKPF (Leu-Ile-Lys-Lys-Pro-Phe) as apoptosis imaging agents were developed. Materials and Methods: Aoa-LIKKP-Cl-F, Aoe-LIKKP-Pyr-F, and Aoe-LIKKP-Nap-F were synthesized, functionalized with aminooxy, and radiolabeled with 18F-FDG. Their biologic properties were evaluated in vitro using apoptotic Jurkat cells. 18F-FDG-Aoe-LIKKP-Pyr-F peptide was injected into normal and apoptotic mice models for biodistribution and in vivo positron emission tomography/computed tomography imaging studies. Results: 18F-FDG-Aoe-LIKKP-Pyr-F peptide showed higher affinity for apoptotic cells. The localization of peptide in apoptotic liver mice was confirmed in biodistribution and imaging studies. Conclusion: The results showed that Aoe-LIKKP-Pyr-F peptide is an auspicious agent for molecular imaging of apoptosis.
Collapse
Affiliation(s)
- Sepideh Khoshbakht
- 1 Shohada-E-Tajrish Hospital, School of Medicine, Shahid Behesti University of Medical Sciences, Tehran, Iran
| | - Davood Beiki
- 2 Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Geramifar
- 2 Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Kobarfard
- 3 Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Sabzevari
- 4 Department of Toxicology and Pharmacology, Faculty of Pharmacy, Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- 5 Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Bolourchian
- 6 Department of Pharmaceutics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Danial Shamshirian
- 7 PET/CT Center, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soraya Shahhosseini
- 8 Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Protein Technology Research Center, Shahid Behesti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Vadevoo SMP, Gurung S, Khan F, Haque ME, Gunassekaran GR, Chi L, Permpoon U, Lee B. Peptide-based targeted therapeutics and apoptosis imaging probes for cancer therapy. Arch Pharm Res 2019; 42:150-158. [DOI: 10.1007/s12272-019-01125-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
|
4
|
Rybczynska AA, Boersma HH, de Jong S, Gietema JA, Noordzij W, Dierckx RAJO, Elsinga PH, van Waarde A. Avenues to molecular imaging of dying cells: Focus on cancer. Med Res Rev 2018. [PMID: 29528513 PMCID: PMC6220832 DOI: 10.1002/med.21495] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Successful treatment of cancer patients requires balancing of the dose, timing, and type of therapeutic regimen. Detection of increased cell death may serve as a predictor of the eventual therapeutic success. Imaging of cell death may thus lead to early identification of treatment responders and nonresponders, and to “patient‐tailored therapy.” Cell death in organs and tissues of the human body can be visualized, using positron emission tomography or single‐photon emission computed tomography, although unsolved problems remain concerning target selection, tracer pharmacokinetics, target‐to‐nontarget ratio, and spatial and temporal resolution of the scans. Phosphatidylserine exposure by dying cells has been the most extensively studied imaging target. However, visualization of this process with radiolabeled Annexin A5 has not become routine in the clinical setting. Classification of death modes is no longer based only on cell morphology but also on biochemistry, and apoptosis is no longer found to be the preponderant mechanism of cell death after antitumor therapy, as was earlier believed. These conceptual changes have affected radiochemical efforts. Novel probes targeting changes in membrane permeability, cytoplasmic pH, mitochondrial membrane potential, or caspase activation have recently been explored. In this review, we discuss molecular changes in tumors which can be targeted to visualize cell death and we propose promising biomarkers for future exploration.
Collapse
Affiliation(s)
- Anna A Rybczynska
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Genetics, University of Groningen, Groningen, the Netherlands
| | - Hendrikus H Boersma
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy & Pharmacology, University of Groningen, Groningen, the Netherlands
| | - Steven de Jong
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Jourik A Gietema
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Walter Noordzij
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Philip H Elsinga
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aren van Waarde
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
5
|
Chilla SNM, Zemek O, Kotek J, Boutry S, Larbanoix L, Sclavons C, Elst LV, Lukes I, Muller RN, Laurent S. Synthesis and characterization of monophosphinic acid DOTA derivative: A smart tool with functionalities for multimodal imaging. Bioorg Med Chem 2017; 25:4297-4303. [PMID: 28655418 DOI: 10.1016/j.bmc.2017.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/30/2017] [Accepted: 06/08/2017] [Indexed: 02/01/2023]
Abstract
A new facile synthetic strategy was developed to prepare bifunctional monophosphinic acid Ln-DOTA derivatives, Gd-DO2AGAPNBn and Gd- DO2AGAPABn. The relaxivities of the Gd-complexes are enhanced compared to Gd-DOTA. Monophosphinic acid arm of these Gd-complexes affords enhancement of inner sphere water exchange rate due to its steric bulkiness. The different functionalities of DO2AGAPNBn were appended in trans positions and are designed to conjugate identical or different vectors according to the potential applications. The conjugation of Gd-DO2AGAPABn with E3 peptide known to target apoptosis was successfully performed and in vivo MRI allowed cell death detection in a mouse model.
Collapse
Affiliation(s)
- Satya Narayana Murthy Chilla
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, Mendeleïev Building, 7000 Mons, Belgium.
| | - Ondrej Zemek
- Department of Inorganic Chemistry, Universita Karlova, Hlavova 2030, 128 40 Prague 2, Czech Republic.
| | - Jan Kotek
- Department of Inorganic Chemistry, Universita Karlova, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Sébastien Boutry
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, Mendeleïev Building, 7000 Mons, Belgium; Centre for Microscopy and Molecular Imaging (CMMI), Rue Adrienne Bolland, 8, 6041 Charleroi-Gosselies, Belgium
| | - Lionel Larbanoix
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, Mendeleïev Building, 7000 Mons, Belgium; Centre for Microscopy and Molecular Imaging (CMMI), Rue Adrienne Bolland, 8, 6041 Charleroi-Gosselies, Belgium
| | - Coralie Sclavons
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, Mendeleïev Building, 7000 Mons, Belgium; Centre for Microscopy and Molecular Imaging (CMMI), Rue Adrienne Bolland, 8, 6041 Charleroi-Gosselies, Belgium
| | - Luce Vander Elst
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, Mendeleïev Building, 7000 Mons, Belgium; Centre for Microscopy and Molecular Imaging (CMMI), Rue Adrienne Bolland, 8, 6041 Charleroi-Gosselies, Belgium
| | - Ivan Lukes
- Department of Inorganic Chemistry, Universita Karlova, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Robert N Muller
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, Mendeleïev Building, 7000 Mons, Belgium; Centre for Microscopy and Molecular Imaging (CMMI), Rue Adrienne Bolland, 8, 6041 Charleroi-Gosselies, Belgium
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, Mendeleïev Building, 7000 Mons, Belgium; Centre for Microscopy and Molecular Imaging (CMMI), Rue Adrienne Bolland, 8, 6041 Charleroi-Gosselies, Belgium.
| |
Collapse
|
6
|
Perreault A, Richter S, Bergman C, Wuest M, Wuest F. Targeting Phosphatidylserine with a 64Cu-Labeled Peptide for Molecular Imaging of Apoptosis. Mol Pharm 2016; 13:3564-3577. [DOI: 10.1021/acs.molpharmaceut.6b00666] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Amanda Perreault
- Department of Oncology, Cross
Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 2X4, Canada
| | - Susan Richter
- Department of Oncology, Cross
Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 2X4, Canada
| | - Cody Bergman
- Department of Oncology, Cross
Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 2X4, Canada
| | - Melinda Wuest
- Department of Oncology, Cross
Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 2X4, Canada
| | - Frank Wuest
- Department of Oncology, Cross
Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 2X4, Canada
| |
Collapse
|
7
|
Identification of the minimum pharmacophore of lipid-phosphatidylserine (PS) binding peptide-peptoid hybrid PPS1D1. Bioorg Med Chem 2016; 24:4470-4477. [PMID: 27485601 DOI: 10.1016/j.bmc.2016.07.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/17/2016] [Accepted: 07/20/2016] [Indexed: 12/26/2022]
Abstract
We previously reported a unique peptide-peptoid hybrid, PPS1 that specifically recognizes lipid-phosphatidylserine (PS) and a few other negatively charged phospholipids, but not neutral phospholipids, on the cell membrane. The dimeric version of PPS1, i.e., PPS1D1 triggers strong cancer cell cytotoxicity and has been validated in lung cancer models both in vitro and in vivo. Given that PS and other negatively charged phospholipids are abundant in almost all tumor microenvironments, PPS1D1 is an attractive drug lead that can be developed into a globally applicable anti-cancer agent. Therefore, it is extremely important to identify the minimum pharmacophore of PPS1D1. In this study, we have synthesized alanine/sarcosine derivatives as well as truncated derivatives of PPS1D1. We performed ELISA-like competitive binding assay to evaluate the PS-recognition potential and standard MTS cell viability assay on HCC4017 lung cancer cells to validate the cell cytotoxicity effects of these derivatives. Our studies indicate that positively charged residues at the second and third positions, as well as four hydrophobic residues at the fifth through eighth positions, are imperative for the binding and activity of PPS1D1. Methionine at the first position was not essential, whereas the positively charged Nlys at the fourth position was minimally needed, as two derivatives that were synthesized replacing this residue were almost as active as PPS1D1.
Collapse
|
8
|
Dentamaro M, Lux F, Vander Elst L, Dauguet N, Montante S, Moussaron A, Burtea C, Muller RN, Tillement O, Laurent S. Chemical andin vitrocharacterizations of a promising bimodal AGuIX probe able to target apoptotic cells for applications in MRI and optical imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2016; 11:381-395. [DOI: 10.1002/cmmi.1702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/18/2016] [Accepted: 05/13/2016] [Indexed: 12/22/2022]
|
9
|
Van Koninckxloo A, Henoumont C, Laurent S, Muller RN, Vander Elst L. (1) H-NMR relaxometric studies of interaction between apoptosis specific MRI paramagnetic contrast agents and micellar models of apoptotic cells. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2016; 54:568-574. [PMID: 26647764 DOI: 10.1002/mrc.4397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/02/2015] [Accepted: 11/11/2015] [Indexed: 06/05/2023]
Abstract
(1) H-NMR was previously used to analyze the interaction between peptides (E3 and R826) selected by phage display to target apoptotic cells and phospholipidic models of these cells. In order to avoid the use of apoptotic cells and to obtain a fast evaluation of the efficiency of the potential MRI contrast agents obtained by grafting these peptides and their scramble analogs on a paramagnetic gadolinium complex, their proton relaxometric behavior was investigated in the presence of micelles mimicking healthy and apoptotic cells. Their preferential interaction with 1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine micelles mimicking apoptotic cells as compared with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine micelles modeling healthy cells was shown by nuclear magnetic relaxation dispersion profiles and the enhancement of the transverse proton relaxation rates at 60 MHz. The association constant values confirm the stronger interaction of the selected conjugated peptides (Ka Gd-PMN-E3(gadolinium 2,2',2'',2'''-[((4-carboxy)pyridine-2,6-diyl)bis(methylenenitrilo)]-tetrakis acetate) grafted with E3 peptide): 2.43 10(4) m(-1) ; Ka Gd-DTPA-R826(gadolinium ((1-p-isothiocyanatobenzyl)-diethylenetriaminepentaacetate) grafted with R826 peptide): 2.91 10(4) m(-1) ) as compared with their conjugated scrambles (Ka Gd-PMN-E3sc(gadolinium 2,2',2'',2'''-[((4-carboxy)pyridine-2,6-diyl)bis(methylenenitrilo)]-tetrakis acetate) grafted with E3 scramble peptide): 0.18 10(4) m(-1) ; Ka Gd-DTPA-R826sc(gadolinium ((1-p-isothiocyanatobenzyl)-diethylenetriaminepentaacetate) grafted with R826 scramble peptide): 0.32 10(4) m(-1) ) even if the conjugation of E3 and R826 seems to decrease their interaction. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Aurore Van Koninckxloo
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 7000, Mons, Belgium
| | - Céline Henoumont
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 7000, Mons, Belgium
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 7000, Mons, Belgium
- CMMI - Center for Microscopy and Molecular Imaging, 6041, Gosselies, Belgium
| | - Robert N Muller
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 7000, Mons, Belgium
- CMMI - Center for Microscopy and Molecular Imaging, 6041, Gosselies, Belgium
| | - Luce Vander Elst
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 7000, Mons, Belgium
- CMMI - Center for Microscopy and Molecular Imaging, 6041, Gosselies, Belgium
| |
Collapse
|
10
|
Khoshbakht S, Beiki D, Geramifar P, Kobarfard F, Sabzevari O, Amini M, Shahhosseini S. 18FDG-labeled LIKKPF: a PET tracer for apoptosis imaging. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-4793-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
11
|
Kim S, Bae SM, Seo J, Cha K, Piao M, Kim SJ, Son HN, Park RW, Lee BH, Kim IS. Advantages of the phosphatidylserine-recognizing peptide PSP1 for molecular imaging of tumor apoptosis compared with annexin V. PLoS One 2015; 10:e0121171. [PMID: 25803297 PMCID: PMC4372538 DOI: 10.1371/journal.pone.0121171] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/28/2015] [Indexed: 12/19/2022] Open
Abstract
A number of peptide-based indicators have been identified and reported as potential apoptosis probes, offering great promise for early assessment of therapeutic efficacy in several types of cancer. Direct comparison of the newly developed probes with previously used ones would be an important step in assessing possible applications. Here, we compared the newly identified peptide-based phosphatidylserine (PS) indicator PSP1 (CLSYYPSYC) with annexin V, a common probe for molecular imaging of apoptotic cells, with respect to PS binding kinetics, apoptotic cell-targeting ability, and the efficacy of homing to apoptotic tumor cells in a mouse model after treatment with the anticancer agent camptothecin. Our results indicate that PSP1 efficiently targeted apoptotic cells and generated apoptosis/tumor-specific signals after cancer treatment in the animal model, whereas a similar dose of annexin V showed weak signals. The formation of a stable complex of PSP1 with PS might be one reason for the efficient in vivo targeting. We suggest that PSP1 has potential advantages for in vivo apoptotic cell imaging and could serve as a platform for the development of de novo peptide-based probes for apoptosis.
Collapse
Affiliation(s)
- Soyoun Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sang Mun Bae
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Junyoung Seo
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kiweon Cha
- Division of high-risk pathogen research, Korea National Institute of Health, Korea Centers For Disease Control & Prevention (KCDC), Osong, Chungbuk, Republic of Korea
| | - Meilan Piao
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sun-Ji Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hye-Nam Son
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Rang-Woon Park
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Byung-Heon Lee
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - In-San Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
12
|
Henoumont C, Laurent S, Muller RN, Vander Elst L. HR-MAS NMR Spectroscopy: An Innovative Tool for the Characterization of Iron Oxide Nanoparticles Tracers for Molecular Imaging. Anal Chem 2015; 87:1701-10. [DOI: 10.1021/ac5035105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Céline Henoumont
- Department
of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging
Laboratory, University of Mons, 19 Avenue Maistriau, B-7000 Mons, Belgium
| | - Sophie Laurent
- Department
of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging
Laboratory, University of Mons, 19 Avenue Maistriau, B-7000 Mons, Belgium
| | - Robert N. Muller
- Department
of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging
Laboratory, University of Mons, 19 Avenue Maistriau, B-7000 Mons, Belgium
- Center
for Microscopy
and Molecular Imaging (CMMI), 8 Rue
Adrienne Boland, 6041 Gosselies, Belgium
| | - Luce Vander Elst
- Department
of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging
Laboratory, University of Mons, 19 Avenue Maistriau, B-7000 Mons, Belgium
- Center
for Microscopy
and Molecular Imaging (CMMI), 8 Rue
Adrienne Boland, 6041 Gosselies, Belgium
| |
Collapse
|
13
|
Van Koninckxloo A, Henoumont C, Laurent S, Muller RN, Vander Elst L. NMR chemical shift study of the interaction of selected peptides with liposomal and micellar models of apoptotic cells. J Biol Inorg Chem 2014; 19:1367-76. [PMID: 25287364 DOI: 10.1007/s00775-014-1195-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/12/2014] [Indexed: 11/30/2022]
Abstract
The interaction between two peptides previously selected by phage display to target apoptotic cells and phospholipidic models of these cells (liposomes or micelles made of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and/or 1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine (DPPS, phosphatidylserine analog) was studied by the simple analysis of the changes induced on the proton NMR chemical shifts of the peptides. Our approach which does not need healthy and/or apoptotic cells for assessing the affinity of different peptides is fast and efficient and requires small amounts of peptide to determine the association constant, the interacting protons, and the number of interaction sites. The micellar model gave more reliable results than the liposomal one. The preferential interaction of the peptide with DPPS was evidenced by the change of the chemical shifts of specific amino acids of the peptides. Our micellar model is thus well suited to mimic apoptotic cells.
Collapse
Affiliation(s)
- Aurore Van Koninckxloo
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 7000, Mons, Belgium
| | | | | | | | | |
Collapse
|
14
|
Ashrafuzzaman M. Aptamers as both drugs and drug-carriers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:697923. [PMID: 25295268 PMCID: PMC4177733 DOI: 10.1155/2014/697923] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 08/04/2014] [Accepted: 08/22/2014] [Indexed: 11/17/2022]
Abstract
Aptamers are short nucleic acid oligos. They may serve as both drugs and drug-carriers. Their use as diagnostic tools is also evident. They can be generated using various experimental, theoretical, and computational techniques. The systematic evolution of ligands by exponential enrichment which uses iterative screening of nucleic acid libraries is a popular experimental technique. Theory inspired methodology entropy-based seed-and-grow strategy that designs aptamer templates to bind specifically to targets is another one. Aptamers are predicted to be highly useful in producing general drugs and theranostic drugs occasionally for certain diseases like cancer, Alzheimer's disease, and so on. They bind to various targets like lipids, nucleic acids, proteins, small organic compounds, and even entire organisms. Aptamers may also serve as drug-carriers or nanoparticles helping drugs to get released in specific target regions. Due to better target specific physical binding properties aptamers cause less off-target toxicity effects. Therefore, search for aptamer based drugs, drug-carriers, and even diagnostic tools is expanding fast. The biophysical properties in relation to the target specific binding phenomena of aptamers, energetics behind the aptamer transport of drugs, and the consequent biological implications will be discussed. This review will open up avenues leading to novel drug discovery and drug delivery.
Collapse
Affiliation(s)
- Md. Ashrafuzzaman
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
15
|
Laurent S, Vander Elst L, Galaup C, Leygue N, Boutry S, Picard C, Muller RN. Bifunctional Gd(III) and Tb(III) chelates based on a pyridine-bis(iminodiacetate) platform, suitable optical probes and contrast agents for magnetic resonance imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 9:300-12. [DOI: 10.1002/cmmi.1576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/20/2013] [Accepted: 09/29/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Sophie Laurent
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry; Université de Mons; B-7000 Mons Belgium
| | - Luce Vander Elst
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry; Université de Mons; B-7000 Mons Belgium
| | - Chantal Galaup
- Université de Toulouse; UPS; Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, SPCMIB; 118 route de Narbonne F-31062 Toulouse cedex 9 France
- CNRS; Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, SPCMIB, UMR-5068; 118 Route de Narbonne F-31062 Toulouse cedex 9 France
| | - Nadine Leygue
- Université de Toulouse; UPS; Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, SPCMIB; 118 route de Narbonne F-31062 Toulouse cedex 9 France
- CNRS; Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, SPCMIB, UMR-5068; 118 Route de Narbonne F-31062 Toulouse cedex 9 France
| | - Sébastien Boutry
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry; Université de Mons; B-7000 Mons Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Académie Wallonie-Bruxelles; B 6041 Gosselies Belgium
| | - Claude Picard
- Université de Toulouse; UPS; Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, SPCMIB; 118 route de Narbonne F-31062 Toulouse cedex 9 France
- CNRS; Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, SPCMIB, UMR-5068; 118 Route de Narbonne F-31062 Toulouse cedex 9 France
| | - Robert. N. Muller
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry; Université de Mons; B-7000 Mons Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Académie Wallonie-Bruxelles; B 6041 Gosselies Belgium
| |
Collapse
|
16
|
Affiliation(s)
- Bethany Powell Gray
- Department of Internal Medicine and The Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8807, United States
| | - Kathlynn C. Brown
- Department of Internal Medicine and The Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8807, United States
| |
Collapse
|
17
|
Smith BA, Smith BD. Biomarkers and molecular probes for cell death imaging and targeted therapeutics. Bioconjug Chem 2012; 23:1989-2006. [PMID: 22989049 DOI: 10.1021/bc3003309] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell death is a critically important biological process. Disruption of homeostasis, either by excessive or deficient cell death, is a hallmark of many pathological conditions. Recent research advances have greatly increased our molecular understanding of cell death and its role in a range of diseases and therapeutic treatments. Central to these ongoing research and clinical efforts is the need for imaging technologies that can locate and identify cell death in a wide array of in vitro and in vivo biomedical samples with varied spatiotemporal requirements. This review article summarizes community efforts over the past five years to identify useful biomarkers for dead and dying cells, and to develop molecular probes that target these biomarkers for optical, radionuclear, or magnetic resonance imaging. Apoptosis biomarkers are classified as either intracellular (caspase enzymes, mitochondrial membrane potential, cytosolic proteins) or extracellular (plasma membrane phospholipids, membrane potential, surface exposed histones). Necrosis, autophagy, and senescence biomarkers are described, as well as unexplored cell death biomarkers. The article discusses possible chemotherapeutic and theranostic strategies, and concludes with a summary of current challenges and expected eventual rewards of clinical cell death imaging.
Collapse
Affiliation(s)
- Bryan A Smith
- Department of Chemistry and Biochemistry, Notre Dame Integrated Imaging Facility, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
18
|
Kapty J, Banman S, Goping IS, Mercer JR. Evaluation of phosphatidylserine-binding peptides targeting apoptotic cells. ACTA ACUST UNITED AC 2012; 17:1293-301. [PMID: 22811476 DOI: 10.1177/1087057112453313] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The inhibition or dysregulation of apoptosis plays an intimate role in the initiation and progression of cancer by confounding normal tissue homeostasis. We currently do not have a clinical method to assess apoptosis induced by cancer therapies. Phosphatidylserine (PS) is an attractive target for imaging apoptosis because it is on the exterior of the apoptotic cells and PS externalization is an early marker of apoptosis. PS-binding peptides are an attractive option for developing an imaging probe to detect apoptosis using positron emission tomography. In this study, four peptides were evaluated for PS-binding characteristics using a plate-based assay system, a liposome mimic of cell membrane PS presentation, and a cell assay of apoptosis. This work also describes two screening techniques to enable researchers to identify and optimize compounds that bind to PS. The results of our study indicate that all four peptides bind to PS and are specific to apoptotic cells. Two of the peptides in particular that have an additional cysteine residue are good potential candidates for development into imaging probes because they bind to PS with high affinity and specificity and they can be easily radiolabelled with (18)F.
Collapse
Affiliation(s)
- Janice Kapty
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Alberta, Canada
| | | | | | | |
Collapse
|
19
|
Haimovitz-Friedman A, Yang TIJ, Thin TH, Verheij M. Imaging Radiotherapy-Induced Apoptosis. Radiat Res 2012; 177:467-82. [DOI: 10.1667/rr2576.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Radermacher KA, Magat J, Bouzin C, Laurent S, Dresselaers T, Himmelreich U, Boutry S, Mahieu I, Vander Elst L, Feron O, Muller RN, Jordan BF, Gallez B. Multimodal assessment of early tumor response to chemotherapy: comparison between diffusion-weighted MRI, 1H-MR spectroscopy of choline and USPIO particles targeted at cell death. NMR IN BIOMEDICINE 2012; 25:514-522. [PMID: 21874657 DOI: 10.1002/nbm.1765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 05/20/2011] [Accepted: 05/20/2011] [Indexed: 05/31/2023]
Abstract
The aim of this study was to determine the value of different magnetic resonance (MR) protocols to assess early tumor response to chemotherapy. We used a murine tumor model (TLT) presenting different degrees of response to three different cytotoxic agents. As shown in survival curves, cyclophosphamide (CP) was the most efficient drug followed by 5-fluorouracil (5-FU), whereas the etoposide treatment had little impact on TLT tumors. Three different MR protocols were used at 9.4 Tesla 24 h post-treatment: diffusion-weighted (DW)-MRI, choline measurement by (1) H MRS, and contrast-enhanced MRI using ultrasmall iron oxide nanoparticles (USPIO) targeted at phosphatidylserine. Accumulation of contrast agent in apoptotic tumors was monitored by T(2) -weighted images and quantified by EPR spectroscopy. Necrosis and apoptosis were assessed by histology. Large variations were observed in the measurement of choline peak areas and could not be directly correlated to tumor response. Although the targeted USPIO particles were able to significantly differentiate between the efficiency of each cytotoxic agent and best correlated with survival endpoint, they present the main disadvantage of non-specific tumor accumulation, which could be problematic when transferring the method to the clinic. DW-MRI presents a better compromise by combining longitudinal studies with a high dynamic range; however, DW-MRI was unable to show any significant effect for 5-FU. This study illustrates the need for multimodal imaging in assessing tumor response to treatment to compensate for individual limitations.
Collapse
Affiliation(s)
- K A Radermacher
- Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Smith BA, Xiao S, Wolter W, Wheeler J, Suckow MA, Smith BD. In vivo targeting of cell death using a synthetic fluorescent molecular probe. Apoptosis 2011; 16:722-31. [PMID: 21499791 DOI: 10.1007/s10495-011-0601-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A synthetic, near-infrared, fluorescent probe, named PSS-794 was assessed for its ability to detect cell death in two animal models. The molecular probe contains a zinc(II)-dipicolylamine (Zn(2+)-DPA) affinity ligand that selectively targets exposed phosphatidylserine on the surface of dead and dying cells. The first animal model used rats that were treated with dexamethasone to induce thymic atrophy. Ex vivo fluorescence imaging and histological analysis of excised organs showed thymus uptake of PSS-794 was four times higher than a control fluorophore that lacked the Zn(2+)-DPA affinity ligand. In addition, the presence of PSS-794 produced a delayed and higher build up of dead and dying cells in the rat thymus. The second animal model employed focal beam radiation to induce cell death in tumor-bearing rats. Whole-body and ex vivo imaging showed that the amount of PSS-794 in a radiation-treated tumor was almost twice that in a non-treated tumor. The results indicate that PSS-794 may be useful for preclinical optical detection of tumor cell death due to therapy.
Collapse
Affiliation(s)
- Bryan A Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Kapty J, Murray D, Mercer J. Radiotracers for noninvasive molecular imaging of tumor cell death. Cancer Biother Radiopharm 2011; 25:615-28. [PMID: 21204755 DOI: 10.1089/cbr.2010.0793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The need to monitor cancer therapy-induced cellular and tissue changes using noninvasive imaging techniques continues to stimulate both basic and clinical research. Monitoring changes in cellular proliferative capacity that occur after treatment with radiation and/or chemotherapy has the potential to provide longitudinal information on the cellular dynamics of tumors before, during, and after therapeutic intervention. Cells can lose their reproductive potential through one of several mechanisms, including apoptosis and autophagy (which are forms of programmed cell death), premature senescence, or necrosis. When a tumor responds to therapy, current imaging methods do not provide information about the exact mechanism of cell death executed. We are now beginning to develop the molecular imaging tools that will enable us to noninvasively image cell death mechanisms both in experimental models and in the clinical cancer environment. Studies with these imaging tools will contribute to a better understanding of therapeutic responses and assist in the design and evaluation of more effective treatments. This review examines the state-of-the-art in the use of (radio)tracers for the purpose of imaging mechanisms of tumor cell inactivation (cell death) in animal models and in clinical trials.
Collapse
Affiliation(s)
- Janice Kapty
- Department of Oncology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
24
|
Vangestel C, Peeters M, Mees G, Oltenfreiter R, Boersma HH, Elsinga PH, Reutelingsperger C, Van Damme N, De Spiegeleer B, Van de Wiele C. In vivo imaging of apoptosis in oncology: an update. Mol Imaging 2011; 10:340-58. [PMID: 21521554 DOI: 10.2310/7290.2010.00058] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 08/05/2010] [Indexed: 01/09/2023] Open
Abstract
In this review, data on noninvasive imaging of apoptosis in oncology are reviewed. Imaging data available are presented in order of occurrence in time of enzymatic and morphologic events occurring during apoptosis. Available studies suggest that various radiopharmaceutical probes bear great potential for apoptosis imaging by means of positron emission tomography and single-photon emission computed tomography (SPECT). However, for several of these probes, thorough toxicologic studies are required before they can be applied in clinical studies. Both preclinical and clinical studies support the notion that 99mTc-hydrazinonicotinamide-annexin A5 and SPECT allow for noninvasive, repetitive, quantitative apoptosis imaging and for assessing tumor response as early as 24 hours following treatment instigation. Bioluminescence imaging and near-infrared fluorescence imaging have shown great potential in small-animal imaging, but their usefulness for in vivo imaging in humans is limited to structures superficially located in the human body. Although preclinical tumor-based data using high-frequency-ultrasonography (US) are promising, whether or not US will become a routinely clinically useful tool in the assessment of therapy response in oncology remains to be proven. The potential of magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) for imaging late apoptotic processes is currently unclear. Neither 31P MRS nor 1H MRS signals seems to be a unique identifier for apoptosis. Although MRI-measured apparent diffusion coefficients are altered in response to therapies that induce apoptosis, they are also altered by nonapoptotic cell death, including necrosis and mitotic catastrophe. In the future, rapid progress in the field of apoptosis imaging in oncology is expected.
Collapse
|
25
|
Cochran R, Cochran F. Phage display and molecular imaging: expanding fields of vision in living subjects. Biotechnol Genet Eng Rev 2011; 27:57-94. [PMID: 21415893 DOI: 10.1080/02648725.2010.10648145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In vivo molecular imaging enables non-invasive visualization of biological processes within living subjects, and holds great promise for diagnosis and monitoring of disease. The ability to create new agents that bind to molecular targets and deliver imaging probes to desired locations in the body is critically important to further advance this field. To address this need, phage display, an established technology for the discovery and development of novel binding agents, is increasingly becoming a key component of many molecular imaging research programs. This review discusses the expanding role played by phage display in the field of molecular imaging with a focus on in vivo applications. Furthermore, new methodological advances in phage display that can be directly applied to the discovery and development of molecular imaging agents are described. Various phage library selection strategies are summarized and compared, including selections against purified target, intact cells, and ex vivo tissue, plus in vivo homing strategies. An outline of the process for converting polypeptides obtained from phage display library selections into successful in vivo imaging agents is provided, including strategies to optimize in vivo performance. Additionally, the use of phage particles as imaging agents is also described. In the latter part of the review, a survey of phage-derived in vivo imaging agents is presented, and important recent examples are highlighted. Other imaging applications are also discussed, such as the development of peptide tags for site-specific protein labeling and the use of phage as delivery agents for reporter genes. The review concludes with a discussion of how phage display technology will continue to impact both basic science and clinical applications in the field of molecular imaging.
Collapse
Affiliation(s)
- R Cochran
- Department of Bioengineering, Cancer Center, Bio-X Program, Stanford University, Stanford CA, USA
| | | |
Collapse
|
26
|
Smith BA, Gammon ST, Xiao S, Wang W, Chapman S, McDermott R, Suckow MA, Johnson JR, Piwnica-Worms D, Gokel GW, Smith BD, Leevy WM. In vivo optical imaging of acute cell death using a near-infrared fluorescent zinc-dipicolylamine probe. Mol Pharm 2011; 8:583-90. [PMID: 21323375 DOI: 10.1021/mp100395u] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cell death is a fundamental biological process that is present in numerous disease pathologies. Fluorescent probes that detect cell death have been developed for a myriad of research applications ranging from microscopy to in vivo imaging. Here we describe a synthetic near-infrared (NIR) conjugate of zinc(II)-dipicolylamine (Zn²+-DPA) for in vivo imaging of cell death. Chemically induced in vivo models of myopathy were established using an ionphore, ethanol, or ketamine as cytotoxins. The Zn²+-DPA fluorescent probe or corresponding control was subsequently injected, and whole animal fluorescence imaging demonstrated probe uptake at the site of muscle damage, which was confirmed by ex vivo and histological analyses. Further, a comparative study with a NIR fluorescent conjugate Annexin V showed less intense uptake at the site of muscle damage and high accumulation in the bladder. The results indicate that the fluorescent Zn²+-DPA conjugate is an effective probe for in vivo cell death detection and in some cases may be an appropriate alternative to fluorescent Annexin V conjugates.
Collapse
Affiliation(s)
- Bryan A Smith
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Burtea C, Laurent S, Mahieu I, Larbanoix L, Roch A, Port M, Rousseaux O, Ballet S, Murariu O, Toubeau G, Corot C, Vander Elst L, Muller RN. In vitro biomedical applications of functionalized iron oxide nanoparticles, including those not related to magnetic properties. CONTRAST MEDIA & MOLECULAR IMAGING 2010; 6:236-50. [PMID: 21861284 DOI: 10.1002/cmmi.423] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/10/2010] [Accepted: 09/13/2010] [Indexed: 12/17/2022]
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) are very promising contrast media, especially for molecular imaging, due to their superior NMR efficacy. They even have wider biomedical applications such as in drug and gene delivery, tissue engineering and bioseparation, or as sensitive biological nanosensors. By coupling them to affinity ligands, SPION can bind to drugs, proteins, enzymes, antibodies or nucleotides. For in vitro biomedical applications, the detection of molecular interaction is possible by using a diversity of systems capable of sensing the magnetic properties of these materials. The goal of the present work was to develop and validate various in vitro biomedical applications of ultrasmall superparamagnetic particles of iron oxide (USPIO), including some that are not related to their magnetic properties. USPIO coated with dextran, starch or bisphosphonate exposing carboxylate groups were synthesized and some of them were functionalized by conjugating various biomolecules, such as biotin, streptavidin and apoptosis, or VCAM-1 specific peptides. The in vitro biomedical applications assessed in the present work included: (1) the relaxometric measurement of antibody concentration, cell receptor expression, molecular interaction, and enzymatic activity in aqueous suspensions; (2) MRI visualization of cells and detection of molecular interaction in an ELISA system; (3) ELISA applications of USPIO derivatives; and (4) detection of specific biomolecules by histochemistry. Our results confirm that rapid and simple in vitro detection of a diversity of functionalized SPION with relevance in medicine is possible by the existing NMR techniques and by chemical staining reactions. The protocols can be applied to minimally prepared biological samples (e.g. whole blood, blood plasma or serum, cell suspensions, biopsies, histological preparations, etc.), and often do not need complicated systems of signal amplification. The use of SPION labeled compounds could furthermore contribute to cost reductions in the diagnosis and in patient care.
Collapse
Affiliation(s)
- Carmen Burtea
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau 19, Mendeleev Building, B-7000 Mons, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Schutters K, Reutelingsperger C. Phosphatidylserine targeting for diagnosis and treatment of human diseases. Apoptosis 2010; 15:1072-82. [PMID: 20440562 PMCID: PMC2929432 DOI: 10.1007/s10495-010-0503-y] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cells are able to execute apoptosis by activating series of specific biochemical reactions. One of the most prominent characteristics of cell death is the externalization of phosphatidylserine (PS), which in healthy cells resides predominantly in the inner leaflet of the plasma membrane. These features have made PS-externalization a well-explored phenomenon to image cell death for diagnostic purposes. In addition, it was demonstrated that under certain conditions viable cells express PS at their surface such as endothelial cells of tumor blood vessels, stressed tumor cells and hypoxic cardiomyocytes. Hence, PS has become a potential target for therapeutic strategies aiming at Targeted Drug Delivery. In this review we highlight the biomarker PS and various PS-binding compounds that have been employed to target PS for diagnostic purposes. We emphasize the 35 kD human protein annexin A5, that has been developed as a Molecular Imaging agent to measure cell death in vitro, and non-invasively in vivo in animal models and in patients with cardiovascular diseases and cancer. Recently focus has shifted from diagnostic towards therapeutic applications employing annexin A5 in strategies to deliver drugs to cells that express PS at their surface.
Collapse
Affiliation(s)
- Kristof Schutters
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands.
| | | |
Collapse
|
29
|
Schutters K, Reutelingsperger C. Phosphatidylserine targeting for diagnosis and treatment of human diseases. Apoptosis 2010. [PMID: 20440562 DOI: 10.1007/s10495-010�0503-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cells are able to execute apoptosis by activating series of specific biochemical reactions. One of the most prominent characteristics of cell death is the externalization of phosphatidylserine (PS), which in healthy cells resides predominantly in the inner leaflet of the plasma membrane. These features have made PS-externalization a well-explored phenomenon to image cell death for diagnostic purposes. In addition, it was demonstrated that under certain conditions viable cells express PS at their surface such as endothelial cells of tumor blood vessels, stressed tumor cells and hypoxic cardiomyocytes. Hence, PS has become a potential target for therapeutic strategies aiming at Targeted Drug Delivery. In this review we highlight the biomarker PS and various PS-binding compounds that have been employed to target PS for diagnostic purposes. We emphasize the 35 kD human protein annexin A5, that has been developed as a Molecular Imaging agent to measure cell death in vitro, and non-invasively in vivo in animal models and in patients with cardiovascular diseases and cancer. Recently focus has shifted from diagnostic towards therapeutic applications employing annexin A5 in strategies to deliver drugs to cells that express PS at their surface.
Collapse
Affiliation(s)
- Kristof Schutters
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands.
| | | |
Collapse
|
30
|
Iron oxide particles covered with hexapeptides targeted at phosphatidylserine as MR biomarkers of tumor cell death. CONTRAST MEDIA & MOLECULAR IMAGING 2010; 5:258-67. [DOI: 10.1002/cmmi.382] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
van Rooy I, Cakir-Tascioglu S, Couraud PO, Romero IA, Weksler B, Storm G, Hennink WE, Schiffelers RM, Mastrobattista E. Identification of peptide ligands for targeting to the blood-brain barrier. Pharm Res 2010; 27:673-82. [PMID: 20162339 PMCID: PMC2837178 DOI: 10.1007/s11095-010-0053-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 01/05/2010] [Indexed: 01/16/2023]
Abstract
Purpose Transport of drugs to the brain is limited by the blood-brain barrier. New, specific brain endothelium ligands can facilitate brain-specific delivery of drugs. Methods We used phage display in an in situ brain perfusion model to screen for new brain endothelium peptide ligands. Results Two phage clones, displaying 15 amino acid-peptides (GLA and GYR) that were selected for brain binding in the mouse model, showed significant binding to human brain endothelium (hCMEC/D3), compared to a random control phage. This binding was not seen for other human endothelial cells (HUVEC). Binding to hCMEC/D3 cells was dose dependent. When phage GLA and GYR were individually perfused through the murine brain, their ability to bind to the brain was 6-fold (GLA) and 5-fold (GYR) higher than the control phage. When compared to lung perfusion, phage showed an 8.5-fold (GYR) and 48-fold (GLA) preference for brain over lung compared to the control. Conclusions These results indicate that two new peptide ligands have been identified that may be used for specific targeting of drugs to the blood-brain barrier.
Collapse
Affiliation(s)
- Inge van Rooy
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Efficient identification of phosphatidylserine-binding proteins by ORF phage display. Biochem Biophys Res Commun 2009; 386:197-201. [PMID: 19520055 DOI: 10.1016/j.bbrc.2009.06.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 06/05/2009] [Indexed: 12/28/2022]
Abstract
To efficiently elucidate the biological roles of phosphatidylserine (PS), we developed open-reading-frame (ORF) phage display to identify PS-binding proteins. The procedure of phage panning was optimized with a phage clone expressing MFG-E8, a well-known PS-binding protein. Three rounds of phage panning with ORF phage display cDNA library resulted in approximately 300-fold enrichment in PS-binding activity. A total of 17 PS-binding phage clones were identified. Unlike phage display with conventional cDNA libraries, all 17 PS-binding clones were ORFs encoding 13 real proteins. Sequence analysis revealed that all identified PS-specific phage clones had dimeric basic amino acid residues. GST fusion proteins were expressed for 3 PS-binding proteins and verified for their binding activity to PS liposomes, but not phosphatidylcholine liposomes. These results elucidated previously unknown PS-binding proteins and demonstrated that ORF phage display is a versatile technology capable of efficiently identifying binding proteins for non-protein molecules like PS.
Collapse
|
33
|
Abstract
Since its original description in 1972, apoptosis or programmed cell death has been recognized as the major pathway by which the body precisely regulates the number and type of its cells as part of normal embryogenesis, development, and homeostasis. Later it was found that apoptosis was also involved in the pathogenesis of a number of human diseases, cell immunity, and the action of cytotoxotic drugs and radiation therapy in cancer treatment. As such, the imaging of apoptosis with noninvasive techniques such as with radiotracers, including annexin V and lipid proton magnetic resonance spectroscopy, may have a wide range of clinical utility in both the diagnosis and monitoring therapy of a wide range of human disorders. In this chapter we review the basic biochemical and morphologic features of apoptosis and the methods developed thus far to image this complex process in humans.
Collapse
Affiliation(s)
- H William Strauss
- Memorial Sloan Kettering Hospital, 1275 York Ave., Room S-212, Nuclear Medicine, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
34
|
Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 2008; 108:2064-110. [PMID: 18543879 DOI: 10.1021/cr068445e] [Citation(s) in RCA: 3486] [Impact Index Per Article: 217.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sophie Laurent
- Department of General, Organic, and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons-Hainaut, B-7000 Mons, Belgium
| | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Abstract
Bacteriophages (phages) have been used for therapy of bacterial infections, for genetic research, as tools for the discovery of specific target binding proteins and for vaccine development. The aim of this article is to present advances in genetic and chemical engineering of filamentous bacteriophages that facilitated their application for therapeutic purposes. We review studies where phages were applied for in vivo imaging, as gene delivery vehicles and as drug carriers. Target specificity is based on peptides or proteins displayed on the phage coat. The cargo may be a packaged gene incorporated into the phage genome for gene delivery applications, or imaging agents or cytotoxic drugs chemically conjugated at high density onto the phage coat. We believe that the combination of those separately developed methodologies would result in clinical applications of phage-based therapeutics.
Collapse
Affiliation(s)
- Iftach Yacoby
- Tel Aviv University, Department of Molecular Microbiology and Biotechnology, Green Building, Room 202, Ramat Aviv 69978, Israel
| | | |
Collapse
|
37
|
Thapa N, Kim S, So IS, Lee BH, Kwon IC, Choi K, Kim IS. Discovery of a phosphatidylserine-recognizing peptide and its utility in molecular imaging of tumour apoptosis. J Cell Mol Med 2008; 12:1649-60. [PMID: 18363834 PMCID: PMC3918081 DOI: 10.1111/j.1582-4934.2008.00305.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The exposure of phosphatidylserine (PS) molecules from the inner to the outer leaflet of the plasma membrane has been recognized as a well-defined molecular epitope of cells undergoing apoptosis. Examination and monitoring of PS exposure is an extensively used molecular marker in non-invasive apoptosis imaging under a variety of clinical conditions, including the assessment of therapeutic anti-cancer agents and myocardial infarction. Herein, we report the identification of a PS-recognizing peptide which was identified by the screening of an M13 phage display peptide library onto PS-coated ELISA plates. Repeated biopanning for a total of four rounds revealed a predominant enrichment of the phage clone displaying peptide sequence, CLSYYPSYC (46%). The identified phage clone evidenced enhanced binding to a number of apoptotic cells over non-apoptotic cells, and this binding was inhibited by both annexin V and synthesized peptide displayed on the phage. The binding of the fluorescein-labelled CLSYYPSYC peptide to apoptotic versus normal cells was assessed by both FACS analysis and fluorescence microscopy. Optical imaging after the systemic administration of fluorescein-labelled CLSYYPSYC peptide to tumour-bearing nude mice (H460 cells xenograft model) treated with a single dose of an anticancer drug (camp-tothecin) indicated peptide homing to the tumour. The histological examination of tumour tissues showed intense staining of the tumour vasculature and apoptotic tumour cells. With these results, the CLSYYPSYC peptide is recognized as a novel PS-recognizing moiety which may possibly be developed into a molecular probe for the imaging of apoptosis in vivo. This application would clearly be relevant to assessments of the efficacy of anticancer therapy in tumours.
Collapse
Affiliation(s)
- Narendra Thapa
- Cell and Matrix Research Institute, Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Shao R, Xiong C, Wen X, Gelovani JG, Li C. Targeting Phosphatidylserine on Apoptotic Cells with Phages and Peptides Selected from a Bacteriophage Display Library. Mol Imaging 2007. [DOI: 10.2310/7290.2007.00037] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ruping Shao
- From the Department of Experimental Diagnostic Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Chiyi Xiong
- From the Department of Experimental Diagnostic Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Xiaoxia Wen
- From the Department of Experimental Diagnostic Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Juri G. Gelovani
- From the Department of Experimental Diagnostic Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Chun Li
- From the Department of Experimental Diagnostic Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
39
|
Segers J, Laumonier C, Burtea C, Laurent S, Elst LV, Muller RN. From Phage Display to Magnetophage, a New Tool for Magnetic Resonance Molecular Imaging. Bioconjug Chem 2007; 18:1251-8. [PMID: 17521160 DOI: 10.1021/bc060377f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phage display, an extremely promising technology in the context of molecular imaging, allows for the selection of peptides interacting with virtually any target from a heterogeneous mixture of bacteriophages. In this work, we propose the concept of magnetophages, obtained by covalent coupling of ultrasmall particles of iron oxide (USPIO) to the proteins of the phage wall. To validate magnetophages as a magnetic resonance imaging contrast agent (MRI), we have used as a prototype the clone E3 because of its specific affinity for phosphatidylserine, a marker of apoptosis. Enzyme-linked immunosorbent assay showed that E3 magnetophages incubated with phosphatidylserine retained the properties of the nonmagnetically labeled phages. The usefulness of magnetophages as an MRI contrast agent was estimated by incubation with phosphatidylcholine and phosphatidylserine or with apoptotic and control cells. Under these conditions, E3 magnetophages allow the discrimination of phosphatidylserine from phosphatidylcholine and of apoptotic cells from control ones. Injected in vivo, magnetophages are rapidly cleared from the blood stream and internalized by the phagocytic cells of the liver. To abrogate this problem, USPIO were pegylated to obtain stealthy E3-PEG-magnetophages, invisible to phagocytic cells, which were successfully targeted to apoptotic liver. If this feature demonstrated for E3 magnetophages can be extrapolated to other phage display selected entities, magnetophages become an original system which allows validation of the candidate binding peptides before their synthesis is considered. The concept of the magnetophage could be extended to other imaging modalities by replacing USPIO with an adequate reporter (i.e., radiolabeled phages).
Collapse
Affiliation(s)
- Jérôme Segers
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons-Hainaut, 24 Avenue du Champ de Mars, Mons B-7000, Belgium
| | | | | | | | | | | |
Collapse
|
40
|
Hong J, Xu D, Yu J, Gong P, Ma H, Yao S. Facile synthesis of polymer-enveloped ultrasmall superparamagnetic iron oxide for magnetic resonance imaging. NANOTECHNOLOGY 2007; 18:135608. [PMID: 21730385 DOI: 10.1088/0957-4484/18/13/135608] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Ultrasmall superparamagnetic iron oxide (USPIO) with synthetic polymer, based on magnetite core, was synthesized via facile photochemical in situ polymerization. A possible mechanism of photochemical in situ polymerization was proposed. The obtained polymer-enveloped UPSIO was characterized by transmission electron microscopy (TEM), photo-correlation spectroscopy (PCS), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric (TG) analysis and vibrating sampling magnetometer (VSM) measurement. Properties such as ultrasmall particle size, hydrophilicity, strong magnetization and surface characteristics, which are desirable for magnetic resonance imaging (MRI) contrast agents, were evaluated in detail. The resultant USPIO-based MRI contrast agent holds considerable promise in molecular MR tracking, MR immune imaging, cell tracking and targeted intracellular hyperthermia, etc.
Collapse
Affiliation(s)
- Jun Hong
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | | | | | | | | | | |
Collapse
|
41
|
Sergeeva A, Kolonin MG, Molldrem JJ, Pasqualini R, Arap W. Display technologies: application for the discovery of drug and gene delivery agents. Adv Drug Deliv Rev 2006; 58:1622-54. [PMID: 17123658 PMCID: PMC1847402 DOI: 10.1016/j.addr.2006.09.018] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 09/29/2006] [Indexed: 01/17/2023]
Abstract
Recognition of molecular diversity of cell surface proteomes in disease is essential for the development of targeted therapies. Progress in targeted therapeutics requires establishing effective approaches for high-throughput identification of agents specific for clinically relevant cell surface markers. Over the past decade, a number of platform strategies have been developed to screen polypeptide libraries for ligands targeting receptors selectively expressed in the context of various cell surface proteomes. Streamlined procedures for identification of ligand-receptor pairs that could serve as targets in disease diagnosis, profiling, imaging and therapy have relied on the display technologies, in which polypeptides with desired binding profiles can be serially selected, in a process called biopanning, based on their physical linkage with the encoding nucleic acid. These technologies include virus/phage display, cell display, ribosomal display, mRNA display and covalent DNA display (CDT), with phage display being by far the most utilized. The scope of this review is the recent advancements in the display technologies with a particular emphasis on molecular mapping of cell surface proteomes with peptide phage display. Prospective applications of targeted compounds derived from display libraries in the discovery of targeted drugs and gene therapy vectors are discussed.
Collapse
Affiliation(s)
- Anna Sergeeva
- Department of Blood and Marrow Transplantation, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Mikhail G. Kolonin
- Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Jeffrey J. Molldrem
- Department of Blood and Marrow Transplantation, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Renata Pasqualini
- Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Wadih Arap
- Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| |
Collapse
|