1
|
In Silico Elucidation of Potent Inhibitors from Natural Products for Nonstructural Proteins of Dengue Virus. J CHEM-NY 2022. [DOI: 10.1155/2022/5398239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Medicinal plants have been used from the beginning of human civilization against various health complications. Dengue virus (DENV) has emerged as one of the most widespread viruses in tropical and subtropical countries. Yet no clinically approved antiviral drug is available to combat DENV infection. Consequently, the search for novel antidengue agents from medicinal plants has assumed more insistence than in previous days. This study has focused on 31 potential antidengue molecules from secondary metabolites to examine their inhibitory activity against DENV nonstructural proteins through molecular docking and pharmacokinetics studies. In this research, the wet lab experiments were tested on a computational platform. Agathisflavone and pectolinarin are the top-scored inhibitors of DENV NS2B/NS3 protease and NS5 polymerase, respectively. Epigallocatechin gallate, Pinostrobin, Panduratin A, and Pectolinarin could be potential lead compounds against NS2B/NS3 protease, while acacetin-7-O-rutinoside against NS5 polymerase. Moreover, agathisflavone (LD50= 1430 mg/kg) and pectolinarin (LD50= 5000 mg/kg) exhibited less toxicity than nelfinavir (LD50= 600 mg/kg) and balapiravir (LD50 = 824 mg/kg), and the reference drugs. Further research on clinical trials is required to analyze the therapeutic efficacy of these metabolites to develop new potential drug candidates against different serotypes of DENV.
Collapse
|
2
|
Fernandes RS, Freire MCLC, Bueno RV, Godoy AS, Gil LHVG, Oliva G. Reporter Replicons for Antiviral Drug Discovery against Positive Single-Stranded RNA Viruses. Viruses 2020; 12:v12060598. [PMID: 32486283 PMCID: PMC7354593 DOI: 10.3390/v12060598] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/25/2022] Open
Abstract
Single-stranded positive RNA ((+) ssRNA) viruses include several important human pathogens. Some members are responsible for large outbreaks, such as Zika virus, West Nile virus, SARS-CoV, and SARS-CoV-2, while others are endemic, causing an enormous global health burden. Since vaccines or specific treatments are not available for most viral infections, the discovery of direct-acting antivirals (DAA) is an urgent need. Still, the low-throughput nature of and biosafety concerns related to traditional antiviral assays hinders the discovery of new inhibitors. With the advances of reverse genetics, reporter replicon systems have become an alternative tool for the screening of DAAs. Herein, we review decades of the use of (+) ssRNA viruses replicon systems for the discovery of antiviral agents. We summarize different strategies used to develop those systems, as well as highlight some of the most promising inhibitors identified by the method. Despite the genetic alterations introduced, reporter replicons have been shown to be reliable systems for screening and identification of viral replication inhibitors and, therefore, an important tool for the discovery of new DAAs.
Collapse
Affiliation(s)
- Rafaela S. Fernandes
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
| | - Marjorie C. L. C. Freire
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
| | - Renata V. Bueno
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
| | - Andre S. Godoy
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
| | | | - Glaucius Oliva
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
- Correspondence:
| |
Collapse
|
3
|
Vahabpour R, Basimi P, Roohvand F, Asadi H, Irani GM, Zabihollahi R, Bolhassani A. Anti-viral Effects of Superpositively Charged Mutant of Green Fluorescent Protein. Protein Pept Lett 2020; 26:930-939. [PMID: 31441722 DOI: 10.2174/0929866526666190823145916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/14/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Supercharged GFP proteins were known as effective carriers for delivery of macromolecules into eukaryotic cells as well as fluorescent fusion tags for in vitro and in vivo detection. OBJECTIVE Herein, anti-viral effects of +36 GFP and its anti-tumor effects were studied in vitro and in vivo, respectively. METHODS We evaluated anti-HIV, anti-HSV, and anti-HCV effects of +36 GFP in vitro using ELISA, and real time PCR as common techniques for their detection, respectively. Moreover, we assessed the role of +36 GFP for eliciting HPV-related anti-tumor effects in mice due to the lack of HPV replication in vitro. RESULTS Our data showed that +36 GFP efficiently enter the cells and augment the transfection rate of HPV16E7 antigen, as well. Furthermore, +36 GFP significantly reduced HCV, HIV and HSV replication up to 75%, 49% and 43% in HCV-infected Huh7.5 cells, HIV-infected Hela cells and HSV-infected Vero cells, respectively. On the other hand, mice immunization with +36 GFP complexed with HPV16 E7 antigen (+36GFP + E7) or fused to HPV16 E7 antigen (+36GFP-E7) elicited a higher Th1 cellular immune response with the predominant IgG2a, IgG2b, IFN-γ and Granzyme B levels than those induced by other groups. These regimens protected mice against TC- 1 tumor challenge (~ 67%) compared to E7 protein alone (~ 33%). These data suggested that +36 GFP can act as an anti-viral agent at certain dose due to its high efficiency in cell penetration in vitro and in vivo. CONCLUSION Generally, +36 GFP targets viral replication in vitro as well as helps to suppress the growth of HPV-related tumors in vivo.
Collapse
Affiliation(s)
- Rouhollah Vahabpour
- Department of Medical Lab Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences; Tehran, Iran
| | - Parya Basimi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Hassan Asadi
- Deputy of Research, Technology and Education, Research Section, Pasteur Institute of Iran, Tehran, Iran
| | - Gholnaz M Irani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.,Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Rezvan Zabihollahi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Establishment and Application of Flavivirus Replicons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:165-173. [PMID: 29845532 DOI: 10.1007/978-981-10-8727-1_12] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Dengue virus (DENV) and Zika virus (ZIKV) are enveloped, positive-strand RNA viruses belonging to the genus Flavivirus in the family Flaviviridae. The genome of ~11 kb length encodes one long open reading frame flanked by a 5' and a 3' untranslated region (UTR). The 5' end is capped and the 3' end lacks a poly(A) tail. The encoded single polyprotein is cleaved co-and posttranslationally by cellular and viral proteases. The first one-third of the genome encodes the structural proteins (C-prM-E), whereas the nonstructural (NS) proteins NS1-NS2A-NS3-NS4A-2K-NS4B-NS5 are encoded by the remaining two-thirds of the genome.Research on flaviviruses was driven forward by the ability to produce recombinant viruses using reverse genetics technology. It is known that the purified RNA of flaviviruses is per se infectious, which allows initiation of a complete viral life cycle by transfecting the genomic RNA into susceptible cells. In 1989, the first infectious flavivirus RNA was transcribed from full-length cDNA templates of yellow fever virus (YFV) facilitating molecular genetic analyses of this virus. In addition to the production of infectious recombinant viruses, reverse genetics can also be used to establish non-infectious replicons. Replicons contain an in-frame deletion in the structural protein genes but still encode all nonstructural proteins and contain the UTRs necessary to mediate efficient replication, a factor that enables their analyses under Biosafety Level (BSL) 1 conditions. This is particularly important since many flaviviruses are BSL3 agents.The review will cover strategies for generating flavivirus replicons, including the establishment of bacteriophage (T7 or SP6) promoter-driven constructs as well as cytomegalovirus (CMV) promoter-driven constructs. Furthermore, different reporter replicons or replicons expressing selectable marker proteins will be outlined using examples of their application to answer basic questions of the flavivirus replication cycle, to select and test antiviral compounds or to produce virus replicon particles. The establishment and application of flavivirus replicons will further be exemplified by my own data using an established YFV reporter replicon to study the role of YFV NS2A in the viral life cycle. In addition, we established a reporter replicon of a novel insect-specific flavivirus, namely Niénokoué virus (NIEV), to define the barrier(s) involved in host range restriction.
Collapse
|
5
|
Muth D, Meyer B, Niemeyer D, Schroeder S, Osterrieder N, Müller MA, Drosten C. Transgene expression in the genome of Middle East respiratory syndrome coronavirus based on a novel reverse genetics system utilizing Red-mediated recombination cloning. J Gen Virol 2017; 98:2461-2469. [PMID: 28984231 DOI: 10.1099/jgv.0.000919] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a high-priority pathogen in pandemic preparedness research. Reverse genetics systems are a valuable tool to study viral replication and pathogenesis, design attenuated vaccines and create defined viral assay systems for applications such as antiviral screening. Here we present a novel reverse genetics system for MERS-CoV that involves maintenance of the full-length viral genome as a cDNA copy inserted in a bacterial artificial chromosome amenable to manipulation by homologue recombination, based on the bacteriophage λ Red recombination system. Based on a full-length infectious MERS-CoV cDNA clone, optimal genomic insertion sites and expression strategies for GFP were identified and used to generate a reporter MERS-CoV expressing GFP in addition to the complete set of viral proteins. GFP was genetically fused to the N-terminal part of protein 4a, from which it is released during translation via porcine teschovirus 2A peptide activity. The resulting reporter virus achieved titres nearly identical to the wild-type virus 48 h after infection of Vero cells at m.o.i. 0.001 (1×105 p.f.u. ml-1 and 3×105 p.f.u. ml-1, respectively), and allowed determination of the 50 % inhibitory concentration for the known MERS-CoV inhibitor cyclosporine A based on fluorescence readout. The resulting value was 2.41 µM, which corresponds to values based on wild-type virus. The reverse genetics system described herein can be efficiently mutated by Red-mediated recombination. The GFP-expressing reporter virus contains the full set of MERS-CoV proteins and achieves wild-type titres in cell culture.
Collapse
Affiliation(s)
- Doreen Muth
- Institute of Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.,German Centre for Infection Research (DZIF), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Benjamin Meyer
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Daniela Niemeyer
- Institute of Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Simon Schroeder
- Institute of Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Nikolaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - Marcel Alexander Müller
- Institute of Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Christian Drosten
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.,German Centre for Infection Research (DZIF), Inhoffenstraße 7, 38124 Braunschweig, Germany.,Institute of Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
6
|
Usme-Ciro JA, Lopera JA, Alvarez DA, Enjuanes L, Almazán F. Generation of a DNA-Launched Reporter Replicon Based on Dengue Virus Type 2 as a Multipurpose Platform. Intervirology 2017. [DOI: 10.1159/000476066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
7
|
de Wispelaere M, Carocci M, Liang Y, Liu Q, Sun E, Vetter ML, Wang J, Gray NS, Yang PL. Discovery of host-targeted covalent inhibitors of dengue virus. Antiviral Res 2016; 139:171-179. [PMID: 28034743 DOI: 10.1016/j.antiviral.2016.12.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/14/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
We report here on an approach targeting the host reactive cysteinome to identify inhibitors of host factors required for the infectious cycle of Flaviviruses and other viruses. We used two parallel cellular phenotypic screens to identify a series of covalent inhibitors, exemplified by QL-XII-47, that are active against dengue virus. We show that the compounds effectively block viral protein expression and that this inhibition is associated with repression of downstream processes of the infectious cycle, and thus significantly contributes to the potent antiviral activity of these compounds. We demonstrate that QL-XII-47's antiviral activity requires selective, covalent modification of a host target by showing that the compound's antiviral activity is recapitulated when cells are preincubated with QL-XII-47 and then washed prior to viral infection and by showing that QL-XII-47R, a non-reactive analog, lacks antiviral activity at concentrations more than 20-fold higher than QL-XII-47's IC90. QL-XII-47's inhibition of Zika virus, West Nile virus, hepatitis C virus, and poliovirus further suggests that it acts via a target mediating inhibition of these other medically relevant viruses. These results demonstrate the utility of screens targeting the host reactive cysteinome for rapid identification of compounds with potent antiviral activity.
Collapse
Affiliation(s)
| | - Margot Carocci
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yanke Liang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Qingsong Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Eileen Sun
- Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Michael L Vetter
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Priscilla L Yang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Boonyasuppayakorn S, Suroengrit A, Srivarangkul P, Yuttithamnon W, Pankaew S, Saelee T, Prompetchara E, Salakij S, Bhattarakosol P. Simplified dengue virus microwell plaque assay using an automated quantification program. J Virol Methods 2016; 237:25-31. [PMID: 27542530 DOI: 10.1016/j.jviromet.2016.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/12/2016] [Accepted: 08/14/2016] [Indexed: 01/04/2023]
Abstract
The plaque assay is essential for virion quantitation but the classic protocol requires considerable efforts. A simplified dengue 96-well plaque assay with automated quantitation program is an alternative to access the level of infectious virus. Dengue plaque assay was simplified using LLC/MK2 cells and virus mixing simultaneously before semisolid addition. Results were obtained using a flatbed scanner and analysis by the self-written program optimized to manual reads. The newly developed microwell system was accurate to the standard assay because 19 independent titrations from all subtypes obtained from both systems differed less than a log10 p.f.u./ml with no significance (p>0.05) with good correlation (R2=0.9058). Coefficient of variations within and between assays, indicating assay reliability and repeatability, were 19.29%, and 12.50%, respectively. This method serves various experimental designs in drug discovery that requires viral titers assessment. Effective concentrations (EC90) results showed no significant difference between 24- and 96-well assays (p>0.05). Compound screening for potential antivirals and clinical isolate titrations were successfully arranged. The method contains distinguished features including protocol simplicity, less reagent consumption in microwell format, convenient and affordable data acquisition and analysis system.
Collapse
Affiliation(s)
- Siwaporn Boonyasuppayakorn
- Department of Microbiology, Chulalongkorn University 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Aphinya Suroengrit
- Medical Science Program, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Pimsiri Srivarangkul
- Department of Biology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Wanchalerm Yuttithamnon
- Department of Biology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Saran Pankaew
- Department of Biology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Thanaphon Saelee
- Department of Biology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Eakachai Prompetchara
- Chula Vaccine Research Center (Chula VRC), Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Saran Salakij
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Parvapan Bhattarakosol
- Department of Microbiology, Chulalongkorn University 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Dengue Virus Reporter Replicon is a Valuable Tool for Antiviral Drug Discovery and Analysis of Virus Replication Mechanisms. Viruses 2016; 8:v8050122. [PMID: 27164125 PMCID: PMC4885077 DOI: 10.3390/v8050122] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 12/23/2022] Open
Abstract
Dengue, the most prevalent arthropod-borne viral disease, is caused by the dengue virus (DENV), a member of the Flaviviridae family, and is a considerable public health threat in over 100 countries, with 2.5 billion people living in high-risk areas. However, no specific antiviral drug or licensed vaccine currently targets DENV infection. The replicon system has all the factors needed for viral replication in cells. Since the development of replicon systems, transient and stable reporter replicons, as well as reporter viruses, have been used in the study of various virological aspects of DENV and in the identification of DENV inhibitors. In this review, we summarize the DENV reporter replicon system and its applications in high-throughput screening (HTS) for identification of anti-DENV inhibitors. We also describe the use of this system in elucidation of the mechanisms of virus replication and viral dynamics in vivo and in vitro.
Collapse
|
10
|
Live Cell Reporter Systems for Positive-Sense Single Strand RNA Viruses. Appl Biochem Biotechnol 2016; 178:1567-85. [PMID: 26728654 PMCID: PMC7091396 DOI: 10.1007/s12010-015-1968-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/22/2015] [Indexed: 01/09/2023]
Abstract
Cell-based reporter systems have facilitated studies of viral replication and pathogenesis, virus detection, and drug susceptibility testing. There are three types of cell-based reporter systems that express certain reporter protein for positive-sense single strand RNA virus infections. The first type is classical reporter system, which relies on recombinant virus, reporter virus particle, or subgenomic replicon. During infection with the recombinant virus or reporter virus particle, the reporter protein is expressed and can be detected in real time in a dose-dependent manner. Using subgenomic replicon, which are genetically engineered viral RNA molecules that are capable of replication but incapable of producing virions, the translation and replication of the replicon could be tracked by the accumulation of reporter protein. The second type of reporter system involves genetically engineered cells bearing virus-specific protease cleavage sequences, which can sense the incoming viral protease. The third type is based on viral replicase, which can report the specific virus infection via detection of the incoming viral replicase. This review specifically focuses on the major technical breakthroughs in the design of cell-based reporter systems and the application of these systems to the further understanding and control of viruses over the past few decades.
Collapse
|
11
|
Medin CL, Valois S, Patkar CG, Rothman AL. A plasmid-based reporter system for live cell imaging of dengue virus infected cells. J Virol Methods 2014; 211:55-62. [PMID: 25445884 DOI: 10.1016/j.jviromet.2014.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 10/13/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022]
Abstract
Cell culture models are used widely to study the effects of dengue virus (DENV) on host cell function. Current methods of identification of cells infected with an unmodified DENV requires fixation and permeablization of cells to allow DENV-specific antibody staining. This method does not permit imaging of viable cells over time. In this report, a plasmid-based reporter was developed to allow non-destructive identification of DENV-infected cells. The plasmid-based reporter was demonstrated to be broadly applicable to the four DENV serotypes, including low-passaged strains, and was specifically cleaved by the viral protease with minimal interference on viral production. This study reveals the potential for this novel reporter system to advance the studies of virus-host interactions during DENV infection.
Collapse
Affiliation(s)
- Carey L Medin
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI 02903, United States.
| | - Sierra Valois
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI 02903, United States
| | - Chinmay G Patkar
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, United States
| | - Alan L Rothman
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI 02903, United States; Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, United States
| |
Collapse
|
12
|
Usme-Ciro JA, Lopera JA, Enjuanes L, Almazán F, Gallego-Gomez JC. Development of a novel DNA-launched dengue virus type 2 infectious clone assembled in a bacterial artificial chromosome. Virus Res 2013; 180:12-22. [PMID: 24342140 PMCID: PMC7114509 DOI: 10.1016/j.virusres.2013.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 11/29/2013] [Accepted: 12/03/2013] [Indexed: 12/05/2022]
Abstract
We cloned a DENV-2 infectious cDNA into a BAC under the control of the CMV promoter. We assessed the production of infectious particles. We rescued infectious viruses after serial passages in C6/36 cells. Parental and recombinant viruses were similar in plaque and syncytia phenotypes.
Major progress in Dengue virus (DENV) biology has resulted from the use of infectious clones obtained through reverse genetics. The construction of these clones is commonly based on high- or low-copy number plasmids, yeast artificial chromosomes, yeast-Escherichia coli shuttle vectors, and bacterial artificial chromosomes (BACs). Prokaryotic promoters have consistently been used for the transcription of these clones. The goal of this study was to develop a novel DENV infectious clone in a BAC under the control of the cytomegalovirus immediate-early promoter and to generate a virus with the fusion envelope-green fluorescent protein in an attempt to track virus infection. The transfection of Vero cells with a plasmid encoding the DENV infectious clone facilitated the recovery of infectious particles that increased in titer after serial passages in C6/36 cells. The plaque size and syncytia phenotypes of the recombinant virus were similar to those of the parental virus. Despite the observation of autonomous replication and the detection of low levels of viral genome after two passages, the insertion of green fluorescent protein and Renilla luciferase reporter genes negatively impacted virus rescue. To the best of our knowledge, this is the first study using a DENV infectious clone under the control of the cytomegalovirus promoter to facilitate the recovery of recombinant viruses without the need for in vitro transcription. This novel molecular clone will be useful for establishing the molecular basis of replication, assembly, and pathogenesis, evaluating potential antiviral drugs, and the development of vaccine candidates for attenuated recombinant viruses.
Collapse
Affiliation(s)
- Jose A Usme-Ciro
- Molecular and Translational Medicine Group, Facultad de Medicina, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia; Viral Vector Core & Gene Therapy, Neuroscience Group, Facultad de Medicina, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia.
| | - Jaime A Lopera
- Viral Vector Core & Gene Therapy, Neuroscience Group, Facultad de Medicina, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma, Darwin 3, 28049 Madrid, Spain
| | - Fernando Almazán
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma, Darwin 3, 28049 Madrid, Spain
| | - Juan C Gallego-Gomez
- Molecular and Translational Medicine Group, Facultad de Medicina, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia; Viral Vector Core & Gene Therapy, Neuroscience Group, Facultad de Medicina, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
13
|
You X, Yang YC, Ke X, Hong SL, Hu GH. Fluorescence visualization screening for EBV-LMP1-targeted DNAzymes. Otolaryngol Head Neck Surg 2013; 150:251-8. [PMID: 24323909 DOI: 10.1177/0194599813514514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To develop a novel screening method for DNAzymes targeting the LMP1 carboxy region. STUDY DESIGN To design a method to screen special DNAzymes toward the Epstein-Barr virus (EBV)-associated carcinoma before clinic use. SETTING Key Laboratory of the Ministry of Education-Molecular Biology of Infectious Diseases in Chongqing Medical University. SUBJECTS AND METHODS Four novel 10-23 DNAzymes (DZ509, DZ1037, DZ893, and DZ827) targeting the EBV-LMP1 gene were designed and evaluated by detecting enhanced green fluorescence protein (EGFP) expression of LMP1 mRNA and the protein in the nasopharyngeal carcinoma (NPC) cell line CNE2 transfected with the pEGFP-C1-LMP1c vector. The screened specific DNAzymes were then transfected into NPC cell lines C666-1 while a mutant oligonucleotide mutDZ509 and an antisense oligonucleotide ASODN509 were designed as positive and negative controls. Cell proliferation, cell apoptosis, LMP1 mRNA, and the protein were assessed using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, Annexin V-fluorescence isothiocyanate (FITC), reverse transcription polymerase chain reaction (RT-PCR), and Western blots. RESULTS The inhibition rates of fluorescence expression of the DNAzymes DZ509, DZ1037, DZ893, and DZ827 were 91.25%, 65.84%, 49.02%, and 44.56%, respectively. The results were in accordance with the inhibition effects of mRNA and protein expression. The screened DZ509 could effectively knock down endogenous LMP1 expression in C666-1 cells, inhibit cell proliferation, and induce cell apoptosis compared with mutDZ509 and ASODN509. CONCLUSION LMP1 could present a potential target for DNAzymes toward the EBV-associated carcinoma, and the EGFP expression vector could be a visible method for screening special DNAzymes before clinic use.
Collapse
Affiliation(s)
- Xi You
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
14
|
Yang CC, Tsai MH, Hu HS, Pu SY, Wu RH, Wu SH, Lin HM, Song JS, Chao YS, Yueh A. Characterization of an efficient dengue virus replicon for development of assays of discovery of small molecules against dengue virus. Antiviral Res 2013; 98:228-41. [PMID: 23499649 DOI: 10.1016/j.antiviral.2013.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/19/2013] [Accepted: 03/01/2013] [Indexed: 01/04/2023]
Abstract
Dengue virus (DENV) is a public health threat to approximately 40% of the global population. At present, neither licensed vaccines nor effective therapies exist, and the mechanism of viral RNA replication is not well understood. Here, we report the development of efficient Renilla luciferase reporter-based DENV replicons that contain the full-length capsid sequence for transient and stable DENV RNA replication. A comparison of the transient and stable expression of this RNA-launched replicon to replicons containing various deletions revealed dengue replicon containing entire mature capsid RNA element has higher replicon activity. An efficient DNA-launched DENV replicon, pCMV-DV2Rep, containing a full-length capsid sequence, was created and successfully applied to evaluate the potency of known DENV inhibitors. Stable cell lines harboring the DENV replicon were easily established by transfecting pCMV-DV2Rep into BHK21 cells. Steady and high replicon reporter signals were observed in the stable DENV replicon cells, even after 30 passages. The stable DENV replicon cells were successfully used to determine the potency of known DENV inhibitors. A high-throughput screening assay based on stable DENV replicon cells was evaluated and shown to have an excellent Z' factor of 0.74. Altogether, the development of our efficient DENV replicon system will facilitate the study of virus replication and the discovery of antiviral compounds.
Collapse
Affiliation(s)
- Chi-Chen Yang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 350, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
[Reverse genetics system for flaviviruses]. Uirusu 2013; 63:13-22. [PMID: 24769573 DOI: 10.2222/jsv.63.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Flaviviruses such as Japanese encephalitis virus, West Nile virus, yellow fever virus, dengue virus, and tick-borne encephalitis virus belong to a family Flaviviridae. These viruses are transmitted to vertebrates by infected mosquitoes or ticks, producing diseases, which have a serious impact on global public health. Reverse genetics is a powerful tool for studying the viruses. Although infectious full-length clones have been obtained for multiple flaviviruses, their early-stage development had the difficulty because of the instability problem of the viral cDNA in E. coli. Several strategies have been developed to circumvent the problem of infectious clone instability. The current knowledge accumulated on reverse genetics system of flaviviruses and its application are summarized in this review.
Collapse
|
16
|
Wurster T, Pölzelbauer C, Schönberger T, Paul A, Seizer P, Stellos K, Schuster A, Botnar RM, Gawaz M, Bigalke B. Green fluorescent protein (GFP) color reporter gene visualizes parvovirus B19 non-structural segment 1 (NS1) transfected endothelial modification. PLoS One 2012; 7:e33602. [PMID: 22438961 PMCID: PMC3305306 DOI: 10.1371/journal.pone.0033602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 02/13/2012] [Indexed: 12/13/2022] Open
Abstract
Background Human Parvovirus B19 (PVB19) has been associated with myocarditis putative due to endothelial infection. Whether PVB19 infects endothelial cells and causes a modification of endothelial function and inflammation and, thus, disturbance of microcirculation has not been elucidated and could not be visualized so far. Methods and Findings To examine the PVB19-induced endothelial modification, we used green fluorescent protein (GFP) color reporter gene in the non-structural segment 1 (NS1) of PVB19. NS1-GFP-PVB19 or GFP plasmid as control were transfected in an endothelial-like cell line (ECV304). The endothelial surface expression of intercellular-adhesion molecule-1 (CD54/ICAM-1) and extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) were evaluated by flow cytometry after NS-1-GFP or control-GFP transfection. To evaluate platelet adhesion on NS-1 transfected ECs, we performed a dynamic adhesion assay (flow chamber). NS-1 transfection causes endothelial activation and enhanced expression of ICAM-1 (CD54: mean±standard deviation: NS1-GFP vs. control-GFP: 85.3±11.2 vs. 61.6±8.1; P<0.05) and induces endothelial expression of EMMPRIN/CD147 (CD147: mean±SEM: NS1-GFP vs. control-GFP: 114±15.3 vs. 80±0.91; P<0.05) compared to control-GFP transfected cells. Dynamic adhesion assays showed that adhesion of platelets is significantly enhanced on NS1 transfected ECs when compared to control-GFP (P<0.05). The transfection of ECs was verified simultaneously through flow cytometry, immunofluorescence microscopy and polymerase chain reaction (PCR) analysis. Conclusions GFP color reporter gene shows transfection of ECs and may help to visualize NS1-PVB19 induced endothelial activation and platelet adhesion as well as an enhanced monocyte adhesion directly, providing in vitro evidence of possible microcirculatory dysfunction in PVB19-induced myocarditis and, thus, myocardial tissue damage.
Collapse
Affiliation(s)
- Thomas Wurster
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Catharina Pölzelbauer
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Tanja Schönberger
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Angela Paul
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Peter Seizer
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Konstantinos Stellos
- Department of Cardiology, Johann-Wolfgang-Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Andreas Schuster
- Division of Imaging Sciences and Biomedical Engineering, School of Medicine, King's College London, The Rayne Institute, London, United Kingdom
| | - Rene M. Botnar
- Division of Imaging Sciences and Biomedical Engineering, School of Medicine, King's College London, The Rayne Institute, London, United Kingdom
| | - Meinrad Gawaz
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Boris Bigalke
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
- Division of Imaging Sciences and Biomedical Engineering, School of Medicine, King's College London, The Rayne Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Leardkamolkarn V, Sirigulpanit W, Chotiwan N, Kumkate S, Huang CYH. Development of Dengue type-2 virus replicons expressing GFP reporter gene in study of viral RNA replication. Virus Res 2012; 163:552-562. [PMID: 22197424 PMCID: PMC4582755 DOI: 10.1016/j.virusres.2011.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 11/19/2022]
Abstract
Insertion of green fluorescent protein (GFP) encoding-gene into virus genes has provided a valuable tool for flavivirus research. This study aimed to develop dengue virus (DENV) replicons expressing GFP reporter that would provide a fast in vitro system to analyze functional roles of specific DENV sequences in viral replication. Two classes of recombinant replicon constructs were generated; one was a RNA-launched replicon with a GFP gene directly inserted into a full-length DENV genome (FL-DENV/GFP), and the other consisted of 4 types of DNA-launched DENV subgenomic replicons with GFP replacement at various structural genes (Δ-DENV/GFP). The FL-DENV/GFP resulted in GFP expression in transfected cells with no viable DENV being recovered from the transfection. The Δ-DENV/GFP constructs with partial structural gene deletion (ΔC-, ΔCprM/M-, ΔprM/M-, or ΔE-) expressed bright and long lasting GFP. The GFP expression intensity in living cells correlated well with the level of RNA replication. Various mutations in the 5'noncoding region of DENV-2 previously shown to be important genetic determinants for virus replication and mouse virulence were incorporated into the 5 different replicon constructs. Characterizations of 29 mutants demonstrated that these replicons can provide a useful platform for a quick and powerful in vitro system to analyze genetic determinants of DENV replication. These constructs can also be useful for development of vectors expressing foreign genes for various researches.
Collapse
Affiliation(s)
- Vijittra Leardkamolkarn
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center for Emerging and Neglected Infectious Diseases, Mahidol University, Thailand
| | - Wipawan Sirigulpanit
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Nunya Chotiwan
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Supeecha Kumkate
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Claire Y.-H. Huang
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, Center for Disease Control and Prevention, Fort Collins, CO 80521, USA
| |
Collapse
|