1
|
Kumar R, R R, Diwakar V, Khan N, Kumar Meghwanshi G, Garg P. Structural-functional analysis of drug target aspartate semialdehyde dehydrogenase. Drug Discov Today 2024; 29:103908. [PMID: 38301800 DOI: 10.1016/j.drudis.2024.103908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Aspartate β-semialdehyde dehydrogenase (ASADH) is a key enzyme in the biosynthesis of essential amino acids in microorganisms and some plants. Inhibition of ASADHs can be a potential drug target for developing novel antimicrobial and herbicidal compounds. This review covers up-to-date information about sequence diversity, ligand/inhibitor-bound 3D structures, potential inhibitors, and key pharmacophoric features of ASADH useful in designing novel and target-specific inhibitors of ASADH. Most reported ASADH inhibitors have two highly electronegative functional groups that interact with two key arginyl residues present in the active site of ASADHs. The structural information, active site binding modes, and key interactions between the enzyme and inhibitors serve as the basis for designing new and potent inhibitors against the ASADH family.
Collapse
Affiliation(s)
- Rajender Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Rajkumar R
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar 160062, Punjab, India
| | - Vineet Diwakar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar 160062, Punjab, India
| | - Nazam Khan
- Clinical Laboratory Science Department, Applied Medical Science College, Shaqra University, Shaqra, Kingdom of Saudi Arabia
| | | | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar 160062, Punjab, India.
| |
Collapse
|
2
|
Yolanda H, Jearawuttanakul K, Wannalo W, Kanjanasirirat P, Borwornpinyo S, Rujirawat T, Payattikul P, Kittichotirat W, Wichadakul D, Krajaejun T. Potential anti- Pythium insidiosum therapeutics identified through screening of agricultural fungicides. Microbiol Spectr 2024; 12:e0162023. [PMID: 38179943 PMCID: PMC10846074 DOI: 10.1128/spectrum.01620-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/07/2023] [Indexed: 01/06/2024] Open
Abstract
Pythiosis is a life-threatening infectious disease caused by the oomycete Pythium insidiosum. Clinical manifestations of pythiosis include an eye, blood vessel, skin, or gastrointestinal tract infection. Pythiosis has been increasingly reported worldwide, with an overall mortality rate of 28%. Radical surgery is required to save patients' lives due to the limited efficacy of antimicrobial drugs. Effective medical treatments are urgently needed for pythiosis. This study aims to find anti-P. insidiosum agents by screening 17 agricultural fungicides that inhibit plant-pathogenic oomycetes and validating their efficacy and safety. Cyazofamid outperformed other fungicides as it can potently inhibit genetically diverse P. insidiosum isolates while exhibiting minimal cellular toxicities. The calculated therapeutic scores determined that the concentration of cyazofamid causing significant cellular toxicities was eight times greater than the concentration of the drug effectively inhibiting P. insidiosum. Furthermore, other studies showed that cyazofamid exhibits low-to-moderate toxicities in animals. The mechanism of cyazofamid action is likely the inhibition of cytochrome b, an essential component in ATP synthesis. Molecular docking and dynamic analyses depicted a stable binding of cyazofamid to the Qi site of the P. insidiosum's cytochrome b orthologous protein. In conclusion, our search for an effective anti-P. insidiosum drug indicated that cyazofamid is a promising candidate for treating pythiosis. With its high efficacy and low toxicity, cyazofamid is a potential chemical for treating pythiosis, reducing the need for radical surgeries, and improving recovery rates. Our findings could pave the way for the development of new and effective treatments for pythiosis.IMPORTANCEPythiosis is a severe infection caused by Pythium insidiosum. The disease is prevalent in tropical/subtropical regions. This infectious condition is challenging to treat with antifungal drugs and often requires surgical removal of the infected tissue. Pythiosis can be fatal if not treated promptly. There is a need for a new treatment that effectively inhibits P. insidiosum. This study screened 17 agricultural fungicides that target plant-pathogenic oomycetes and found that cyazofamid was the most potent in inhibiting P. insidiosum. Cyazofamid showed low toxicity to mammalian cells and high affinity to the P. insidiosum's cytochrome b, which is involved in energy production. Cyazofamid could be a promising candidate for the treatment of pythiosis, as it could reduce the need for surgery and improve the survival rate of patients. This study provides valuable insights into the biology and drug susceptibility of P. insidiosum and opens new avenues for developing effective therapies for pythiosis.
Collapse
Affiliation(s)
- Hanna Yolanda
- Program in Translational Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Parasitology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Kedchin Jearawuttanakul
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Warawuth Wannalo
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thidarat Rujirawat
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Penpan Payattikul
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Weerayuth Kittichotirat
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut’s University of Technology Thonburi, Bangkhuntien, Bangkok, Thailand
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkhuntien, Bangkok, Thailand
| | - Duangdao Wichadakul
- Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Theerapong Krajaejun
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Structural characterization of aspartate-semialdehyde dehydrogenase from Pseudomonas aeruginosa and Neisseria gonorrhoeae. Sci Rep 2022; 12:14010. [PMID: 35977963 PMCID: PMC9385607 DOI: 10.1038/s41598-022-17384-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/25/2022] [Indexed: 11/09/2022] Open
Abstract
Gonorrhoea infection rates and the risk of infection from opportunistic pathogens including P. aeruginosa have both risen globally, in part due to increasing broad-spectrum antibiotic resistance. Development of new antimicrobial drugs is necessary and urgent to counter infections from drug resistant bacteria. Aspartate-semialdehyde dehydrogenase (ASADH) is a key enzyme in the aspartate biosynthetic pathway, which is critical for amino acid and metabolite biosynthesis in most microorganisms including important human pathogens. Here we present the first structures of two ASADH proteins from N. gonorrhoeae and P. aeruginosa solved by X-ray crystallography. These high-resolution structures present an ideal platform for in silico drug design, offering potential targets for antimicrobial drug development as emerging multidrug resistant strains of bacteria become more prevalent.
Collapse
|
4
|
Wang X, Yang R, Liu S, Guan Y, Xiao C, Li C, Meng J, Pang Y, Liu Y. IMB-XMA0038, a new inhibitor targeting aspartate-semialdehyde dehydrogenase of Mycobacterium tuberculosis. Emerg Microbes Infect 2021; 10:2291-2299. [PMID: 34779708 PMCID: PMC8648042 DOI: 10.1080/22221751.2021.2006578] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The emergence of drug-resistant tuberculosis (TB) constitutes a major challenge to TB control programmes. There is an urgent need to develop effective anti-TB drugs with novel mechanisms of action. Aspartate-semialdehyde dehydrogenase (ASADH) is the second enzyme in the aspartate metabolic pathway. The absence of the pathway in humans and the absolute requirement of aspartate in bacteria make ASADH a highly attractive drug target. In this study, we used ASADH coupled with Escherichia coli type III aspartate kinase (LysC) to establish a high-throughput screening method to find new anti-TB inhibitors. IMB-XMA0038 was identified as an inhibitor of MtASADH with an IC50 value of 0.59 μg/mL through screening. The interaction between IMB-XMA0038 and MtASADH was confirmed by surface plasmon resonance (SPR) assay and molecular docking analysis. Furthermore, IMB-XMA0038 was found to inhibit various drug-resistant MTB strains potently with minimal inhibitory concentrations (MICs) of 0.25–0.5 μg/mL. The conditional mutant strain MTB::asadh cultured with different concentrations of inducer (10−5 or 10−1 μg/mL pristinamycin) resulted in a maximal 16 times difference in MICs. At the same time, IMB-XMA0038 showed low cytotoxicity in vitro and vivo. In mouse model, it encouragingly declined the MTB colony forming units (CFU) in lung by 1.67 log10 dosed at 25 mg/kg for 15 days. In conclusion, our data demonstrate that IMB-XMA0038 is a promising lead compound against drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Xiao Wang
- National Laboratory for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Ruifang Yang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Sihan Liu
- National Laboratory for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yan Guan
- National Laboratory for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Chunling Xiao
- National Laboratory for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Chuanyou Li
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jianzhou Meng
- National Laboratory for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yishuang Liu
- National Laboratory for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
5
|
Ben Said L, Emond-Rheault JG, Soltani S, Telhig S, Zirah S, Rebuffat S, Diarra MS, Goodridge L, Levesque RC, Fliss I. Phenomic and genomic approaches to studying the inhibition of multiresistant Salmonella enterica by microcin J25. Environ Microbiol 2020; 22:2907-2920. [PMID: 32363677 DOI: 10.1111/1462-2920.15045] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/15/2020] [Accepted: 04/25/2020] [Indexed: 12/22/2022]
Abstract
In livestock production, antibiotics are used to promote animal growth, control infections and thereby increase profitability. This practice has led to the emergence of multiresistant bacteria such as Salmonella, of which some serovars are disseminated in the environment. The objective of this study is to evaluate microcin J25 as an inhibitor of Salmonella enterica serovars of various origins including human, livestock and food. Among the 116 isolates tested, 37 (31.8%) were found resistant to at least one antibiotic, and 28 were multiresistant with 19 expressing the penta-resistant phenotype ACSSuT. Microcin J25 inhibited all isolates, with minimal inhibitory concentration values ranging from 0.06 μg/ml (28.4 nM) to 400 μg/ml (189 μM). Interestingly, no cross-resistance was found between microcin J25 and antibiotics. Multiple sequence alignments of genes encoding for the different proteins involved in the recognition and transport of microcin J25 showed that only ferric-hydroxamate uptake is an essential determinant for susceptibility of S. enterica to microcin J25. Examination of Salmonella strains exposed to microcin J25 by transmission electronic microscopy showed for the first-time involvement of a pore formation mechanism. Microcin J25 was a strong inhibitor of several multiresistant isolates of Salmonella and may have a great potential as an alternative to antibiotics.
Collapse
Affiliation(s)
- Laila Ben Said
- Institute of Nutrition and Functional Foods, Université Laval, Québec, Quebec, G1V 0A6, Canada
| | | | - Samira Soltani
- Institute of Nutrition and Functional Foods, Université Laval, Québec, Quebec, G1V 0A6, Canada
| | - Sofiane Telhig
- Institute of Nutrition and Functional Foods, Université Laval, Québec, Quebec, G1V 0A6, Canada.,Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Laboratory of Communication Molecules and Adaptation of Micro-organisms, UMR 7245 CNRS-MNHN, Paris, CP 54, 57 rue Cuvier 75005, France
| | - Séverine Zirah
- Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Laboratory of Communication Molecules and Adaptation of Micro-organisms, UMR 7245 CNRS-MNHN, Paris, CP 54, 57 rue Cuvier 75005, France
| | - Sylvie Rebuffat
- Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Laboratory of Communication Molecules and Adaptation of Micro-organisms, UMR 7245 CNRS-MNHN, Paris, CP 54, 57 rue Cuvier 75005, France
| | - Moussa Sory Diarra
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, N1G 5C9, Canada
| | - Lawrence Goodridge
- Department of Food Science and Agriculture, McGill University, Ste Anne de Bellevue, Québec, Quebec, H9X3V9, Canada
| | - Roger C Levesque
- Institute of Integrative Biology and Systems, Université Laval, QC, Québec, G1V 0A6, Canada
| | - Ismail Fliss
- Institute of Nutrition and Functional Foods, Université Laval, Québec, Quebec, G1V 0A6, Canada
| |
Collapse
|
6
|
Mank NJ, Pote S, Majorek K, Arnette AK, Klapper VG, Hurlburt BK, Chruszcz M. Structure of aspartate β-semialdehyde dehydrogenase from Francisella tularensis. Acta Crystallogr F Struct Biol Commun 2018; 74:14-22. [PMID: 29372903 PMCID: PMC5947688 DOI: 10.1107/s2053230x17017241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/01/2017] [Indexed: 11/10/2022] Open
Abstract
Aspartate β-semialdehyde dehydrogenase (ASADH) is an enzyme involved in the diaminopimelate pathway of lysine biosynthesis. It is essential for the viability of many pathogenic bacteria and therefore has been the subject of considerable research for the generation of novel antibiotic compounds. This manuscript describes the first structure of ASADH from Francisella tularensis, the causative agent of tularemia and a potential bioterrorism agent. The structure was determined at 2.45 Å resolution and has a similar biological assembly to other bacterial homologs. ASADH is known to be dimeric in bacteria and have extensive interchain contacts, which are thought to create a half-sites reactivity enzyme. ASADH from higher organisms shows a tetrameric oligomerization, which also has implications for both reactivity and regulation. This work analyzes the apo form of F. tularensis ASADH, as well as the binding of the enzyme to its cofactor NADP+.
Collapse
Affiliation(s)
- N. J. Mank
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - S. Pote
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - K.A. Majorek
- Department of Molecular Physiology and Biological Physics, University of Virginia, PO Box 800736, Charlottesville, VA 22908, USA
| | - A. K. Arnette
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - V. G. Klapper
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - B. K. Hurlburt
- Agricultural Research Service, Southern Regional Research Center, US Department of Agriculture, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA
| | - M. Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| |
Collapse
|
7
|
Bown L, Srivastava SK, Piercey BM, McIsaac CK, Tahlan K. Mycobacterial Membrane Proteins QcrB and AtpE: Roles in Energetics, Antibiotic Targets, and Associated Mechanisms of Resistance. J Membr Biol 2017; 251:105-117. [DOI: 10.1007/s00232-017-9997-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
|
8
|
Salas-López K, Amador P, Rojas A, Melendez FJ, Flores H. Experimental and Theoretical Thermochemistry of the Isomers 3- and 4-Nitrophthalimide. J Phys Chem A 2017; 121:5509-5519. [PMID: 28671828 DOI: 10.1021/acs.jpca.7b02508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work presents a thermochemical study of two derivatives of phthalimide: the isomers 3-nitrophthalimide and 4-nitrophthalimide. The enthalpies of formation for these compounds in the solid phase were obtained by combustion calorimetry. Using ths thermogravimetry technique, the enthalpies of vaporization were obtained. The enthalpies of sublimation were calculated from enthalpies of fusion and vaporization. From experimental data and by ab initio methods, the enthalpies of formation in the gas phase were calculated. With these results, it was possible to determine their relative stability, and it was found that 4-nitrophthalimide is more stable than its isomer 3-nitrophthalimide. This tendency is similar to that of 3-nitrophthalic anhydride and 4-nitrophthalic anhydride, as reported in a previous work by our research group. The enthalpy of isomerization was also obtained, and a good correlation with that of phthalic anhydride derivatives was found. Finally, with the values obtained, the enthalpic difference resulting when the imide group is substituted by an anhydride group was determined.
Collapse
Affiliation(s)
- Karina Salas-López
- Facultad de Ciencias Químicas de la Benemérita Universidad Autónoma de Puebla , 14 Sur y Av. San Claudio, C.P. 72570 Puebla, Pue, México
| | - Patricia Amador
- Facultad de Ciencias Químicas de la Benemérita Universidad Autónoma de Puebla , 14 Sur y Av. San Claudio, C.P. 72570 Puebla, Pue, México
| | - Aarón Rojas
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN , Av. Instituto Politécnico Nacional 2508, C.P. 072360 México, México
| | - Francisco Javier Melendez
- Facultad de Ciencias Químicas de la Benemérita Universidad Autónoma de Puebla , 14 Sur y Av. San Claudio, C.P. 72570 Puebla, Pue, México
| | - Henoc Flores
- Facultad de Ciencias Químicas de la Benemérita Universidad Autónoma de Puebla , 14 Sur y Av. San Claudio, C.P. 72570 Puebla, Pue, México
| |
Collapse
|
9
|
Sykes ML, Avery VM. Development and application of a sensitive, phenotypic, high-throughput image-based assay to identify compound activity against Trypanosoma cruzi amastigotes. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2015; 5:215-28. [PMID: 27120069 PMCID: PMC4847003 DOI: 10.1016/j.ijpddr.2015.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 01/08/2023]
Abstract
We have developed a high content 384-well, image-based assay to estimate the effect of compound treatment on Trypanosoma cruzi amastigotes in 3T3 fibroblasts. In the same well, the effect of compound activity on host cells can also be determined, as an initial indicator of cytotoxicity. This assay has been used to identify active compounds from an in-house library of compounds with either known biological activity or that are FDA approved, and separately, from the Medicines for Malaria Venture Malaria Box collection. Active compounds were screened against T. cruzi trypomastigotes, utilising an assay developed with the viability dye resazurin. Twelve compounds with reconfirmed solid sample activity, with IC50 values of less than 10 μM and selectivity indices to T. cruzi amastigotes over 3T3 host cells of between >22 and 319 times were identified from these libraries. As 3T3 cells are contact inhibited, with limited proliferation in the assay, selective compounds of interest were profiled in a separate assay to estimate the viability of compound treated, replicating HEK293 cells. Selective compounds that were not previously reported in the literature were further profiled by extending the incubation time against amastigote infected 3T3 cells to determine if there were residual amastigotes post-treatment, important for the consideration of the exposure time required for further biological characterisation. The assay development process and the suitability of identified compounds as hit molecules for Chagas disease research are discussed. Image-based techniques to quantify compound activity against Trypanosoma cruzi. Two fluorophores to accurately identify amastigote infection of host cells. Selective hit compounds with a potential for further development are described.
Collapse
Affiliation(s)
- Melissa L Sykes
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.
| | - Vicky M Avery
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
10
|
Kumar R, Garg P, Bharatam PV. Shape-based virtual screening, docking, and molecular dynamics simulations to identify Mtb-ASADH inhibitors. J Biomol Struct Dyn 2014; 33:1082-93. [PMID: 24875451 DOI: 10.1080/07391102.2014.929535] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Aspartate β-semialdehyde dehydrogenase (ASADH) is a key enzyme for the biosynthesis of essential amino acids and several important metabolites in microbes. Inhibition of ASADH enzyme is a promising drug target strategy against Mycobacterium tuberculosis (Mtb). In this work, in silico approach was used to identify potent inhibitors of Mtb-ASADH. Aspartyl β-difluorophosphonate (β-AFP), a known lead compound, was used to understand the molecular recognition interactions (using molecular docking and molecular dynamics analysis). This analysis helped in validating the computational protocol and established the participation of Arg99, Glu224, Cys130, Arg249, and His256 amino acids as the key amino acids in stabilizing ligand-enzyme interactions for effective binding, an essential feature is H-bonding interactions with the two arginyl residues at the two ends of the ligand. Best binding conformation of β-AFP was selected as a template for shape-based virtual screening (ZINC and NCI databases) to identify compounds that competitively inhibit the Mtb-ASADH. The top rank hits were further subjected to ADME and toxicity filters. Final filter was based on molecular docking analysis. Each screened molecule carries the characteristics of the highly electronegative groups on both sides separated by an average distance of 6 Å. Finally, the best predicted 20 compounds exhibited minimum three H-bonding interactions with Arg99 and Arg249. These identified hits can be further used for designing the more potent inhibitors against ASADH family. MD simulations were also performed on two selected compounds (NSC4862 and ZINC02534243) for further validation. During the MD simulations, both compounds showed same H-bonding interactions and remained bound to key active residues of Mtb-ASADH.
Collapse
Affiliation(s)
- Rajender Kumar
- a Department of Pharmacoinformatics , National Institute of Pharmaceutical Education and Research (NIPER) , Sector-67, S.A.S. Nagar 160 062 , Punjab , India
| | | | | |
Collapse
|