1
|
Otsuka Y, Zhang L, Mou H, Shumate J, Kitzmiller CE, Scampavia L, Bannister TD, Farzan M, Choe H, Spicer TP. Simultaneous screening for selective SARS-CoV-2, Lassa, and Machupo virus entry inhibitors. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100178. [PMID: 39159824 DOI: 10.1016/j.slasd.2024.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024]
Abstract
Emerging highly pathogenic viruses can pose profound impacts on global health, the economy, and society. To meet that challenge, the National Institute of Allergy and Infectious Diseases (NIAID) established nine Antiviral Drug Discovery (AViDD) centers for early-stage identification and validation of novel antiviral drug candidates against viruses with pandemic potential. As part of this initiative, we established paired entry assays that simultaneously screen for inhibitors specifically targeting SARS-CoV-2 (SARS2), Lassa virus (LASV) and Machupo virus (MACV) entry. To do so we employed a dual pseudotyped virus (PV) infection system allowing us to screen ∼650,000 compounds efficiently and cost-effectively. Adaptation of these paired assays into 1536 well-plate format for ultra-high throughput screening (uHTS) resulted in the largest screening ever conducted in our facility, with over 2.4 million wells completed. The paired infection system allowed us to detect two PV infections simultaneously: LASV + MACV, MACV + SARS2, and SARS2 + LASV. Each PV contains a different luciferase reporter gene which enabled us to measure the infection of each PV exclusively, albeit in the same well. Each PV was screened at least twice utilizing different reporters, which allowed us to select the inhibitors specific to a particular PV and to exclude those that hit off targets, including cellular components or the reporter proteins. All assays were robust with an average Z' value ranging from 0.5 to 0.8. The primary screening of ∼650,000 compounds resulted in 1812, 1506, and 2586 unique hits for LASV, MACV, and SARS2, respectively. The confirmation screening narrowed this list further to 60, 40, and 90 compounds that are unique to LASV, MACV, and SARS2, respectively. Of these compounds, 8, 35, and 50 compounds showed IC50 value < 10 μM, some of which have much greater potency and excellent antiviral activity profiles specific to LASV, MACV, and SARS2, and none are cytotoxic. These selected compounds are currently being studied for their mechanism of action and to improve their specificity and potency through chemical modification.
Collapse
Affiliation(s)
- Yuka Otsuka
- Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Lizhou Zhang
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, United States; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States
| | - Huihui Mou
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, United States; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States
| | - Justin Shumate
- Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Claire E Kitzmiller
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, United States
| | - Louis Scampavia
- Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Thomas D Bannister
- Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Michael Farzan
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, United States; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States
| | - Hyeryun Choe
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, United States; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States
| | - Timothy P Spicer
- Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, United States.
| |
Collapse
|
2
|
Durante D, Bott R, Cooper L, Owen C, Morsheimer KM, Patten JJ, Zielinski C, Peet NP, Davey RA, Gaisina IN, Rong L, Moore TW. N-Substituted Pyrrole-Based Heterocycles as Broad-Spectrum Filoviral Entry Inhibitors. J Med Chem 2024; 67:13737-13764. [PMID: 39169825 DOI: 10.1021/acs.jmedchem.4c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Since the largest and most fatal Ebola virus epidemic during 2014-2016, there have been several consecutive filoviral outbreaks in recent years, including those in 2021, 2022, and 2023. Ongoing outbreak prevalence and limited FDA-approved filoviral therapeutics emphasize the need for novel small molecule treatments. Here, we showcase the structure-activity relationship development of N-substituted pyrrole-based heterocycles and their potent, submicromolar entry inhibition against diverse filoviruses in a target-based pseudovirus assay. Inhibitor antiviral activity was validated using replication-competent Ebola, Sudan, and Marburg viruses. Mutational analysis was used to map the targeted region within the Ebola virus glycoprotein. Antiviral counter-screen and phospholipidosis assays were performed to demonstrate the reduced off-target activity of these filoviral entry inhibitors. Favorable antiviral potency, selectivity, and drug-like properties of the N-substituted pyrrole-based heterocycles support their potential as broad-spectrum antifiloviral treatments.
Collapse
Affiliation(s)
- Destiny Durante
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Ryan Bott
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Laura Cooper
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Callum Owen
- Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, Massachusetts 02118, United States
| | - Kimberly M Morsheimer
- Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, Massachusetts 02118, United States
| | - J J Patten
- Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, Massachusetts 02118, United States
| | - Christian Zielinski
- UICentre: Drug Discovery, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Norton P Peet
- Chicago BioSolutions Inc., Chicago, Illinois 60612, United States
| | - Robert A Davey
- Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, Massachusetts 02118, United States
| | - Irina N Gaisina
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Chicago BioSolutions Inc., Chicago, Illinois 60612, United States
- UICentre: Drug Discovery, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Chicago BioSolutions Inc., Chicago, Illinois 60612, United States
| | - Terry W Moore
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
3
|
Huang S, Wu Z, Zhou B, Jiang X, Lavillette D, Fan G. Heat-Denatured Lysozyme is a Novel Potential Non-alcoholic Disinfectant Against Respiratory Virus. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:212-223. [PMID: 37155116 PMCID: PMC10166042 DOI: 10.1007/s12560-023-09556-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/20/2023] [Indexed: 05/10/2023]
Abstract
Respiratory diseases are significant recurrent threats to global public health. Since the 1918 Spanish flu pandemic, seasonal influenza viruses continue to cause epidemics around the world each year. More recently, the COVID-19 global pandemic conducted a public health crisis with more than 6 million deaths and it also severely affected the global economy. Due to the phenomenon that people get infection from objects carrying viruses, it has aroused people's attention to home disinfection. As there is no ideal existing common domestic disinfectant, new and safer antiviral disinfectants are urgently needed. Lysozyme is a natural antibacterial agent widespread in nature and widely used in healthcare and food industry because of is recognized safety. Recently, it has been shown that thermally denatured lysozyme has the ability to kill murine norovirus and hepatitis A virus. In our study, we also demonstrated that heat-denatured lysozyme (HDLz) had an antiviral effect against H1N1 influenza A virus, and we optimized its antiviral activities by testing different heating denaturation conditions, to generalize this property, using pseudotype virus neutralization assay, we found that HDLz can also inhibit the entry of H5N1, H5N6, and H7N1 avian influenza viruses as well as SARS-CoV and SARS-CoV-2 particles in cell with IC50 at the ng/mL range. Finally, using western blot analysis, we provide evidence that HDLz polymerization correlates with antiviral effect, which may be a precious possible quality control test. Altogether, our data support HDLz as a powerful anti-respiratory virus disinfectant as a sole or additive of current disinfectants to reduce concentration of toxic component.
Collapse
Affiliation(s)
- Suqiong Huang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Yuzhong District, No. 1 Yixueyuan Road, Chongqing, 400016 People’s Republic of China
- Department of Pharmacy, Sichuan Provincial People’s Hospital Qionglai Hospital, Medical Center Hospital of Qionglai City, No. 172 Xinglin Road, Qionglai City, Chengdu, Sichuan Province 611530 People’s Republic of China
| | - Zhenghua Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080 People’s Republic of China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Bingjie Zhou
- University of CAS, Beijing, 101408 China
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, 320 Yueyang Road, Shanghai, 200031 China
| | - Xinhui Jiang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Yuzhong District, No. 1 Yixueyuan Road, Chongqing, 400016 People’s Republic of China
| | - Dimitri Lavillette
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, 320 Yueyang Road, Shanghai, 200031 China
- Pasteurien College, Soochow University, Jiangsu, 215006 China
| | - Guorong Fan
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Yuzhong District, No. 1 Yixueyuan Road, Chongqing, 400016 People’s Republic of China
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080 People’s Republic of China
| |
Collapse
|
4
|
Pseudotyped Viruses for Mammarenavirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:279-297. [PMID: 36920703 DOI: 10.1007/978-981-99-0113-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Mammarenaviruses are classified into New World arenaviruses (NW) and Old World arenaviruses (OW). The OW arenaviruses include the first discovered mammarenavirus-lymphocytic choriomeningitis virus (LCMV) and the highly lethal Lassa virus (LASV). Mammarenaviruses are transmitted to human by rodents, resulting in severe acute infections and hemorrhagic fever. Pseudotyped viruses have been widely used as a tool in the study of mammarenaviruses. HIV-1, SIV, FIV-based lentiviral vectors, VSV-based vectors, MLV-based vectors, and reverse genetic approaches have been applied in the construction of pseudotyped mammarenaviruses. Pseudotyped mammarenaviruses are commonly used in receptor research, neutralizing antibody detection, inhibitor screening, viral virulence studies, functional analysis of N-linked glycans, and studies of viral infection, endocytosis, and fusion mechanisms.
Collapse
|
5
|
Application of Pseudotyped Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:45-60. [PMID: 36920691 DOI: 10.1007/978-981-99-0113-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Highly pathogenic emerging and reemerging viruses have serious public health and socioeconomic implications. Although conventional live virus research methods can more reliably investigate disease pathogenicity and evaluate antiviral products, they usually depend on high-level biosafety laboratories and skilled researchers; these requirements hinder in vitro assessments of efficacy, as well as efforts to test vaccines and antibody drugs. In contrast, pseudotyped viruses (i.e., single-round infectious viruses that mimic the membrane structures of various live viruses) are widely used in studies of highly pathogenic viruses because they can be handled in biosafety level 2 facilities. This chapter provides a concise overview of various aspects of pseudotyped virus technologies, including (1) exploration of the mechanisms of viral infection; (2) evaluation of the efficacies of vaccines and monoclonal antibodies based on pseudovirion-based neutralization assay; (3) assessment of antiviral agents (i.e., antibody-based drugs and inhibitors); (4) establishment of animal models of pseudotyped virus infection in vivo; (5) investigation of the evolution, infectivity, and antigenicity of viral variants and viral glycosylation; and (6) prediction of antibody-dependent cell-mediated cytotoxic activity.
Collapse
|
6
|
Pawel GT, Ma Y, Wu Y, Lu Y, Peinetti AS. Binding Affinity Measurements Between DNA Aptamers and their Virus Targets Using ELONA and MST. Bio Protoc 2022; 12:e4548. [PMID: 36505027 PMCID: PMC9709635 DOI: 10.21769/bioprotoc.4548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/28/2022] [Accepted: 09/04/2022] [Indexed: 11/06/2022] Open
Abstract
Aptamers have been selected with strong affinity and high selectivity for a wide range of targets, as recently highlighted by the development of aptamer-based sensors that can differentiate infectious from non-infectious viruses, including human adenovirus and SARS-CoV-2. Accurate determination of the binding affinity between the DNA aptamers and their viral targets is the first step to understanding the molecular recognition of viral particles and the potential uses of aptamers in various diagnostics and therapeutic applications. Here, we describe protocols to obtain the binding curve of the DNA aptamers to SARS-CoV-2 using Enzyme-Linked Oligonucleotide Assay (ELONA) and MicroScale Thermophoresis (MST). These methods allow for the determination of the binding affinity of the aptamer to the infectious SARS-CoV-2 and the selectivity of this aptamer against the same SARS-CoV-2 that has been rendered non-infectious by UV inactivation, and other viruses. Compared to other techniques like Electrophoretic Mobility Shift Assay (EMSA), Surface Plasmon Resonance (SPR), and Isothermal Titration Calorimetry (ITC), these methods have advantages for working with larger particles like viruses and with samples that require biosafety level 2 facilities.
Collapse
Affiliation(s)
- Gregory T. Pawel
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Yuan Ma
- Department of Chemistry, University of Texas at Austin, Austin, Texas, United States
| | - Yuting Wu
- Department of Chemistry, University of Texas at Austin, Austin, Texas, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Department of Chemistry, University of Texas at Austin, Austin, Texas, United States
| | - Ana Sol Peinetti
- INQUIMAE (CONICET), Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
7
|
Alqarni S, Cooper L, Galvan Achi J, Bott R, Sali VK, Brown A, Santarsiero BD, Krunic A, Manicassamy B, Peet NP, Zhang P, Thatcher GRJ, Gaisina IN, Rong L, Moore TW. Synthesis, Optimization, and Structure-Activity Relationships of Imidazo[1,2- a]pyrimidines as Inhibitors of Group 2 Influenza A Viruses. J Med Chem 2022; 65:14104-14120. [PMID: 36260129 DOI: 10.1021/acs.jmedchem.2c01329] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The influenza A virus (IAV) is a highly contagious virus that causes pandemics and seasonal epidemics, which are major public health issues. Current anti-influenza therapeutics are limited partly due to the continuous emergence of drug-resistant IAV strains; thus, there is an unmet need to develop novel anti-influenza therapies. Here, we present a novel imidazo[1,2-a]pyrimidine scaffold that targets group 2 IAV entry. We have explored three different regions of the lead compound, and we have developed a series of small molecules that have nanomolar activity against oseltamivir-sensitive and -resistant forms of group 2 IAVs. These small molecules target hemagglutinin (HA), which mediates the viral entry process. Mapping a known small-molecule-binding cavity of the HA structure with resistant mutants suggests that these molecules bind to that cavity and block HA-mediated membrane fusion.
Collapse
Affiliation(s)
- Saad Alqarni
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States.,Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Laura Cooper
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Jazmin Galvan Achi
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Ryan Bott
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Veeresh Kumar Sali
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Andrew Brown
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Bernard D Santarsiero
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Aleksej Krunic
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Balaji Manicassamy
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Norton P Peet
- Chicago BioSolutions Inc., Chicago, Illinois 60612, United States
| | - Pin Zhang
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Gregory R J Thatcher
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Irina N Gaisina
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States.,Chicago BioSolutions Inc., Chicago, Illinois 60612, United States
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60612, United States.,Chicago BioSolutions Inc., Chicago, Illinois 60612, United States
| | - Terry W Moore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States.,UI Cancer Center, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
8
|
Chen Z, Cui Q, Caffrey M, Rong L, Du R. Small Molecule Inhibitors of Influenza Virus Entry. Pharmaceuticals (Basel) 2021; 14:ph14060587. [PMID: 34207368 PMCID: PMC8234048 DOI: 10.3390/ph14060587] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
Hemagglutinin (HA) plays a critical role during influenza virus receptor binding and subsequent membrane fusion process, thus HA has become a promising drug target. For the past several decades, we and other researchers have discovered a series of HA inhibitors mainly targeting its fusion machinery. In this review, we summarize the advances in HA-targeted development of small molecule inhibitors. Moreover, we discuss the structural basis and mode of action of these inhibitors, and speculate upon future directions toward more potent inhibitors of membrane fusion and potential anti-influenza drugs.
Collapse
Affiliation(s)
- Zhaoyu Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.C.); (Q.C.)
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.C.); (Q.C.)
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China
| | - Michael Caffrey
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Correspondence: (L.R.); (R.D.); Tel.: +1-312-355-0203 (L.R.); +86-0531-89628505 (R.D.)
| | - Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.C.); (Q.C.)
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China
- Correspondence: (L.R.); (R.D.); Tel.: +1-312-355-0203 (L.R.); +86-0531-89628505 (R.D.)
| |
Collapse
|
9
|
Abstract
The coronavirus disease 2019 (COVID‐19) pandemic has triggered a global health emergency and brought disaster to humans. Tremendous efforts have been made to control the pandemic, among which neutralizing antibodies (NAbs) are of specific interest to researchers. Neutralizing antibodies are generated within weeks after infection or immunization and can protect cells from virus intrusion and confer protective immunity to cells. Thus, production of NAbs is considered as a main goal for severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) vaccines and NAbs may be used for patient treatment in the form of monoclonal antibodies. Neutralization assays are capable of quantitatively detecting NAbs against SARS‐CoV‐2, allowing to explore the relationship between the level of NAbs and the severity of the disease, and may predict the possibility of re‐infection in COVID‐19 patients. They can also be used to test the effects of monoclonal antibodies, convalescent plasma and vaccines. At present, wild‐type virus neutralization assay remains the gold standard for measuring Nabs, while pseudovirus neutralization assays, Surrogate virus neutralization test (sVNT) and high‐throughput versions of neutralization assays are popular alternatives with their own advantages and disadvantages. In this review article, we summarize the characteristics and recent progress of SARS‐CoV‐2 neutralization assays. Special attention is given to the current limitations of various neutralization assays so as to promote new possible strategies with NAbs by which rapid SARS‐CoV‐2 serological diagnosis and antiviral screening in the future will be achieved.
Collapse
Affiliation(s)
- Yuying Lu
- Department of Epidemiology School of Public Health Sun Yat‐Sen University Guangzhou China
| | - Jin Wang
- Department of Epidemiology School of Public Health Sun Yat‐Sen University Guangzhou China
| | - Qianlin Li
- Department of Epidemiology School of Public Health Sun Yat‐Sen University Guangzhou China
| | - Huan Hu
- Department of Epidemiology School of Public Health Sun Yat‐Sen University Guangzhou China
| | - Jiahai Lu
- Department of Epidemiology School of Public Health Sun Yat‐Sen University Guangzhou China
| | - Zeliang Chen
- Department of Epidemiology School of Public Health Sun Yat‐Sen University Guangzhou China
| |
Collapse
|
10
|
Li H, Cheng C, Li S, Wu Y, Liu Z, Liu M, Chen J, Zhong Q, Zhang X, Liu S, Song G. Discovery and structural optimization of 3-O-β-chacotriosyl oleanane-type triterpenoids as potent entry inhibitors of SARS-CoV-2 virus infections. Eur J Med Chem 2021; 215:113242. [PMID: 33588180 PMCID: PMC7869707 DOI: 10.1016/j.ejmech.2021.113242] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 12/15/2022]
Abstract
Currently, SARS-CoV-2 virus is an emerging pathogen that has posed a serious threat to public health worldwide. However, no agents have been approved to treat SARS-CoV-2 infections to date, underscoring the great need for effective and practical therapies for SARS-CoV-2 outbreaks. We reported that a focused screen of OA saponins identified 3-O-β-chacotriosyl OA benzyl ester 2 as a novel small molecule inhibitor of SARS-CoV-2 virus entry, via binding to SARS-CoV-2 glycoprotein (S). We performed structure-activity relationship profiling of 2 and discovered C-17-COOH of OA was an important modification site that improved both inhibitor potency toward SARS-CoV-2 and selectivity index. Then optimization from hit to lead resulted in a potent fusion inhibitor 12f displaying strong inhibition against infectious SARS-CoV-2 with an IC50 value of 0.97 μM in vitro. Mechanism studies confirmed that inhibition of SARS-CoV-2 viral entry of 12f was mediated by the direct interaction with SARS-CoV-2 S2 subunit to block membrane fusion. These 3-O-β-chacotriosyl OA amide saponins are suitable for further optimization as SARS-CoV-2 entry inhibitors with the potential to be developed as therapeutic agents for the treatment of SARS-CoV-2 virus infections.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Chen Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sumei Li
- Department of Human Anatomy, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafet Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhihao Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Mingjian Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qiuyu Zhong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Xuesha Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, 510515, China.
| | - Gaopeng Song
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
11
|
Toon K, Bentley EM, Mattiuzzo G. More Than Just Gene Therapy Vectors: Lentiviral Vector Pseudotypes for Serological Investigation. Viruses 2021; 13:217. [PMID: 33572589 PMCID: PMC7911487 DOI: 10.3390/v13020217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Serological assays detecting neutralising antibodies are important for determining the immune responses following infection or vaccination and are also often considered a correlate of protection. The target of neutralising antibodies is usually located in the Envelope protein on the viral surface, which mediates cell entry. As such, presentation of the Envelope protein on a lentiviral particle represents a convenient alternative to handling of a potentially high containment virus or for those viruses with no established cell culture system. The flexibility, relative safety and, in most cases, ease of production of lentiviral pseudotypes, have led to their use in serological assays for many applications such as the evaluation of candidate vaccines, screening and characterization of anti-viral therapeutics, and sero-surveillance. Above all, the speed of production of the lentiviral pseudotypes, once the envelope sequence is published, makes them important tools in the response to viral outbreaks, as shown during the COVID-19 pandemic in 2020. In this review, we provide an overview of the landscape of the serological applications of pseudotyped lentiviral vectors, with a brief discussion on their production and batch quality analysis. Finally, we evaluate their role as surrogates for the real virus and possible alternatives.
Collapse
Affiliation(s)
- Kamilla Toon
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Emma M. Bentley
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
| | - Giada Mattiuzzo
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
| |
Collapse
|
12
|
Du R, Cheng H, Cui Q, Peet NP, Gaisina IN, Rong L. Identification of a novel inhibitor targeting influenza A virus group 2 hemagglutinins. Antiviral Res 2021; 186:105013. [PMID: 33428962 DOI: 10.1016/j.antiviral.2021.105013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/29/2020] [Accepted: 01/02/2021] [Indexed: 10/22/2022]
Abstract
Influenza A virus (IAV) causes seasonal epidemics and occasional but devastating pandemics, which are major public health concerns. The putative antiviral therapeutics are useful for the treatment of influenza, however, the emerging resistant strains necessitate a constant search for new drug candidates. Here we report the discovery of a novel antiviral agent, compound CBS1194, which was identified by a parallel high-throughput screening (HTS) campaign using two retroviral pseudotypes bearing H7 or H5 hemagglutinins (HAs). Subsequent analyses demonstrated that CBS1194 is specific to IAVs of group 2, while it has no effect against those of group 1. In a time-of-addition assay, CBS1194 showed a significant inhibitory effect during the early phase of viral infection. In addition, HA-mediated hemolysis can be inhibited by CBS1194 treatment, indicating that this compound may target the HA stalk region, which is responsible for membrane fusion. Escape mutant analyses and in silico docking further revealed that CBS1194 fits into a pocket near the fusion peptide, causing steric hindrance that blocks the low-pH induced rearrangement of HA. In summary, our study identifies a novel fusion inhibitor of group 2 IAVs, which has the potential as lead compound for further development.
Collapse
Affiliation(s)
- Ruikun Du
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Han Cheng
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Qinghua Cui
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Norton P Peet
- Chicago BioSolutions Inc., 2242 W Harrison Street, Chicago, IL, 60612, United States
| | - Irina N Gaisina
- Chicago BioSolutions Inc., 2242 W Harrison Street, Chicago, IL, 60612, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
13
|
Screening for Anti-Influenza Actives of Prefractionated Traditional Chinese Medicines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4979850. [PMID: 33123207 PMCID: PMC7584957 DOI: 10.1155/2020/4979850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/21/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023]
Abstract
Traditional Chinese medicines (TCMs) have proven to possess advantages in counteracting virus infections according to clinical practices. It's therefore of great value to discover novel antivirals from TCMs. In this paper, One hundred medicinal plants which have been included in TCM prescriptions for antiviral treatment were selected and prefractionated into 5 fractions each by sequentially using cyclohexane, dichloromethane, ethyl acetate, n-butanol, and water. 500 TCM-simplified extracts were then subjected to a phenotypic screening using a recombinant IAV expressing Gaussia luciferase. Ten TCM fractions were identified to possess antiviral activities against influenza virus. The IC50's of the hit fractions range from 1.08 to 6.45 μg/mL, while the SIs, from 7.52 to 98.40. Furthermore, all the ten hit fractions inhibited the propagation of progeny influenza virus significantly at 20 μg/mL. The hit TCM fractions deserve further isolation for responsible constituents leading towards anti-influenza drugs. Moreover, a library consisting of 500 simplified TCM extracts was established, facilitating antiviral screening in quick response to emerging and re-emerging viruses such as Ebola virus and current SARS-CoV-2 pandemic.
Collapse
|
14
|
Cooper L, Schafer A, Li Y, Cheng H, Medegan Fagla B, Shen Z, Nowar R, Dye K, Anantpadma M, Davey RA, Thatcher GRJ, Rong L, Xiong R. Screening and Reverse-Engineering of Estrogen Receptor Ligands as Potent Pan-Filovirus Inhibitors. J Med Chem 2020; 63:11085-11099. [PMID: 32886512 DOI: 10.1021/acs.jmedchem.0c01001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Filoviridae, including Ebola (EBOV) and Marburg (MARV) viruses, are emerging pathogens that pose a serious threat to public health. No agents have been approved to treat filovirus infections, representing a major unmet medical need. The selective estrogen receptor modulator (SERM) toremifene was previously identified from a screen of FDA-approved drugs as a potent EBOV viral entry inhibitor, via binding to EBOV glycoprotein (GP). A focused screen of ER ligands identified ridaifen-B as a potent dual inhibitor of EBOV and MARV. Optimization and reverse-engineering to remove ER activity led to a novel compound 30 (XL-147) showing potent inhibition against infectious EBOV Zaire (0.09 μM) and MARV (0.64 μM). Mutagenesis studies confirmed that inhibition of EBOV viral entry is mediated by the direct interaction with GP. Importantly, compound 30 displayed a broad-spectrum antifilovirus activity against Bundibugyo, Tai Forest, Reston, and Měnglà viruses and is the first submicromolar antiviral agent reported for some of these strains, therefore warranting further development as a pan-filovirus inhibitor.
Collapse
Affiliation(s)
- Laura Cooper
- Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois 60612, United States.,Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Adam Schafer
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Yangfeng Li
- Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Han Cheng
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Bani Medegan Fagla
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Zhengnan Shen
- Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Raghad Nowar
- Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Katherine Dye
- Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Manu Anantpadma
- Department of Microbiology, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories, Boston, Massachusetts 02118, United States.,Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas 78227, United States
| | - Robert A Davey
- Department of Microbiology, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories, Boston, Massachusetts 02118, United States.,Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas 78227, United States
| | - Gregory R J Thatcher
- Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Rui Xiong
- Department of Pharmaceutical Sciences, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
15
|
Yao Y, Kadam RU, Lee CCD, Woehl JL, Wu NC, Zhu X, Kitamura S, Wilson IA, Wolan DW. An influenza A hemagglutinin small-molecule fusion inhibitor identified by a new high-throughput fluorescence polarization screen. Proc Natl Acad Sci U S A 2020; 117:18431-18438. [PMID: 32690700 PMCID: PMC7414093 DOI: 10.1073/pnas.2006893117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Influenza hemagglutinin (HA) glycoprotein is the primary surface antigen targeted by the host immune response and a focus for development of novel vaccines, broadly neutralizing antibodies (bnAbs), and therapeutics. HA enables viral entry into host cells via receptor binding and membrane fusion and is a validated target for drug discovery. However, to date, only a very few bona fide small molecules have been reported against the HA. To identity new antiviral lead candidates against the highly conserved fusion machinery in the HA stem, we synthesized a fluorescence-polarization probe based on a recently described neutralizing cyclic peptide P7 derived from the complementarity-determining region loops of human bnAbs FI6v3 and CR9114 against the HA stem. We then designed a robust binding assay compatible with high-throughput screening to identify molecules with low micromolar to nanomolar affinity to influenza A group 1 HAs. Our simple, low-cost, and efficient in vitro assay was used to screen H1/Puerto Rico/8/1934 (H1/PR8) HA trimer against ∼72,000 compounds. The crystal structure of H1/PR8 HA in complex with our best hit compound F0045(S) confirmed that it binds to pockets in the HA stem similar to bnAbs FI6v3 and CR9114, cyclic peptide P7, and small-molecule inhibitor JNJ4796. F0045 is enantioselective against a panel of group 1 HAs and F0045(S) exhibits in vitro neutralization activity against multiple H1N1 and H5N1 strains. Our assay, compound characterization, and small-molecule candidate should further stimulate the discovery and development of new compounds with unique chemical scaffolds and enhanced influenza antiviral capabilities.
Collapse
MESH Headings
- Antiviral Agents/chemistry
- Antiviral Agents/pharmacology
- Drug Evaluation, Preclinical/methods
- Fluorescence Polarization/methods
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Humans
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/metabolism
- Influenza A Virus, H5N1 Subtype/drug effects
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/metabolism
- Influenza, Human/virology
- Small Molecule Libraries/chemistry
- Small Molecule Libraries/pharmacology
Collapse
Affiliation(s)
- Yao Yao
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Rameshwar U Kadam
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Chang-Chun David Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Jordan L Woehl
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Seiya Kitamura
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037;
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Dennis W Wolan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037;
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
16
|
Gaisina IN, Peet NP, Wong L, Schafer AM, Cheng H, Anantpadma M, Davey RA, Thatcher GRJ, Rong L. Discovery and Structural Optimization of 4-(Aminomethyl)benzamides as Potent Entry Inhibitors of Ebola and Marburg Virus Infections. J Med Chem 2020; 63:7211-7225. [PMID: 32490678 DOI: 10.1021/acs.jmedchem.0c00463] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The recent Ebola epidemics in West Africa underscore the great need for effective and practical therapies for future Ebola virus outbreaks. We have discovered a new series of remarkably potent small molecule inhibitors of Ebola virus entry. These 4-(aminomethyl)benzamide-based inhibitors are also effective against Marburg virus. Synthetic routes to these compounds allowed for the preparation of a wide variety of structures, including a conformationally restrained subset of indolines (compounds 41-50). Compounds 20, 23, 32, 33, and 35 are superior inhibitors of Ebola (Mayinga) and Marburg (Angola) infectious viruses. Representative compounds (20, 32, and 35) have shown good metabolic stability in plasma and liver microsomes (rat and human), and 32 did not inhibit CYP3A4 nor CYP2C9. These 4-(aminomethyl)benzamides are suitable for further optimization as inhibitors of filovirus entry, with the potential to be developed as therapeutic agents for the treatment and control of Ebola virus infections.
Collapse
Affiliation(s)
- Irina N Gaisina
- UICentre (Drug Discovery @ UIC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States.,Chicago BioSolutions Inc., 2242 W Harrison Street, Chicago, Illinois 60612, United States
| | - Norton P Peet
- Chicago BioSolutions Inc., 2242 W Harrison Street, Chicago, Illinois 60612, United States
| | - Letitia Wong
- Chicago BioSolutions Inc., 2242 W Harrison Street, Chicago, Illinois 60612, United States
| | - Adam M Schafer
- College of Medicine, Department of Microbiology and Immunology, University of Illinois at Chicago, 909 S Wolcott Ave, Chicago, Illinois 60612, United States
| | - Han Cheng
- College of Medicine, Department of Microbiology and Immunology, University of Illinois at Chicago, 909 S Wolcott Ave, Chicago, Illinois 60612, United States
| | - Manu Anantpadma
- Texas Biomedical Research Institute, 8715 W Military Drive, San Antonio, Texas 78227, United States.,Department of Microbiology, Boston University, 620 Albany Street, Boston, Massachusetts 02118, United States
| | - Robert A Davey
- Texas Biomedical Research Institute, 8715 W Military Drive, San Antonio, Texas 78227, United States.,Department of Microbiology, Boston University, 620 Albany Street, Boston, Massachusetts 02118, United States
| | - Gregory R J Thatcher
- UICentre (Drug Discovery @ UIC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Lijun Rong
- College of Medicine, Department of Microbiology and Immunology, University of Illinois at Chicago, 909 S Wolcott Ave, Chicago, Illinois 60612, United States
| |
Collapse
|
17
|
Hussein AFA, Cheng H, Tundup S, Antanasijevic A, Varhegyi E, Perez J, AbdulRahman EM, Elenany MG, Helal S, Caffrey M, Peet N, Manicassamy B, Rong L. Identification of entry inhibitors with 4-aminopiperidine scaffold targeting group 1 influenza A virus. Antiviral Res 2020; 177:104782. [PMID: 32222293 PMCID: PMC7243365 DOI: 10.1016/j.antiviral.2020.104782] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 01/09/2023]
Abstract
Influenza A viruses (IAVs) cause seasonal flu and occasionally pandemics. The current therapeutics against IAVs target two viral proteins - neuraminidase (NA) and M2 ion-channel protein. However, M2 ion channel inhibitors (amantadine and rimantadine) are no longer recommended by CDC for use due to the emergence of high level of antiviral resistance among the circulating influenza viruses, and resistant strains to NA inhibitors (oseltamivir and zanamivir) have also been reported. Therefore, development of novel anti-influenza therapies is urgently needed. As one of the viral surface glycoproteins, hemagglutinin (HA) mediates critical virus entry steps including virus binding to host cells and virus-host membrane fusion, which makes it a potential target for anti-influenza drug development. In this study, we report the identification of compound CBS1116 with a 4-aminopiperidine scaffold from a chemical library screen as an entry inhibitor specifically targeting two group 1 influenza A viruses, A/Puerto Rico/8/34 (H1N1) and recombinant low pathogenic avian H5N1 virus (A/Vietnam/1203/04, VN04Low). Mechanism of action studies show that CBS1116 interferes with the HA-mediated fusion process. Further structure activity relationship study generated a more potent compound CBS1117 which has a 50% inhibitory concentration of 70 nM and a selectivity index of ~4000 against A/Puerto Rico/8/34 (H1N1) infection in human lung epithelial cell line (A549).
Collapse
Affiliation(s)
- Amira F A Hussein
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Han Cheng
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Smanla Tundup
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL, 60439, USA; Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Aleksandar Antanasijevic
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Elizabeth Varhegyi
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jasmine Perez
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Eiman M AbdulRahman
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mervat G Elenany
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Soheir Helal
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Michael Caffrey
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Norton Peet
- Chicago BioSolutions, Inc., 2242 West Harrison Suite 201, Chicago, IL, 60612, USA
| | - Balaji Manicassamy
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL, 60439, USA; Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
18
|
Gaisina IN, Peet NP, Cheng H, Li P, Du R, Cui Q, Furlong K, Manicassamy B, Caffrey M, Thatcher GRJ, Rong L. Optimization of 4-Aminopiperidines as Inhibitors of Influenza A Viral Entry That Are Synergistic with Oseltamivir. J Med Chem 2020; 63:3120-3130. [PMID: 32069052 DOI: 10.1021/acs.jmedchem.9b01900] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vaccination is the most prevalent prophylactic means for controlling seasonal influenza infections. However, an effective vaccine usually takes at least 6 months to develop for the circulating strains. Therefore, new therapeutic options are needed for the acute treatment of influenza infections to control this virus and prevent epidemics/pandemics from developing. We have discovered fast-acting, orally bioavailable acylated 4-aminopiperidines with an effective mechanism of action targeting viral hemagglutinin (HA). Our data show that these compounds are potent entry inhibitors of influenza A viruses. We present docking studies that suggest an HA binding site for these inhibitors on H5N1. Compound 16 displayed a significant decrease of viral titer when evaluated in the infectious assays with influenza virus H1N1 (A/Puerto Rico/8/1934) or H5N1 (A/Vietnam/1203/2004) strains and the oseltamivir-resistant strain with the most common H274Y mutation. In addition, compound 16 showed significant synergistic activity with oseltamivir in vitro.
Collapse
Affiliation(s)
- Irina N Gaisina
- UICentre (Drug Discovery@UIC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States.,Chicago BioSolutions, Inc., 2242 West Harrison Street, Chicago, Illinois 60612, United States
| | - Norton P Peet
- Chicago BioSolutions, Inc., 2242 West Harrison Street, Chicago, Illinois 60612, United States
| | - Han Cheng
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, Chicago, Illinois 60612, United States
| | - Ping Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, 16369 Jinshi Road, Jinan, Shandong 250355, China
| | - Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, 16369 Jinshi Road, Jinan, Shandong 250355, China
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, 16369 Jinshi Road, Jinan, Shandong 250355, China
| | - Kevin Furlong
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, United States
| | - Balaji Manicassamy
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, United States.,Department of Microbiology and Immunology, University of Iowa, 51 Newton Road, Iowa City, Iowa 52242, United States
| | - Michael Caffrey
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, Illinois 60607, United States
| | - Gregory R J Thatcher
- UICentre (Drug Discovery@UIC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, Chicago, Illinois 60612, United States
| |
Collapse
|
19
|
Zhang L, Lei S, Xie H, Li Q, Liu S, Liu Q, Huang W, Xiao X, Wang Y. Screening and Identification of Marburg Virus Entry Inhibitors Using Approved Drugs. Virol Sin 2019; 35:235-239. [PMID: 31863356 DOI: 10.1007/s12250-019-00184-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/21/2019] [Indexed: 11/24/2022] Open
Affiliation(s)
- Li Zhang
- Division of HIV/AIDS and Sexually-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Shan Lei
- Division of HIV/AIDS and Sexually-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Hui Xie
- Division of HIV/AIDS and Sexually-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Qianqian Li
- Division of HIV/AIDS and Sexually-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Shuo Liu
- Division of HIV/AIDS and Sexually-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Qiang Liu
- Division of HIV/AIDS and Sexually-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Weijin Huang
- Division of HIV/AIDS and Sexually-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Xinyue Xiao
- Institute for Reference Standards and Standardization, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Youchun Wang
- Division of HIV/AIDS and Sexually-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 102629, China.
| |
Collapse
|
20
|
Anantpadma M, Lane T, Zorn KM, Lingerfelt MA, Clark AM, Freundlich JS, Davey RA, Madrid PB, Ekins S. Ebola Virus Bayesian Machine Learning Models Enable New in Vitro Leads. ACS OMEGA 2019; 4:2353-2361. [PMID: 30729228 PMCID: PMC6356859 DOI: 10.1021/acsomega.8b02948] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/17/2019] [Indexed: 05/08/2023]
Abstract
We have previously described the first Bayesian machine learning models from FDA-approved drug screens, for identifying compounds active against the Ebola virus (EBOV). These models led to the identification of three active molecules in vitro: tilorone, pyronaridine, and quinacrine. A follow-up study demonstrated that one of these compounds, tilorone, has 100% in vivo efficacy in mice infected with mouse-adapted EBOV at 30 mg/kg/day intraperitoneal. This suggested that we can learn from the published data on EBOV inhibition and use it to select new compounds for testing that are active in vivo. We used these previously built Bayesian machine learning EBOV models alongside our chemical insights for the selection of 12 molecules, absent from the training set, to test for in vitro EBOV inhibition. Nine molecules were directly selected using the model, and eight of these molecules possessed a promising in vitro activity (EC50 < 15 μM). Three further compounds were selected for an in vitro evaluation because they were antimalarials, and compounds of this class like pyronaridine and quinacrine have previously been shown to inhibit EBOV. We identified the antimalarial drug arterolane (IC50 = 4.53 μM) and the anticancer clinical candidate lucanthone (IC50 = 3.27 μM) as novel compounds that have EBOV inhibitory activity in HeLa cells and generally lack cytotoxicity. This work provides further validation for using machine learning and medicinal chemistry expertize to prioritize compounds for testing in vitro prior to more costly in vivo tests. These studies provide further corroboration of this strategy and suggest that it can likely be applied to other pathogens in the future.
Collapse
Affiliation(s)
- Manu Anantpadma
- Department
of Virology and Immunology, Texas Biomedical
Research Institute, 8715
West Military Drive, San Antonio, Texas 78227, United
States
| | - Thomas Lane
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Kimberley M. Zorn
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Mary A. Lingerfelt
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Alex M. Clark
- Molecular
Materials Informatics, Inc., 1900 St. Jacques #302, Montreal H3J 2S1, Quebec, Canada
| | - Joel S. Freundlich
- Departments
of Pharmacology, Physiology, and Neuroscience & Medicine, Center
for Emerging and Reemerging Pathogens, Rutgers
University—New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Robert A. Davey
- Department
of Virology and Immunology, Texas Biomedical
Research Institute, 8715
West Military Drive, San Antonio, Texas 78227, United
States
| | - Peter B. Madrid
- SRI
International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
21
|
Cui Q, Cheng H, Xiong R, Zhang G, Du R, Anantpadma M, Davey RA, Rong L. Identification of Diaryl-Quinoline Compounds as Entry Inhibitors of Ebola Virus. Viruses 2018; 10:v10120678. [PMID: 30513600 PMCID: PMC6315506 DOI: 10.3390/v10120678] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022] Open
Abstract
Ebola virus is the causative agent of Ebola virus disease in humans. The lethality of Ebola virus infection is about 50%, supporting the urgent need to develop anti-Ebola drugs. Glycoprotein (GP) is the only surface protein of the Ebola virus, which is functionally critical for the virus to attach and enter the host cells, and is a promising target for anti-Ebola virus drug development. In this study, using the recombinant HIV-1/Ebola pseudovirus platform we previously established, we evaluated a small molecule library containing various quinoline compounds for anti-Ebola virus entry inhibitors. Some of the quinoline compounds specifically inhibited the entry of the Ebola virus. Among them, compound SYL1712 was the most potent Ebola virus entry inhibitor with an IC50 of ~1 μM. The binding of SYL1712 to the vial glycoprotein was computationally modeled and was predicted to interact with specific residues of GP. We used the time of the addition assay to show that compound SYL1712 blocks Ebola GP-mediated entry. Finally, consistent with being an Ebola virus entry inhibitor, compound SYL1712 inhibited infectious Ebola virus replication in tissue culture under biosafety level 4 containment, with an IC50 of 2 μM. In conclusion, we identified several related molecules with a diaryl-quinoline scaffold as potential anti-EBOV entry inhibitors, which can be further optimized for anti-Ebola drug development.
Collapse
Affiliation(s)
- Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
- Department of Microbiology and Immunology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Han Cheng
- Department of Microbiology and Immunology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Rui Xiong
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Gang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Manu Anantpadma
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
- Department of Microbiology, Boston University, National Emerging Infectious Diseases Laboratories, 401P, 620 Albany Street, Boston, MA 02118, USA.
| | - Robert A Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
- Department of Microbiology, Boston University, National Emerging Infectious Diseases Laboratories, 401P, 620 Albany Street, Boston, MA 02118, USA.
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
22
|
Schafer A, Cheng H, Xiong R, Soloveva V, Retterer C, Mo F, Bavari S, Thatcher G, Rong L. Repurposing potential of 1st generation H 1-specific antihistamines as anti-filovirus therapeutics. Antiviral Res 2018; 157:47-56. [PMID: 29981374 DOI: 10.1016/j.antiviral.2018.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/26/2018] [Accepted: 07/02/2018] [Indexed: 11/26/2022]
Abstract
Ebola and Marburg are filoviruses and biosafety level 4 pathogens responsible for causing severe hemorrhagic fevers in humans with mortality rates up to 90%. The most recent outbreak in West Africa resulted in approximately 11,310 deaths in 28,616 reported cases. Currently there are no FDA-approved vaccines or therapeutics to treat infections of these deadly viruses. Recently we screened an FDA-approved drug library and identified numerous G protein-coupled receptor (GPCR) antagonists including antihistamines possessing anti-filovirus properties. Antihistamines are attractive targets for drug repurposing because of their low cost and ease of access due to wide use. In this report we identify common over the counter antihistamines, such as diphenhydramine (Benadryl) and chlorcyclizine (Ahist) as potential candidates for repurposing as anti-filovirus agents. Furthermore, we demonstrate that this potential is wide-spread through the 1st generation of H1-specific antihistamines but is not present in newer drugs or drugs targeting H2, H3 and H4 receptors. We showed that the filovirus entry inhibition is not dependent on the classical antagonism of cell surface histamine or muscarinic acetylcholine receptors but occurs in the endosome, like the cathepsin inhibitor CA-074. Finally, using extensive docking studies we showed the potential for these drugs to bind directly to the EBOV-GP at the same site as toremifene. These findings suggest that the 1st generation antihistamines are excellent candidates for repurposing as anti-filovirus therapeutics and can be further optimized for removal of unwanted histamine or muscarinic receptor interactions without loss of anti-filovirus efficacy.
Collapse
Affiliation(s)
- Adam Schafer
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Han Cheng
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Rui Xiong
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, UICentre, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Veronica Soloveva
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, USA
| | - Cary Retterer
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, USA
| | - Feiyan Mo
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA; Zhiyuan College, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sina Bavari
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, USA
| | - Gregory Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, UICentre, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
23
|
Cui Q, Du R, Anantpadma M, Schafer A, Hou L, Tian J, Davey RA, Cheng H, Rong L. Identification of Ellagic Acid from Plant Rhodiola rosea L. as an Anti-Ebola Virus Entry Inhibitor. Viruses 2018; 10:v10040152. [PMID: 29584652 PMCID: PMC5923446 DOI: 10.3390/v10040152] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 11/16/2022] Open
Abstract
The recent 2014-2016 West African Ebola virus epidemic underscores the need for the development of novel anti-Ebola therapeutics, due to the high mortality rates of Ebola virus infections and the lack of FDA-approved vaccine or therapy that is available for the prevention and treatment. Traditional Chinese medicines (TCMs) represent a huge reservoir of bioactive chemicals and many TCMs have been shown to have antiviral activities. 373 extracts from 128 TCMs were evaluated using a high throughput assay to screen for inhibitors of Ebola virus cell entry. Extract of Rhodiola rosea displayed specific and potent inhibition against cell entry of both Ebola virus and Marburg virus. In addition, twenty commercial compounds that were isolated from Rhodiola rosea were evaluated using the pseudotyped Ebola virus entry assay, and it was found that ellagic acid and gallic acid, which are two structurally related compounds, are the most effective ones. The activity of the extract and the two pure compounds were validated using infectious Ebola virus. The time-of-addition experiments suggest that, mechanistically, the Rhodiola rosea extract and the effective compounds act at an early step in the infection cycle following initial cell attachment, but prior to viral/cell membrane fusion. Our findings provide evidence that Rhodiola rosea has potent anti-filovirus properties that may be developed as a novel anti-Ebola treatment.
Collapse
Affiliation(s)
- Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Manu Anantpadma
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
| | - Adam Schafer
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Lin Hou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Jingzhen Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Robert A Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
| | - Han Cheng
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
24
|
Li Q, Liu Q, Huang W, Li X, Wang Y. Current status on the development of pseudoviruses for enveloped viruses. Rev Med Virol 2017; 28. [PMID: 29218769 PMCID: PMC7169153 DOI: 10.1002/rmv.1963] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022]
Abstract
Emerging and reemerging infectious diseases have a strong negative impact on public health. However, because many of these pathogens must be handled in biosafety level, 3 or 4 containment laboratories, research and development of antivirals or vaccines against these diseases are often impeded. Alternative approaches to address this issue have been vigorously pursued, particularly the use of pseudoviruses in place of wild‐type viruses. As pseudoviruses have been deprived of certain gene sequences of the virulent virus, they can be handled in biosafety level 2 laboratories. Importantly, the envelopes of these viral particles may have similar conformational structures to those of the wild‐type viruses, making it feasible to conduct mechanistic investigation on viral entry and to evaluate potential neutralizing antibodies. However, a variety of challenging issues remain, including the production of a sufficient pseudovirus yield and the inability to produce an appropriate pseudotype of certain viruses. This review discusses current progress in the development of pseudoviruses and dissects the factors that contribute to low viral yields.
Collapse
Affiliation(s)
- Qianqian Li
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Qiang Liu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Xuguang Li
- Division of Regulatory Research, Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Canada
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
25
|
An LASV GPC pseudotyped virus based reporter system enables evaluation of vaccines in mice under non-BSL-4 conditions. Vaccine 2017; 35:5172-5178. [PMID: 28797730 DOI: 10.1016/j.vaccine.2017.07.101] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/16/2017] [Accepted: 07/27/2017] [Indexed: 12/23/2022]
Abstract
Lassa virus (LASV) causes a severe hemorrhagic fever endemic throughout western Africa. Because of the ability to cause lethal disease in humans, limited treatment options, and potential as a bioweapon, the need for vaccines to prevent LASV epidemic is urgent. However, LASV vaccine development has been hindered by the lack of appropriate small animal models for efficacy evaluation independent of biosafety level four (BSL-4) facilities. Here we generated an LASV-glycoprotein precursor (GPC)-pseudotyped Human immunodeficiency virus containing firefly luciferase (Fluc) reporter gene as surrogate to develop a bioluminescent-imaging-based BALB/c mouse model for one-round infection under non-BSL-4 conditions, in which the bioluminescent intensity of Fluc was utilized as endpoint when evaluating vaccine efficacy. Electron microscopy analysis demonstrated that LASV GPC pseudotyped virus appeared structurally similar to native virion. Meanwhile, we constructed DNA vaccine (pSV1.0-LASVGPC) and pseudoparticle-based vaccine (LASVpp) that displayed conformational GPC protein of LASV strain Josiah to vaccinate BALB/c mice using intramuscular electroporation and by intraperitoneal routes, respectively. Vaccinated mice in LASVpp alone and DNA prime+LASVpp boost schedules were protected against 100 AID50 of LASV pseudovirus challenge, and it was found that in vivo efficiencies correlated with their anti-LASV neutralizing activities and MCP-1 cytokine levels in serum sampled before infection. The bioluminescence pseudovirus infection model can be useful tool for the preliminary evaluation of immunogenicity and efficacy of vaccine candidates against LASV outside of BSL-4 containments, and the results with pseudoparticle-based vaccine provided very helpful information for LASV vaccine design.
Collapse
|
26
|
Cheng H, Schafer A, Soloveva V, Gharaibeh D, Kenny T, Retterer C, Zamani R, Bavari S, Peet NP, Rong L. Identification of a coumarin-based antihistamine-like small molecule as an anti-filoviral entry inhibitor. Antiviral Res 2017. [PMID: 28645623 DOI: 10.1016/j.antiviral.2017.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Filoviruses, consisting of Ebola virus, Marburg virus and Cuevavirus, cause severe hemorrhagic fevers in humans with high mortality rates up to 90%. Currently, there is no approved vaccine or therapy available for the prevention and treatment of filovirus infection in humans. The recent 2013-2015 West African Ebola epidemic underscores the urgency to develop antiviral therapeutics against these infectious diseases. Our previous study showed that GPCR antagonists, particularly histamine receptor antagonists (antihistamines) inhibit Ebola and Marburg virus entry. In this study, we screened a library of 1220 small molecules with predicted antihistamine activity, identified multiple compounds with potent inhibitory activity against entry of both Ebola and Marburg viruses in human cancer cell lines, and confirmed their anti-Ebola activity in human primary cells. These small molecules target a late-stage of Ebola virus entry. Further structure-activity relationship studies around one compound (cp19) reveal the importance of the coumarin fused ring structure, especially the hydrophobic substituents at positions 3 and/or 4, for its antiviral activity, and this identified scaffold represents a favorable starting point for the rapid development of anti-filovirus therapeutic agents.
Collapse
Affiliation(s)
- Han Cheng
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Adam Schafer
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Veronica Soloveva
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, USA
| | - Dima Gharaibeh
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, USA
| | - Tara Kenny
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, USA
| | - Cary Retterer
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, USA
| | - Rouzbeh Zamani
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, USA
| | - Sina Bavari
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, USA
| | - Norton P Peet
- Chicago BioSolutions, Inc., 2242 West Harrison Suite 201, Chicago, IL, 60612, USA
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
27
|
Liang J, Jangra RK, Bollinger L, Wada J, Radoshitzky SR, Chandran K, Jahrling PB, Kuhn JH, Jensen KS. Candidate medical countermeasures targeting Ebola virus cell entry. Future Virol 2017. [DOI: 10.2217/fvl-2016-0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Medical countermeasures (MCMs) against virus infections ideally prevent the adsorption or entry of virions into target cells, thereby circumventing infection. Recent significant advances in elucidating the mechanism of Ebola virus (EBOV) host-cell penetration include the involvement of two-pore channels at the early stage of entry, and identification of cellular proteases for EBOV spike glycoprotein maturation and the intracellular EBOV receptor, Niemann–Pick type C1. This improved understanding of the initial steps of EBOV infection is now increasingly applied to rapid development of candidate MCMs, some of which have already entered the clinic. Candidate MCMs discussed include antibodies, small molecules and peptides that target various stages of the described EBOV cell-entry pathway. In this review, we summarize the currently known spectrum of EBOV cell-entry inhibitors, describe their mechanism of action and evaluate their potential for future development.
Collapse
Affiliation(s)
- Janie Liang
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Rohit K Jangra
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Laura Bollinger
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jiro Wada
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Sheli R Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Kartik Chandran
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Peter B Jahrling
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Kenneth S Jensen
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| |
Collapse
|
28
|
Yang Y, Cheng H, Yan H, Wang PZ, Rong R, Zhang YY, Zhang CB, Du RK, Rong LJ. A cell-based high-throughput protocol to screen entry inhibitors of highly pathogenic viruses with Traditional Chinese Medicines. J Med Virol 2016; 89:908-916. [PMID: 27704591 PMCID: PMC7167059 DOI: 10.1002/jmv.24705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2016] [Indexed: 12/03/2022]
Abstract
Emerging viruses such as Ebola virus (EBOV), Lassa virus (LASV), and avian influenza virus H5N1 (AIV) are global health concerns. Since there is very limited options (either vaccine or specific therapy) approved for humans against these viruses, there is an urgent need to develop prophylactic and therapeutic treatments. Previously we reported a high‐throughput screening (HTS) protocol to identify entry inhibitors for three highly pathogenic viruses (EBOV, LASV, and AIV) using a human immunodeficiency virus–based pseudotyping platform which allows us to perform the screening in a BSL‐2 facility. In this report, we have adopted this screening protocol to evaluate traditional Chinese Medicines (TCMs) in an effort to discover entry inhibitors against these viruses. Here we show that extracts of the following Chinese medicinal herbs exhibit potent anti‐Ebola viral activities: Gardenia jasminoides Ellis, Citrus aurantium L., Viola yedoensis Makino, Prunella vulgaris L., Coix lacryma‐jobi L. var. mayuen (Roman.) Stapf, Pinellia ternata (Thunb.) Breit., and Morus alba L. This study represents a proof‐of‐principle investigation supporting the suitability of this assay for rapid screening TCMs and identifying putative entry inhibitors for these viruses. J. Med. Virol. 89:908–916, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yong Yang
- Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Han Cheng
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Hui Yan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peng-Zhan Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rong Rong
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying-Ying Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cheng-Bo Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rui-Kun Du
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Li-Jun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
29
|
Bis-biguanide dihydrochloride inhibits intracellular replication of M. tuberculosis and controls infection in mice. Sci Rep 2016; 6:32725. [PMID: 27601302 PMCID: PMC5013693 DOI: 10.1038/srep32725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/15/2016] [Indexed: 12/18/2022] Open
Abstract
While there is an urgent need to develop new and effective drugs for treatment of tuberculosis (TB) and multi-drug resistant TB (MDR-TB), repurposing FDA (U.S. Food and Drug Administration) -approved drugs for development of anti-TB agents may decrease time and effort from bench to bedside. Here, we employed host cell-based high throughput screening (HTS) assay to screen and characterize FDA-approved, off-patent library drugs for anti-Mycobacterium tuberculosis (MTB) activities. The cell-based HTS allowed us to identify an anti-cancer drug of bis-biguanide dihydrochloride (BBD) as potent anti-mycobacteria agent. Further characterization showed that BBD could inhibit intracellular and extracellular growth of M. smegmatis and slow-growing M. bovis BCG. BBD also potently inhibited replication of clinically-isolated MTB and MDR-TB strains. The proof-of-concept study showed that BBD treatment of MTB-infected mice could significantly decrease CFU counts in the lung and spleen. Notably, comparative evaluation showed that MTB CFU counts in BBD-treated mice were lower than those in rifampicin-treated mice. No apparent BBD side effects were found in BBD-treated mice. Thus, our findings support further studies to develop BBD as a new and effective drug against TB and MDR-TB.
Collapse
|
30
|
Ichiyama K, Yang C, Chandrasekaran L, Liu S, Rong L, Zhao Y, Gao S, Lee A, Ohba K, Suzuki Y, Yoshinaka Y, Shimotohno K, Miyakawa K, Ryo A, Hedrick J, Yamamoto N, Yang YY. Cooperative Orthogonal Macromolecular Assemblies with Broad Spectrum Antiviral Activity, High Selectivity, and Resistance Mitigation. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00091] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Koji Ichiyama
- Translational
ID Lab, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02 Centre for Translational
Medicine (MD6), Singapore 117599, Singapore
| | - Chuan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Lakshmi Chandrasekaran
- Translational
ID Lab, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02 Centre for Translational
Medicine (MD6), Singapore 117599, Singapore
| | - Shaoqiong Liu
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Lijun Rong
- Department
of Microbiology and Immunology (M/C 790), University of Illinois at Chicago, 835 S. Wolcott, Chicago, Illinois 60612, United States
| | - Yue Zhao
- Department
of Microbiology and Immunology (M/C 790), University of Illinois at Chicago, 835 S. Wolcott, Chicago, Illinois 60612, United States
| | - Shujun Gao
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Ashlynn Lee
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Kenji Ohba
- Translational
ID Lab, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02 Centre for Translational
Medicine (MD6), Singapore 117599, Singapore
| | - Youichi Suzuki
- Translational
ID Lab, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02 Centre for Translational
Medicine (MD6), Singapore 117599, Singapore
| | - Yoshiyuki Yoshinaka
- Department
of Molecular Virology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kunitada Shimotohno
- The
Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1, Kohnodai, Ichikawa,
Chiba 272-8516, Japan
| | - Kei Miyakawa
- Department
of Microbiology, Yokohama City University School of Medicine, Kanagawa 236-0004, Japan
| | - Akihide Ryo
- Department
of Microbiology, Yokohama City University School of Medicine, Kanagawa 236-0004, Japan
| | - James Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| | - Naoki Yamamoto
- Translational
ID Lab, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02 Centre for Translational
Medicine (MD6), Singapore 117599, Singapore
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| |
Collapse
|
31
|
Antanasijevic A, Kingsley C, Basu A, Bowlin TL, Rong L, Caffrey M. Application of virus-like particles (VLP) to NMR characterization of viral membrane protein interactions. JOURNAL OF BIOMOLECULAR NMR 2016; 64:255-65. [PMID: 26921030 PMCID: PMC4826305 DOI: 10.1007/s10858-016-0025-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/22/2016] [Indexed: 05/10/2023]
Abstract
The membrane proteins of viruses play critical roles in the virus life cycle and are attractive targets for therapeutic intervention. Virus-like particles (VLP) present the possibility to study the biochemical and biophysical properties of viral membrane proteins in their native environment. Specifically, the VLP constructs contain the entire protein sequence and are comprised of native membrane components including lipids, cholesterol, carbohydrates and cellular proteins. In this study we prepare VLP containing full-length hemagglutinin (HA) or neuraminidase (NA) from influenza and characterize their interactions with small molecule inhibitors. Using HA-VLP, we first show that VLP samples prepared using the standard sucrose gradient purification scheme contain significant amounts of serum proteins, which exhibit high potential for non-specific interactions, thereby complicating NMR studies of ligand-target interactions. We then show that the serum contaminants may be largely removed with the addition of a gel filtration chromatography step. Next, using HA-VLP we demonstrate that WaterLOGSY NMR is significantly more sensitive than Saturation Transfer Difference (STD) NMR for the study of ligand interactions with membrane bound targets. In addition, we compare the ligand orientation to HA embedded in VLP with that of recombinant HA by STD NMR. In a subsequent step, using NA-VLP we characterize the kinetic and binding properties of substrate analogs and inhibitors of NA, including study of the H274Y-NA mutant, which leads to wide spread resistance to current influenza antivirals. In summary, our work suggests that VLP have high potential to become standard tools in biochemical and biophysical studies of viral membrane proteins, particularly when VLP are highly purified and combined with control VLP containing native membrane proteins.
Collapse
Affiliation(s)
- Aleksandar Antanasijevic
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland, Chicago, IL, 60607, USA
| | - Carolyn Kingsley
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland, Chicago, IL, 60607, USA
| | - Arnab Basu
- Microbiotix Inc., Worcester, MA, 01605, USA
| | | | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Michael Caffrey
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland, Chicago, IL, 60607, USA.
| |
Collapse
|
32
|
Cheng H, Koning K, O'Hearn A, Wang M, Rumschlag-Booms E, Varhegyi E, Rong L. A parallel genome-wide RNAi screening strategy to identify host proteins important for entry of Marburg virus and H5N1 influenza virus. Virol J 2015; 12:194. [PMID: 26596270 PMCID: PMC4657351 DOI: 10.1186/s12985-015-0420-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/09/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Genome-wide RNAi screening has been widely used to identify host proteins involved in replication and infection of different viruses, and numerous host factors are implicated in the replication cycles of these viruses, demonstrating the power of this approach. However, discrepancies on target identification of the same viruses by different groups suggest that high throughput RNAi screening strategies need to be carefully designed, developed and optimized prior to the large scale screening. METHODS Two genome-wide RNAi screens were performed in parallel against the entry of pseudotyped Marburg viruses and avian influenza virus H5N1 utilizing an HIV-1 based surrogate system, to identify host factors which are important for virus entry. A comparative analysis approach was employed in data analysis, which alleviated systematic positional effects and reduced the false positive number of virus-specific hits. RESULTS The parallel nature of the strategy allows us to easily identify the host factors for a specific virus with a greatly reduced number of false positives in the initial screen, which is one of the major problems with high throughput screening. The power of this strategy is illustrated by a genome-wide RNAi screen for identifying the host factors important for Marburg virus and/or avian influenza virus H5N1 as described in this study. CONCLUSIONS This strategy is particularly useful for highly pathogenic viruses since pseudotyping allows us to perform high throughput screens in the biosafety level 2 (BSL-2) containment instead of the BSL-3 or BSL-4 for the infectious viruses, with alleviated safety concerns. The screening strategy together with the unique comparative analysis approach makes the data more suitable for hit selection and enables us to identify virus-specific hits with a much lower false positive rate.
Collapse
Affiliation(s)
- Han Cheng
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Katie Koning
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Aileen O'Hearn
- Present address: US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD21702, USA.
| | - Minxiu Wang
- Present address: Malcolm X College, Chicago, IL, 60612, USA.
| | | | - Elizabeth Varhegyi
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
33
|
Abstract
UNLABELLED Filoviruses, consisting of Ebola virus (EBOV) and Marburg virus (MARV), are among the most lethal infectious threats to mankind. Infections by these viruses can cause severe hemorrhagic fevers in humans and nonhuman primates with high mortality rates. Since there is currently no vaccine or antiviral therapy approved for humans, there is an urgent need to develop prophylactic and therapeutic options for use during filoviral outbreaks and bioterrorist attacks. One of the ideal targets against filoviral infection and diseases is at the entry step, which is mediated by the filoviral glycoprotein (GP). In this report, we screened a chemical library of small molecules and identified numerous inhibitors, which are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs, including histamine receptors, 5-HT (serotonin) receptors, muscarinic acetylcholine receptor, and adrenergic receptor. These inhibitors can effectively block replication of both infectious EBOV and MARV, indicating a broad antiviral activity of the GPCR antagonists. The time-of-addition experiment and microscopic studies suggest that GPCR antagonists block filoviral entry at a step following the initial attachment but prior to viral/cell membrane fusion. These results strongly suggest that GPCRs play a critical role in filoviral entry and GPCR antagonists can be developed as an effective anti-EBOV/MARV therapy. IMPORTANCE Infection of Ebola virus and Marburg virus can cause severe illness in humans with a high mortality rate, and currently there is no FDA-approved vaccine or therapeutic treatment available. The 2013-2015 epidemic in West Africa underscores a lack of our understanding in the infection and pathogenesis of these viruses and the urgency of drug discovery and development. In this study, we have identified numerous inhibitors that are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs. These inhibitors can effectively block replication of both infectious EBOV and MARV, indicating a broad antiviral activity of the GPCR antagonists. Our results strongly suggest that GPCRs play a critical role in filoviral entry and GPCR antagonists can be developed as an effective anti-EBOV/MARV therapy.
Collapse
|
34
|
Carnell GW, Ferrara F, Grehan K, Thompson CP, Temperton NJ. Pseudotype-based neutralization assays for influenza: a systematic analysis. Front Immunol 2015; 6:161. [PMID: 25972865 PMCID: PMC4413832 DOI: 10.3389/fimmu.2015.00161] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 03/25/2015] [Indexed: 12/02/2022] Open
Abstract
The use of vaccination against the influenza virus remains the most effective method of mitigating the significant morbidity and mortality caused by this virus. Antibodies elicited by currently licensed influenza vaccines are predominantly hemagglutination-inhibition (HI)-competent antibodies that target the globular head of hemagglutinin (HA) thus inhibiting influenza virus entry into target cells. These antibodies predominantly confer homosubtypic/strain specific protection and only rarely confer heterosubtypic protection. However, recent academia or pharma-led R&D toward the production of a “universal vaccine” has centered on the elicitation of antibodies directed against the stalk of the influenza HA that has been shown to confer broad protection across a range of different subtypes (H1–H16). The accurate and sensitive measurement of antibody responses elicited by these “next-generation” influenza vaccines is, however, hampered by the lack of sensitivity of the traditional influenza serological assays HI, single radial hemolysis, and microneutralization. Assays utilizing pseudotypes, chimeric viruses bearing influenza glycoproteins, have been shown to be highly efficient for the measurement of homosubtypic and heterosubtypic broadly neutralizing antibodies, making them ideal serological tools for the study of cross-protective responses against multiple influenza subtypes with pandemic potential. In this review, we will analyze and compare literature involving the production of influenza pseudotypes with particular emphasis on their use in serum antibody neutralization assays. This will enable us to establish the parameters required for optimization and propose a consensus protocol to be employed for the further deployment of these assays in influenza vaccine immunogenicity studies.
Collapse
Affiliation(s)
- George William Carnell
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK
| | - Francesca Ferrara
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK
| | - Keith Grehan
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK
| | - Craig Peter Thompson
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK ; Department of Zoology, University of Oxford , Oxford , UK ; The Jenner Institute Laboratories, University of Oxford , Oxford , UK
| | - Nigel James Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK
| |
Collapse
|
35
|
Hirschberg R, Ward LA, Kilgore N, Kurnat R, Schiltz H, Albrecht MT, Christopher GW, Nuzum E. Challenges, progress, and opportunities: proceedings of the filovirus medical countermeasures workshop. Viruses 2014; 6:2673-97. [PMID: 25010768 PMCID: PMC4113787 DOI: 10.3390/v6072673] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 11/17/2022] Open
Abstract
On August 22–23, 2013, agencies within the United States Department of Defense (DoD) and the Department of Health and Human Services (HHS) sponsored the Filovirus Medical Countermeasures (MCMs) Workshop as an extension of the activities of the Filovirus Animal Non-clinical Group (FANG). The FANG is a federally-recognized multi-Agency group established in 2011 to coordinate and facilitate U.S. government (USG) efforts to develop filovirus MCMs. The workshop brought together government, academic and industry experts to consider the needs for filovirus MCMs and evaluate the status of the product development pipeline. This report summarizes speaker presentations and highlights progress and challenges remaining in the field.
Collapse
Affiliation(s)
- Rona Hirschberg
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Lucy A Ward
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Nicole Kilgore
- Medical Countermeasure Systems, Department of Defense, Ft. Detrick, Frederick, MD 21702, USA.
| | - Rebecca Kurnat
- Medical Countermeasure Systems, Department of Defense, Ft. Detrick, Frederick, MD 21702, USA.
| | - Helen Schiltz
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Mark T Albrecht
- Biodefense Advanced Research and Development Authority, Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC 20201, USA.
| | - George W Christopher
- Medical Countermeasure Systems, Department of Defense, Fort Belvoir, VA 22060, USA.
| | - Ed Nuzum
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|