1
|
Guedira G, Petermann O, Scapozza L, Ismail HM. Diapocynin treatment induces functional and structural improvements in an advanced disease state in the mdx 5Cv mice. Biomed Pharmacother 2024; 177:116957. [PMID: 38908198 DOI: 10.1016/j.biopha.2024.116957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/30/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common muscular disorder affecting children. It affects nearly 1 male birth over 5000. Oxidative stress is a pervasive feature in the pathogenesis of DMD. Recent work shows that the main generators of ROS are NADPH oxidases (NOX), suggesting that they are an early and promising target in DMD. In addition, skeletal muscles of mdx mice, a murine model of DMD, overexpress NOXes. We investigated the impact of diapocynin, a dimer of the NOX inhibitor apocynin, on the chronic disease phase of mdx5Cv mice. Treatment of these mice with diapocynin from 7 to 10 months of age resulted in decreased hypertrophy of several muscles, prevented force loss induced by tetanic and eccentric contractions, improved muscle and respiratory functions, decreased fibrosis of the diaphragm and positively regulated the expression of disease modifiers. These encouraging results ensure the potential role of diapocynin in future treatment strategies.
Collapse
Affiliation(s)
- Ghali Guedira
- Pharmaceutical Biochemistry/Chemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Olivier Petermann
- Pharmaceutical Biochemistry/Chemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry/Chemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.
| | - Hesham M Ismail
- Pharmaceutical Biochemistry/Chemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Liu Y, Tang Y, Zhang H, Chen H, Luo Q, Liu J. Duchenne muscular dystrophy caused by a deletion (c.5021del) in exon 35 of the DMD gene: A case report and review of the literature. Heliyon 2024; 10:e28677. [PMID: 38586344 PMCID: PMC10998125 DOI: 10.1016/j.heliyon.2024.e28677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Duchenne muscular dystrophy (DMD MIM#310200) is a degenerative muscle disease caused by mutations in the dystrophin gene located on Xp21.2. The clinical features encompass muscle weakness and markedly elevated serum creatine kinase levels. An 8-year-old Chinese boy was diagnosed with Duchenne muscular dystrophy (DMD). Whole exome gene sequencing was conducted and the Sanger method was used to validate sequencing. A deletion (c.5021del) in exon 35 of the dystrophin gene was identified, which was predicted to generate a frameshift mutation and create an early termination codon (p.Leu1674CysfsTer47). It has a pathogenic effect against dystrophin in the muscle cell membrane of the patient. As such, prednisone treatment at a dose of 0.75 mg/kg.d was administered. After one month, a notable reduction in fall frequency was observed. Our new finding will expand the pathogenic mutation spectrum causing DMD.
Collapse
Affiliation(s)
- Yue Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Yanhui Tang
- Department of Pediatric, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hui Zhang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Hongying Chen
- Department of Pediatric, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qing Luo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, China
| |
Collapse
|
3
|
Cell-Based and Gene-Based Therapy Approaches in Neuro-orthopedic Disorders: a Literature Review. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Rodriguez-Outeiriño L, Hernandez-Torres F, Ramirez de Acuña F, Rastrojo A, Creus C, Carvajal A, Salmeron L, Montolio M, Soblechero-Martin P, Arechavala-Gomeza V, Franco D, Aranega AE. miR-106b is a novel target to promote muscle regeneration and restore satellite stem cell function in injured Duchenne dystrophic muscle. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:769-786. [PMID: 36159592 PMCID: PMC9463180 DOI: 10.1016/j.omtn.2022.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/14/2022] [Indexed: 10/26/2022]
|
5
|
Guo D, Li X, Liu N, Yu X, Shu J, Sheng W, Li D, Cai C. Beware of missed diagnosis in patients with multiple genetic diseases: a case report. BMC Pediatr 2022; 22:436. [PMID: 35858850 PMCID: PMC9297618 DOI: 10.1186/s12887-022-03490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is an X-linked recessive inherited disorder caused by the absence of the Dystrophin protein. Cerebral cavernous malformations (CCMs) are the most common vascular abnormalities in the central nervous system caused by the absence of the products of the CCM genes. Most CCMs cases reported occurring in a sporadic form are often asymptomatic. Case presentation We report a rare case of a 7-year-old Chinese boy with a co-existing DMD and sporadic CCMs. We found classic clinical features of DMD and non-specific pathological changes in his brain. We made the definitive diagnosis based on the results of whole-exome sequencing (WES), a repeat from exon 3 to exon 9 of the DMD inherited from his mother, and a de novo heterozygote nonsense mutation C.418G > T of the PDCD10 exon 6. Conclusion We should take care to avoid missed diagnoses in patients with multiple genetic disorders.
Collapse
Affiliation(s)
- Detong Guo
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Beichen District, No. 238 Longyan Road, Tianjin, 300134, China.,Graduate College of Tianjin Medical University, Tianjin, 300070, China
| | - Xuemei Li
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Beichen District, No. 238 Longyan Road, Tianjin, 300134, China.,Department of Neurology, Tianjin Children's Hospital, Beichen District, No. 238 Longyan Road, Tianjin, 300134, China
| | - Nan Liu
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Beichen District, No. 238 Longyan Road, Tianjin, 300134, China.,Tianjin Pediatric Research Institute, Tianjin, 300134, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, 300134, China
| | - Xiaoli Yu
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Beichen District, No. 238 Longyan Road, Tianjin, 300134, China.,Department of Neurology, Tianjin Children's Hospital, Beichen District, No. 238 Longyan Road, Tianjin, 300134, China
| | - Jianbo Shu
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Beichen District, No. 238 Longyan Road, Tianjin, 300134, China.,Tianjin Pediatric Research Institute, Tianjin, 300134, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, 300134, China
| | - Wenchao Sheng
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Beichen District, No. 238 Longyan Road, Tianjin, 300134, China.,Graduate College of Tianjin Medical University, Tianjin, 300070, China
| | - Dong Li
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Beichen District, No. 238 Longyan Road, Tianjin, 300134, China. .,Department of Neurology, Tianjin Children's Hospital, Beichen District, No. 238 Longyan Road, Tianjin, 300134, China.
| | - Chunquan Cai
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Beichen District, No. 238 Longyan Road, Tianjin, 300134, China. .,Tianjin Pediatric Research Institute, Tianjin, 300134, China. .,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, 300134, China. .,Department of Neurosurgery, Tianjin Children's Hospital, Tianjin, 300134, China.
| |
Collapse
|
6
|
Sun C, Choi IY, Gonzalez YIR, Andersen P, Talbot CC, Iyer SR, Lovering RM, Wagner KR, Lee G. Duchenne muscular dystrophy hiPSC-derived myoblast drug screen identifies compounds that ameliorate disease in mdx mice. JCI Insight 2020; 5:134287. [PMID: 32343677 PMCID: PMC7308059 DOI: 10.1172/jci.insight.134287] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common muscular dystrophy. In the present study, when human induced pluripotent stem cells (hiPSCs) were differentiated into myoblasts, the myoblasts derived from DMD patient hiPSCs (DMD hiPSC-derived myoblasts) exhibited an identifiable DMD-relevant phenotype: myogenic fusion deficiency. Based on this model, we developed a DMD hiPSC-derived myoblast screening platform employing a high-content imaging (BD Pathway 855) approach to generate parameters describing morphological as well as myogenic marker protein expression. Following treatment of the cells with 1524 compounds from the Johns Hopkins Clinical Compound Library, compounds that enhanced myogenic fusion of DMD hiPSC-derived myoblasts were identified. The final hits were ginsenoside Rd and fenofibrate. Transcriptional profiling revealed that ginsenoside Rd is functionally related to FLT3 signaling, while fenofibrate is linked to TGF-β signaling. Preclinical tests in mdx mice showed that treatment with these 2 hit compounds can significantly ameliorate some of the skeletal muscle phenotypes caused by dystrophin deficiency, supporting their therapeutic potential. Further study revealed that fenofibrate could inhibit mitochondrion-induced apoptosis in DMD hiPSC-derived cardiomyocytes. We have developed a platform based on DMD hiPSC-derived myoblasts for drug screening and identified 2 promising small molecules with in vivo efficacy.
Collapse
Affiliation(s)
- Congshan Sun
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, Maryland, USA
| | | | - Yazmin I. Rovira Gonzalez
- Center for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, Maryland, USA
- Cellular and Molecular Medicine Graduate Program, and
| | - Peter Andersen
- Institute for Cell Engineering
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - C. Conover Talbot
- The Johns Hopkins School of Medicine Institute for Basic Biomedical Sciences, Baltimore, Maryland, USA
| | | | - Richard M. Lovering
- Department of Orthopaedics and
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kathryn R. Wagner
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Gabsang Lee
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Cell Engineering
| |
Collapse
|
7
|
Wasala NB, Chen SJ, Duan D. Duchenne muscular dystrophy animal models for high-throughput drug discovery and precision medicine. Expert Opin Drug Discov 2020; 15:443-456. [PMID: 32000537 PMCID: PMC7065965 DOI: 10.1080/17460441.2020.1718100] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/15/2020] [Indexed: 02/07/2023]
Abstract
Introduction: Duchenne muscular dystrophy (DMD) is an X-linked handicapping disease due to the loss of an essential muscle protein dystrophin. Dystrophin-null animals have been extensively used to study disease mechanisms and to develop experimental therapeutics. Despite decades of research, however, treatment options for DMD remain very limited.Areas covered: High-throughput high-content screening and precision medicine offer exciting new opportunities. Here, the authors review animal models that are suitable for these studies.Expert opinion: Nonmammalian models (worm, fruit fly, and zebrafish) are particularly attractive for cost-effective large-scale drug screening. Several promising lead compounds have been discovered using these models. Precision medicine for DMD aims at developing mutation-specific therapies such as exon-skipping and genome editing. To meet these needs, models with patient-like mutations have been established in different species. Models that harbor hotspot mutations are very attractive because the drugs developed in these models can bring mutation-specific therapies to a large population of patients. Humanized hDMD mice carry the entire human dystrophin gene in the mouse genome. Reagents developed in the hDMD mouse-based models are directly translatable to human patients.
Collapse
Affiliation(s)
- Nalinda B. Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65212
| | - Shi-jie Chen
- Department of Physics, The University of Missouri, Columbia, MO 65211
- Department of Biochemistry, The University of Missouri, Columbia, MO 65211
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65212
- Department of Neurology, School of Medicine, The University of Missouri, Columbia, MO 65212
- Department of Biomedical, Biological & Chemical Engineering, College of Engineering, The University of Missouri, Columbia, MO 65212
- Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia, MO 65212
| |
Collapse
|
8
|
Tsoumpra MK, Fukumoto S, Matsumoto T, Takeda S, Wood MJA, Aoki Y. Peptide-conjugate antisense based splice-correction for Duchenne muscular dystrophy and other neuromuscular diseases. EBioMedicine 2019; 45:630-645. [PMID: 31257147 PMCID: PMC6642283 DOI: 10.1016/j.ebiom.2019.06.036] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/31/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disorder characterized by progressive muscle degeneration, caused by the absence of dystrophin. Exon skipping by antisense oligonucleotides (ASOs) has recently gained recognition as therapeutic approach in DMD. Conjugation of a peptide to the phosphorodiamidate morpholino backbone (PMO) of ASOs generated the peptide-conjugated PMOs (PPMOs) that exhibit a dramatically improved pharmacokinetic profile. When tested in animal models, PPMOs demonstrate effective exon skipping in target muscles and prolonged duration of dystrophin restoration after a treatment regime. Herein we summarize the main pathophysiological features of DMD and the emergence of PPMOs as promising exon skipping agents aiming to rescue defective gene expression in DMD and other neuromuscular diseases. The listed PPMO laboratory findings correspond to latest trends in the field and highlight the obstacles that must be overcome prior to translating the animal-based research into clinical trials tailored to the needs of patients suffering from neuromuscular diseases.
Collapse
Key Words
- aso, antisense oligonucleotides
- cns, central nervous system
- cpp, cell penetrating peptide
- dgc, dystrophin glyco-protein complex
- dmd, duchenne muscular dystrophy
- fda, us food and drug administration
- pmo, phosphorodiamidate morpholino
- ppmo, peptide-conjugated pmos
- ps, phosphorothioate
- sma, spinal muscular atrophy
- 2ʹ-ome, 2ʹ-o-methyl
- 2ʹ-moe, 2ʹ-o-methoxyethyl
- 6mwt, 6-minute walk test
Collapse
Affiliation(s)
- Maria K Tsoumpra
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira-shi, Tokyo, Japan
| | - Seiji Fukumoto
- Fujii Memorial Institute of Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Toshio Matsumoto
- Fujii Memorial Institute of Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira-shi, Tokyo, Japan
| | | | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira-shi, Tokyo, Japan.
| |
Collapse
|
9
|
Jiwlawat N, Lynch EM, Napiwocki BN, Stempien A, Ashton RS, Kamp TJ, Crone WC, Suzuki M. Micropatterned substrates with physiological stiffness promote cell maturation and Pompe disease phenotype in human induced pluripotent stem cell-derived skeletal myocytes. Biotechnol Bioeng 2019; 116:2377-2392. [PMID: 31131875 DOI: 10.1002/bit.27075] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/19/2019] [Accepted: 05/21/2019] [Indexed: 12/23/2022]
Abstract
Recent advances in bioengineering have enabled cell culture systems that more closely mimic the native cellular environment. Here, we demonstrated that human induced pluripotent stem cell (iPSC)-derived myogenic progenitors formed highly-aligned myotubes and contracted when seeded on two-dimensional micropatterned platforms. The differentiated cells showed clear nuclear alignment and formed elongated myotubes dependent on the width of the micropatterned lanes. Topographical cues from micropatterning and physiological substrate stiffness improved the formation of well-aligned and multinucleated myotubes similar to myofibers. These aligned myotubes exhibited spontaneous contractions specifically along the long axis of the pattern. Notably, the micropatterned platforms developed bundle-like myotubes using patient-derived iPSCs with a background of Pompe disease (glycogen storage disease type II) and even enhanced the disease phenotype as shown through the specific pathology of abnormal lysosome accumulations. A highly-aligned formation of matured myotubes holds great potential in further understanding the process of human muscle development, as well as advancing in vitro pharmacological studies for skeletal muscle diseases.
Collapse
Affiliation(s)
- Nunnapas Jiwlawat
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin
| | - Eileen M Lynch
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin
| | - Brett N Napiwocki
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin
| | - Alana Stempien
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin
| | - Randolph S Ashton
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin.,The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, Wisconsin
| | - Timothy J Kamp
- Department of Medicine, University of Wisconsin, Madison, Wisconsin.,The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, Wisconsin.,Department of Cell and Regenerative Biology, University of Wisconsin, Madison, Wisconsin
| | - Wendy C Crone
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin.,The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, Wisconsin.,Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin.,The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
10
|
Babačić H, Mehta A, Merkel O, Schoser B. CRISPR-cas gene-editing as plausible treatment of neuromuscular and nucleotide-repeat-expansion diseases: A systematic review. PLoS One 2019; 14:e0212198. [PMID: 30794581 PMCID: PMC6386526 DOI: 10.1371/journal.pone.0212198] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/29/2019] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION The system of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (cas) is a new technology that allows easier manipulation of the genome. Its potential to edit genes opened a new door in treatment development for incurable neurological monogenic diseases (NMGDs). The aim of this systematic review was to summarise the findings on the current development of CRISPR-cas for therapeutic purposes in the most frequent NMGDs and provide critical assessment. METHODS AND DATA ACQUISITION We searched the MEDLINE and EMBASE databases, looking for original studies on the use of CRISPR-cas to edit pathogenic variants in models of the most frequent NMGDs, until end of 2017. We included all the studies that met the following criteria: 1. Peer-reviewed study report with explicitly described experimental designs; 2. In vitro, ex vivo, or in vivo study using human or other animal biological systems (including cells, tissues, organs, organisms); 3. focusing on CRISPR as the gene-editing method of choice; and 5. featured at least one NMGD. RESULTS We obtained 404 papers from MEDLINE and 513 from EMBASE. After removing the duplicates, we screened 490 papers by title and abstract and assessed them for eligibility. After reading 50 full-text papers, we finally selected 42 for the review. DISCUSSION Here we give a systematic summary on the preclinical development of CRISPR-cas for therapeutic purposes in NMGDs. Furthermore, we address the clinical interpretability of the findings, giving a comprehensive overview of the current state of the art. Duchenne's muscular dystrophy (DMD) paves the way forward, with 26 out of 42 studies reporting different strategies on DMD gene editing in different models of the disease. Most of the strategies aimed for permanent exon skipping by deletion with CRISPR-cas. Successful silencing of the mHTT gene with CRISPR-cas led to successful reversal of the neurotoxic effects in the striatum of mouse models of Huntington's disease. Many other strategies have been explored, including epigenetic regulation of gene expression, in cellular and animal models of: myotonic dystrophy, Fraxile X syndrome, ataxias, and other less frequent dystrophies. Still, before even considering the clinical application of CRISPR-cas, three major bottlenecks need to be addressed: efficacy, safety, and delivery of the systems. This requires a collaborative approach in the research community, while having ethical considerations in mind.
Collapse
Affiliation(s)
- Haris Babačić
- Friedrich Baur Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
- * E-mail: (BS); (HB)
| | - Aditi Mehta
- Faculty of Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Olivia Merkel
- Faculty of Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Benedikt Schoser
- Friedrich Baur Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
- * E-mail: (BS); (HB)
| |
Collapse
|
11
|
Gerhalter T, Gast LV, Marty B, Martin J, Trollmann R, Schüssler S, Roemer F, Laun FB, Uder M, Schröder R, Carlier PG, Nagel AM. 23 Na MRI depicts early changes in ion homeostasis in skeletal muscle tissue of patients with duchenne muscular dystrophy. J Magn Reson Imaging 2019; 50:1103-1113. [PMID: 30719784 DOI: 10.1002/jmri.26681] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a hereditary neuromuscular disease leading to progressive muscle wasting. Since there is a need for MRI variables that serve as early sensitive indicators of response to treatment, several quantitative MRI methods have been suggested for disease monitoring. PURPOSE To evaluate the potential of sodium (23 Na) and proton (1 H) MRI methods to assess early pathological changes in skeletal muscle of DMD. STUDY TYPE Prospective clinical study. POPULATION 23 Na and 1 H MRI of the right leg were performed in 13 patients with DMD (age 7.8 ± 2.4) and 14 healthy boys (age 9.5 ± 2.2). FIELD STRENGTH/SEQUENCE 3 T including a multiecho-spin-echo sequence, diffusion-weighted sequences, 1 H spectroscopy, 3-pt Dixon, and 23 Na ultrashort echo time sequences. ASSESSMENT We obtained water T2 maps, fat fraction (FF), pH, and diffusion properties of the skeletal muscle tissue. Moreover, total tissue sodium concentration (TSC) was calculated from the 23 Na sequence. Intracellular-weighted 23 Na signal (ICwS) was derived from 23 Na inversion-recovery imaging. STATISTICAL TESTS Results from DMD patients and controls were compared using Wilcoxon rank-sum tests and repeated analysis of variance (ANOVA). Spearman-rank correlations and area under the curve (AUC) were calculated to assess the performance of the different MRI methods to distinguish dystrophic from healthy muscle tissue. RESULTS FF, water T2 , and pH were higher in DMD patients (0.07 ± 0.03, 39.4 ± 0.8 msec, 7.06 ± 0.03, all P < 0.05) than in controls (0.02 ± 0.01, 36.0 ± 0.4 msec, 7.03 ± 0.02). No difference was observed in diffusion properties. TSC (26.0 ± 1.3 mM, P < 0.05) and ICwS (0.69 ± 0.05 a.u., P < 0.05) were elevated in DMD (controls: 16.5 ± 1.3 mM and 0.47 ± 0.04 a.u.). The ICwS was frequently abnormal in DMD even when water T2 , FF, and pH were in the normal range. 23 Na MRI showed higher AUC values in comparison to the 1 H methods. DATA CONCLUSION Sodium anomalies were regularly observed in patients with DMD compared with controls, and were present even in absence of fatty degenerative changes and water T2 increases. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1103-1113.
Collapse
Affiliation(s)
- Teresa Gerhalter
- NMR Laboratory, Institute of Myology, Paris, France.,NMR laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France.,Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Benjamin Marty
- NMR Laboratory, Institute of Myology, Paris, France.,NMR laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Jan Martin
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Regina Trollmann
- Department of Pediatrics, Division Neuropediatrics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stephanie Schüssler
- Department of Pediatrics, Division Neuropediatrics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frank Roemer
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frederik B Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rolf Schröder
- Department of Neuropathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Pierre G Carlier
- NMR Laboratory, Institute of Myology, Paris, France.,NMR laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
12
|
Arora H. Commonly available outcome measures for use in Indian boys with Duchenne muscular dystrophy. Neurol India 2018; 66:1279-1285. [PMID: 30232985 DOI: 10.4103/0028-3886.241363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder. It is still an incurable disease and many clinical trials are going on to find the cure for this disease. There is a need for sensitive and reliable measures for detecting the disease progression. This manuscript focuses on reviewing the different outcome measures which can be used in the Indian DMD patients.
Collapse
Affiliation(s)
- Harneet Arora
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
13
|
Markossian S, Ang KK, Wilson CG, Arkin MR. Small-Molecule Screening for Genetic Diseases. Annu Rev Genomics Hum Genet 2018; 19:263-288. [PMID: 29799800 DOI: 10.1146/annurev-genom-083117-021452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genetic determinants of many diseases, including monogenic diseases and cancers, have been identified; nevertheless, targeted therapy remains elusive for most. High-throughput screening (HTS) of small molecules, including high-content analysis (HCA), has been an important technology for the discovery of molecular tools and new therapeutics. HTS can be based on modulation of a known disease target (called reverse chemical genetics) or modulation of a disease-associated mechanism or phenotype (forward chemical genetics). Prominent target-based successes include modulators of transthyretin, used to treat transthyretin amyloidoses, and the BCR-ABL kinase inhibitor Gleevec, used to treat chronic myelogenous leukemia. Phenotypic screening successes include modulators of cystic fibrosis transmembrane conductance regulator, splicing correctors for spinal muscular atrophy, and histone deacetylase inhibitors for cancer. Synthetic lethal screening, in which chemotherapeutics are screened for efficacy against specific genetic backgrounds, is a promising approach that merges phenotype and target. In this article, we introduce HTS technology and highlight its contributions to the discovery of drugs and probes for monogenic diseases and cancer.
Collapse
Affiliation(s)
- Sarine Markossian
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA; , , ,
| | - Kenny K Ang
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA; , , ,
| | - Christopher G Wilson
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA; , , ,
| | - Michelle R Arkin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA; , , ,
| |
Collapse
|
14
|
Carlier PG, Marty B, Scheidegger O, Loureiro de Sousa P, Baudin PY, Snezhko E, Vlodavets D. Skeletal Muscle Quantitative Nuclear Magnetic Resonance Imaging and Spectroscopy as an Outcome Measure for Clinical Trials. J Neuromuscul Dis 2018; 3:1-28. [PMID: 27854210 PMCID: PMC5271435 DOI: 10.3233/jnd-160145] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent years have seen tremendous progress towards therapy of many previously incurable neuromuscular diseases. This new context has acted as a driving force for the development of novel non-invasive outcome measures. These can be organized in three main categories: functional tools, fluid biomarkers and imagery. In the latest category, nuclear magnetic resonance imaging (NMRI) offers a considerable range of possibilities for the characterization of skeletal muscle composition, function and metabolism. Nowadays, three NMR outcome measures are frequently integrated in clinical research protocols. They are: 1/ the muscle cross sectional area or volume, 2/ the percentage of intramuscular fat and 3/ the muscle water T2, which quantity muscle trophicity, chronic fatty degenerative changes and oedema (or more broadly, “disease activity”), respectively. A fourth biomarker, the contractile tissue volume is easily derived from the first two ones. The fat fraction maps most often acquired with Dixon sequences have proven their capability to detect small changes in muscle composition and have repeatedly shown superior sensitivity over standard functional evaluation. This outcome measure will more than likely be the first of the series to be validated as an endpoint by regulatory agencies. The versatility of contrast generated by NMR has opened many additional possibilities for characterization of the skeletal muscle and will result in the proposal of more NMR biomarkers. Ultra-short TE (UTE) sequences, late gadolinium enhancement and NMR elastography are being investigated as candidates to evaluate skeletal muscle interstitial fibrosis. Many options exist to measure muscle perfusion and oxygenation by NMR. Diffusion NMR as well as texture analysis algorithms could generate complementary information on muscle organization at microscopic and mesoscopic scales, respectively. 31P NMR spectroscopy is the reference technique to assess muscle energetics non-invasively during and after exercise. In dystrophic muscle, 31P NMR spectrum at rest is profoundly perturbed, and several resonances inform on cell membrane integrity. Considerable efforts are being directed towards acceleration of image acquisitions using a variety of approaches, from the extraction of fat content and water T2 maps from one single acquisition to partial matrices acquisition schemes. Spectacular decreases in examination time are expected in the near future. They will reinforce the attractiveness of NMR outcome measures and will further facilitate their integration in clinical research trials.
Collapse
Affiliation(s)
- Pierre G Carlier
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France.,National Academy of Sciences, United Institute for Informatics Problems, Minsk, Belarus
| | - Benjamin Marty
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France
| | - Olivier Scheidegger
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,Support Center for Advanced Neuroimaging (SCAN), Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | | | | | - Eduard Snezhko
- National Academy of Sciences, United Institute for Informatics Problems, Minsk, Belarus
| | - Dmitry Vlodavets
- N.I. Prirogov Russian National Medical Research University, Clinical Research Institute of Pediatrics, Moscow, Russian Federation
| |
Collapse
|
15
|
Falzarano MS, D'Amario D, Siracusano A, Massetti M, Amodeo A, La Neve F, Maroni CR, Mercuri E, Osman H, Scotton C, Armaroli A, Rossi R, Selvatici R, Crea F, Ferlini A. Duchenne Muscular Dystrophy Myogenic Cells from Urine-Derived Stem Cells Recapitulate the Dystrophin Genotype and Phenotype. Hum Gene Ther 2018; 27:772-783. [PMID: 27530229 DOI: 10.1089/hum.2016.079] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A ready source of autologous myogenic cells is of vital importance for drug screening and functional genetic studies in Duchenne muscular dystrophy (DMD), a rare disease caused by a variety of dystrophin gene mutations. As stem cells (SCs) can be easily and noninvasively obtained from urine specimens, we set out to determine whether they could be myogenically induced and useful in DMD research. To this end, we isolated stem cells from the urine of two healthy donors and from one patient with DMD, and performed surface marker characterization, myogenic differentiation (MyoD), and then transfection with antisense oligoribonucleotides to test for exon skipping and protein restoration. We demonstrated that native urine-derived stem cells express the full-length dystrophin transcript, and that the dystrophin mutation was retained in the cells of the patient with DMD, although the dystrophin protein was detected solely in control cells after myogenic transformation according to the phenotype. Notably, we also showed that treatment with antisense oligoribonucleotide against dystrophin exon 44 induced skipping in both native and MyoD-transformed urine-derived stem cells in DMD, with a therapeutic transcript-reframing effect, as well as visible protein restoration in the latter. Hence MyoD-transformed cells may be a good myogenic model for studying dystrophin gene expression, and native urine stem cells could be used to study the dystrophin transcript, and both diagnostic procedures and splicing modulation therapies in both patients and control subjects, without invasive and costly collection methods. New, bankable bioproducts from urine stem cells, useful for prescreening studies and therapeutic applications alike, are also foreseeable after further, more in-depth characterization.
Collapse
Affiliation(s)
- Maria Sofia Falzarano
- 1 UOL (Unità Operativa Logistica) of Medical Genetics, University of Ferrara , Ferrara, Italy
| | - Domenico D'Amario
- 2 Department of Cardiovascular Medicine, Catholic University of the Sacred Heart , Rome, Italy
| | - Andrea Siracusano
- 2 Department of Cardiovascular Medicine, Catholic University of the Sacred Heart , Rome, Italy
| | - Massimo Massetti
- 2 Department of Cardiovascular Medicine, Catholic University of the Sacred Heart , Rome, Italy
| | - Antonio Amodeo
- 3 Department of Cardiothoracic Surgery, Ospedale Bambino Gesù , Rome, Italy
| | - Federica La Neve
- 2 Department of Cardiovascular Medicine, Catholic University of the Sacred Heart , Rome, Italy
| | - Camilla Reina Maroni
- 2 Department of Cardiovascular Medicine, Catholic University of the Sacred Heart , Rome, Italy
| | - Eugenio Mercuri
- 4 Pediatric Neurology Unit, Catholic University, Rome , Italy
| | - Hana Osman
- 1 UOL (Unità Operativa Logistica) of Medical Genetics, University of Ferrara , Ferrara, Italy
| | - Chiara Scotton
- 1 UOL (Unità Operativa Logistica) of Medical Genetics, University of Ferrara , Ferrara, Italy
| | - Annarita Armaroli
- 1 UOL (Unità Operativa Logistica) of Medical Genetics, University of Ferrara , Ferrara, Italy
| | - Rachele Rossi
- 1 UOL (Unità Operativa Logistica) of Medical Genetics, University of Ferrara , Ferrara, Italy
| | - Rita Selvatici
- 1 UOL (Unità Operativa Logistica) of Medical Genetics, University of Ferrara , Ferrara, Italy
| | - Filippo Crea
- 2 Department of Cardiovascular Medicine, Catholic University of the Sacred Heart , Rome, Italy
| | - Alessandra Ferlini
- 1 UOL (Unità Operativa Logistica) of Medical Genetics, University of Ferrara , Ferrara, Italy.,5 Neuromuscular Unit, Great Ormond Street Hospital, University College London , London, United Kingdom
| |
Collapse
|
16
|
Messina S, Vita GL, Sframeli M, Mondello S, Mazzone E, D'Amico A, Berardinelli A, La Rosa M, Bruno C, Distefano MG, Baranello G, Barcellona C, Scutifero M, Marcato S, Palmieri A, Politano L, Morandi L, Mongini T, Pegoraro E, D'Angelo MG, Pane M, Rodolico C, Minetti C, Bertini E, Vita G, Mercuri E. Health-related quality of life and functional changes in DMD: A 12-month longitudinal cohort study. Neuromuscul Disord 2016; 26:189-96. [PMID: 26916554 PMCID: PMC4819956 DOI: 10.1016/j.nmd.2016.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 11/26/2022]
Abstract
At baseline, the PedsQLTM inventories correlated with almost all the functional measures. There was a significant decrease between baseline and 12 months on PedsQLTM GCS. This decrement paralleled with the decrement in the functional outcome measures. PedsQLTM correlates with the level of impairment. This correlations were not confirmed when 12 month changes are considered.
In Duchenne muscular dystrophy (DMD) little has been reported on the association between clinical outcome measures and patient health-related quality of life (HRQOL) tools. Our study evaluated the relationship between 12 month changes on the Generic Core Scales (GCS), the Multidimensional Fatigue Scale and the Neuromuscular Module of the PedsQLTM with several outcome measures (6 minute walk test, North Star Ambulatory Assessment and timed items) in ambulatory DMD. Ninety-eight ambulatory DMD in a multicentric setting were included in the study. At baseline, the PedsQLTM inventories correlated with almost all the functional measures On the Child Self-Report there was a significant decrease between baseline and 12 months on the PedsQLTM GCS and its first domain, in parallel with the decrement in the functional outcome measures. Correlation between the 12 month changes on the PedsQLTM inventories and functional measures were almost all negligible. Similar results were obtained on the Parent Proxy-Report. In conclusion, PedsQLTM correlates with the level of impairment at baseline, but this does not hold true when 12 month changes are considered. Further studies comparing different tools are needed to better elucidate the complexity of the relationship between HRQOL and functional performances.
Collapse
Affiliation(s)
- Sonia Messina
- Department of Neurosciences, University of Messina, Messina, Italy; Nemo Sud Clinical Center for Neuromuscular Diseases, Messina, Italy
| | - Gian Luca Vita
- Nemo Sud Clinical Center for Neuromuscular Diseases, Messina, Italy
| | - Maria Sframeli
- Nemo Sud Clinical Center for Neuromuscular Diseases, Messina, Italy
| | | | - Elena Mazzone
- Department of Paediatric Neurology, Catholic University, Rome, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesu' Children's Research Hospital, Rome, Italy
| | - Angela Berardinelli
- IRCCS "C.Mondino" Institute, Unit of Child Neuropsychiatry, University of Pavia, Pavia, Italy
| | - Matteo La Rosa
- Department of Neurosciences, University of Messina, Messina, Italy
| | - Claudio Bruno
- Neuromuscular Disease Unit, G. Gaslini Institute, Genoa, Italy
| | | | - Giovanni Baranello
- Muscle Pathology and Neuroimmunology and Developmental Neurology Unit, Neurological Institute "Carlo Besta", Milan, Italy
| | | | - Marianna Scutifero
- Department of Experimental Medicine, Cardiomyology and Medical Genetics, Second University of Naples, Naples, Italy
| | - Sonia Marcato
- Department of Neurosciences, University of Padua, Padua, Italy
| | | | - Luisa Politano
- Department of Experimental Medicine, Cardiomyology and Medical Genetics, Second University of Naples, Naples, Italy
| | - Lucia Morandi
- Muscle Pathology and Neuroimmunology and Developmental Neurology Unit, Neurological Institute "Carlo Besta", Milan, Italy
| | - Tiziana Mongini
- Neuromuscular Center, SG. Battista Hospital, University of Turin, Turin, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Maria Grazia D'Angelo
- IRCCS E Medea Bosisio Parini Neuromuscular Unit, Department of Neurorehabilitation, Bosisio Parini, Italy
| | - Marika Pane
- Department of Paediatric Neurology, Catholic University, Rome, Italy
| | - Carmelo Rodolico
- Department of Neurosciences, University of Messina, Messina, Italy
| | - Carlo Minetti
- Neuromuscular Disease Unit, G. Gaslini Institute, Genoa, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesu' Children's Research Hospital, Rome, Italy
| | - Giuseppe Vita
- Department of Neurosciences, University of Messina, Messina, Italy; Nemo Sud Clinical Center for Neuromuscular Diseases, Messina, Italy
| | - Eugenio Mercuri
- Department of Paediatric Neurology, Catholic University, Rome, Italy.
| |
Collapse
|
17
|
Katz DM, Bird A, Coenraads M, Gray SJ, Menon DU, Philpot BD, Tarquinio DC. Rett Syndrome: Crossing the Threshold to Clinical Translation. Trends Neurosci 2016; 39:100-113. [PMID: 26830113 PMCID: PMC4924590 DOI: 10.1016/j.tins.2015.12.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022]
Abstract
Lying at the intersection between neurobiology and epigenetics, Rett syndrome (RTT) has garnered intense interest in recent years, not only from a broad range of academic scientists, but also from the pharmaceutical and biotechnology industries. In addition to the critical need for treatments for this devastating disorder, optimism for developing RTT treatments derives from a unique convergence of factors, including a known monogenic cause, reversibility of symptoms in preclinical models, a strong clinical research infrastructure highlighted by an NIH-funded natural history study and well-established clinics with significant patient populations. Here, we review recent advances in understanding the biology of RTT, particularly promising preclinical findings, lessons from past clinical trials, and critical elements of trial design for rare disorders.
Collapse
Affiliation(s)
- David M Katz
- Departments of Neurosciences and Psychiatry, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Monica Coenraads
- Rett Syndrome Research Trust, 67 Under Cliff Road, Trumbull, CT 06611, USA
| | - Steven J Gray
- Gene Therapy Center and Department of Ophthalmology, University of North Carolina, Chapel Hill, NC USA
| | - Debashish U Menon
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Benjamin D Philpot
- Department of Cell Biology and Physiology, Neuroscience Center, and Carolina Institute for Developmental Disabilities, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Daniel C Tarquinio
- Children's Healthcare of Atlanta, Emory University, 1605 Chantilly Drive NE, Atlanta, GA 30324, USA
| |
Collapse
|