1
|
Mortensen NP, Pathmasiri W, Snyder RW, Caffaro MM, Watson SL, Patel PR, Beeravalli L, Prattipati S, Aravamudhan S, Sumner SJ, Fennell TR. Oral administration of TiO 2 nanoparticles during early life impacts cardiac and neurobehavioral performance and metabolite profile in an age- and sex-related manner. Part Fibre Toxicol 2022; 19:3. [PMID: 34986857 PMCID: PMC8728993 DOI: 10.1186/s12989-021-00444-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/23/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Nanoparticles (NPs) are increasingly incorporated in everyday products. To investigate the effects of early life exposure to orally ingested TiO2 NP, male and female Sprague-Dawley rat pups received four consecutive daily doses of 10 mg/kg body weight TiO2 NP (diameter: 21 ± 5 nm) or vehicle control (water) by gavage at three different pre-weaning ages: postnatal day (PND) 2-5, PND 7-10, or PND 17-20. Cardiac assessment and basic neurobehavioral tests (locomotor activity, rotarod, and acoustic startle) were conducted on PND 20. Pups were sacrificed at PND 21. Select tissues were collected, weighed, processed for neurotransmitter and metabolomics analyses. RESULTS Heart rate was found to be significantly decreased in female pups when dosed between PND 7-10 and PND 17-20. Females dosed between PND 2-5 showed decrease acoustic startle response and when dosed between PND 7-10 showed decreased performance in the rotarod test and increased locomotor activity. Male pups dosed between PND 17-20 showed decreased locomotor activity. The concentrations of neurotransmitters and related metabolites in brain tissue and the metabolomic profile of plasma were impacted by TiO2 NP administration for all dose groups. Metabolomic pathways perturbed by TiO2 NP administration included pathways involved in amino acid and lipid metabolism. CONCLUSION Oral administration of TiO2 NP to rat pups impacted basic cardiac and neurobehavioral performance, neurotransmitters and related metabolites concentrations in brain tissue, and the biochemical profiles of plasma. The findings suggested that female pups were more likely to experience adverse outcome following early life exposure to oral TiO2 NP than male pups. Collectively the data from this exploratory study suggest oral administration of TiO2 NP cause adverse biological effects in an age- and sex-related manner, emphasizing the need to understand the short- and long-term effects of early life exposure to TiO2 NP.
Collapse
Affiliation(s)
- Ninell P Mortensen
- Discovery Sciences, RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC, 27709, USA.
| | - Wimal Pathmasiri
- UNC Nutrition Research Institute, The University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Rodney W Snyder
- Discovery Sciences, RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Maria Moreno Caffaro
- Discovery Sciences, RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Scott L Watson
- Discovery Sciences, RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Purvi R Patel
- Discovery Sciences, RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Lakshmi Beeravalli
- Joint School of Nanoscience and Nanoengineering, 2907 East Gate City Blvd., Greensboro, NC, 27401, USA
| | - Sharmista Prattipati
- Joint School of Nanoscience and Nanoengineering, 2907 East Gate City Blvd., Greensboro, NC, 27401, USA
| | - Shyam Aravamudhan
- Joint School of Nanoscience and Nanoengineering, 2907 East Gate City Blvd., Greensboro, NC, 27401, USA
| | - Susan J Sumner
- UNC Nutrition Research Institute, The University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Timothy R Fennell
- Discovery Sciences, RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
2
|
Nadia H, Fabienne M, Pierard C, Nicole M, Daniel B. Preventive Effects of Baclofen but Not Diazepam on Hippocampal Memory and Glucocorticoid Alterations After Prolonged Alcohol Withdrawal in Mice. Front Psychiatry 2022; 13:799225. [PMID: 35686185 PMCID: PMC9171496 DOI: 10.3389/fpsyt.2022.799225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Our study aims at comparing in C57/Bl male mice, the impact of repeated injections of baclofen (an agonist of GABAB receptor) or diazepam (a benzodiazepine acting through a positive allosteric modulation of GABAA receptor) administered during the alcohol-withdrawal period on hippocampus-dependent memory impairments and brain regional glucocorticoid dysfunction after a short (1-week) or a long (4-week) abstinence. Hence, mice were submitted to a 6-month alcohol consumption (12%v/v) and were progressively withdrawn to water. Then, after a 1- or 4-weeks abstinence, they were submitted to a contextual memory task followed by measurements of corticosterone concentrations in the dorsal hippocampus (dHPC), the ventral hippocampus (vHPC) and the prefrontal cortex (PFC). Results showed that 1- and 4-week withdrawn mice exhibited a severe memory deficit and a significant abnormal rise of the test-induced increase of corticosterone (TICC) in the dHPC, as compared to water-controls or to mice still under alcohol consumption. Repeated daily systemic administrations of decreasing doses of diazepam (ranged from 0.5 to 0.12 mg/kg) or baclofen (ranged from 1.5 to 0.37 mg/kg) during the last 15 days of the withdrawal period, normalized both memory and TICC scores in the dHPC in 1-week withdrawn animals; in contrast, only baclofen-withdrawn mice showed both normal memory performance and TICC scores in the dHPC after a 4-week withdrawal period. In conclusion, the memory improvement observed in 4-week withdrawn mice administered with baclofen stem from the protracted normalization of glucocorticoid activity in the dHPC, a phenomenon encountered only transitorily in diazepam-treated withdrawn mice.
Collapse
Affiliation(s)
- Henkous Nadia
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Université de Bordeaux, CNRS UMR 5287, Pessac, France
| | - Martins Fabienne
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Université de Bordeaux, CNRS UMR 5287, Pessac, France
| | - Christophe Pierard
- Institut de Recherche Biomédicale des Armées (IRBA), Place Général Valérie André, Brétigny-sur-Orge, France
| | - Mons Nicole
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Université de Bordeaux, CNRS UMR 5287, Pessac, France
| | - Beracochea Daniel
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Université de Bordeaux, CNRS UMR 5287, Pessac, France
| |
Collapse
|
3
|
Tobar Leitão SA, Soares DDS, Carvas Junior N, Zimmer R, Ludwig NF, Andrades M. Study of anesthetics for euthanasia in rats and mice: A systematic review and meta-analysis on the impact upon biological outcomes (SAFE-RM). Life Sci 2021; 284:119916. [PMID: 34480936 DOI: 10.1016/j.lfs.2021.119916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/09/2022]
Abstract
AIM To summarize the knowledge on the effect of anesthetics employed right before euthanasia on biological outcomes. DATA SOURCE A systematic review of the literature to find studies with isoflurane, ketamine, halothane, pentobarbital, or thiopental just before euthanasia of laboratory rats or mice. STUDY SELECTION Controlled studies with quantitative data available. DATA EXTRACTION The search, data extraction, and risk of bias (RoB) were performed independently by two reviewers using a structured form. For each outcome, an effect size (ES) was calculated relative to the control group. Meta-analysis was performed using robust variance meta-regression for hierarchical data structures, with adjustment for small samples. DATA SYNTHESIS We included 20 studies with 407 biological outcomes (110 unique). RoB analysis indicated that 87.5% of the domains evaluated showed unclear risk, 2% high risk, and 10.5% low risk. The effect size for all anesthetics considered together was 0.99 (CI95% = 0.75-1.23; p < 0.0001). Sub-analyses indicate high effect sizes for pentobarbital (1.14; CI95% = 0.75-1.52; p < 0.0001), and isoflurane (1.01; CI95% = 0.58-1.44; p = 0.0005) but not for ketamine (1.49; CI95% = -7.95-10.9; p = 0.295). CONCLUSION We showed that anesthetics interfere differently with the majority of the outcomes assessed. However, our data did not support the use of one anesthetic over others or even the killing without anesthetics. We conclude that outcomes cannot be compared among studies without considering the killing method. This protocol was registered at Prospero (CRD42019119520). FUNDING There was no direct funding for this research.
Collapse
Affiliation(s)
- Santiago Alonso Tobar Leitão
- Postgraduate Program in Cardiology and Cardiovascular Science, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2400, 90035-903 Porto Alegre, RS, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350 - sala 12113, 90035-903 Porto Alegre, RS, Brazil
| | - Douglas Dos Santos Soares
- Postgraduate Program in Cardiology and Cardiovascular Science, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2400, 90035-903 Porto Alegre, RS, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350 - sala 12113, 90035-903 Porto Alegre, RS, Brazil
| | - Nelson Carvas Junior
- Department of Evidence-Based Health, UNIFESP, Rua Isabel Schmidt, 349, São Paulo 04743-030, Brazil
| | - Rafael Zimmer
- Postgraduate Program in Medical Science, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2400, 90035-903 Porto Alegre, RS, Brazil
| | - Nataniel Floriano Ludwig
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Michael Andrades
- Postgraduate Program in Cardiology and Cardiovascular Science, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2400, 90035-903 Porto Alegre, RS, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350 - sala 12113, 90035-903 Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Mortensen NP, Moreno Caffaro M, Patel PR, Snyder RW, Watson SL, Aravamudhan S, Montgomery SA, Lefever T, Sumner SJ, Fennell TR. Biodistribution, cardiac and neurobehavioral assessments, and neurotransmitter quantification in juvenile rats following oral administration of aluminum oxide nanoparticles. J Appl Toxicol 2020; 41:1316-1329. [PMID: 33269475 DOI: 10.1002/jat.4122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 12/27/2022]
Abstract
Little is known about the uptake, biodistribution, and biological responses of nanoparticles (NPs) and their toxicity in developing animals. Here, male and female juvenile Sprague-Dawley rats received four consecutive daily doses of 10 mg/kg Al2 O3 NP (diameter: 24 nm [transmission electron microscope], hydrodynamic diameter: 148 nm) or vehicle control (water) by gavage between postnatal days (PNDs) 17-20. Basic neurobehavioral and cardiac assessments were performed on PND 20. Animals were sacrificed on PND 21, and selected tissues were collected, weighed, and processed for histopathology or neurotransmitter analysis. The biodistribution of Al2 O3 NP in tissue sections of the intestine, liver, spleen, kidney, and lymph nodes were evaluated using enhanced dark-field microscopy (EDM) and hyperspectral imaging (HSI). Liver-to-body weight ratio was significantly increased for male pups administered Al2 O3 NP compared with control. HSI suggested that Al2 O3 NP was more abundant in the duodenum and ileum tissue of the female pups compared with the male pups, whereas the abundance of NP was similar for males and females in the other tissues. The abundance of NP was higher in the liver compared with spleen, lymph nodes, and kidney. Homovanillic acid and norepinephrine concentrations in brain were significantly decreased following Al2 O3 NP administration in female and male pups, whereas 5-hydroxyindoleacetic acid was significantly increased in male pups. EDM/HSI indicates intestinal uptake of Al2 O3 NP following oral administration. Al2 O3 NP altered neurotransmitter/metabolite concentrations in juvenile rats' brain tissues. Together, these data suggest that orally administered Al2 O3 NP interferes with the brain biochemistry in both female and male pups.
Collapse
Affiliation(s)
- Ninell P Mortensen
- Discovery Sciences, RTI International, Research Triangle Park, North Carolina, USA
| | - Maria Moreno Caffaro
- Discovery Sciences, RTI International, Research Triangle Park, North Carolina, USA
| | - Purvi R Patel
- Discovery Sciences, RTI International, Research Triangle Park, North Carolina, USA
| | - Rodney W Snyder
- Discovery Sciences, RTI International, Research Triangle Park, North Carolina, USA
| | - Scott L Watson
- Discovery Sciences, RTI International, Research Triangle Park, North Carolina, USA
| | - Shyam Aravamudhan
- Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, North Carolina, USA
| | - Stephanie A Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Timothy Lefever
- Discovery Sciences, RTI International, Research Triangle Park, North Carolina, USA
| | - Susan J Sumner
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - Timothy R Fennell
- Discovery Sciences, RTI International, Research Triangle Park, North Carolina, USA
| |
Collapse
|
5
|
Bekhbat M, Merrill L, Kelly SD, Lee VK, Neigh GN. Brief anesthesia by isoflurane alters plasma corticosterone levels distinctly in male and female rats: Implications for tissue collection methods. Behav Brain Res 2016; 305:122-5. [PMID: 26946276 PMCID: PMC4808419 DOI: 10.1016/j.bbr.2016.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 11/18/2022]
Abstract
Euthanasia by anesthetic agents is commonly performed prior to tissue collection in order to minimize pain and distress to the animal. However, depending on their mechanism of action as well as administration regimen, different methods of anesthesia may trigger an acute stress response through engaging the hypothalamic-pituitary-adrenal (HPA) axis, which can impact numerous other physiological processes that the researcher may wish to examine as endpoints. We investigated the effects of the commonly used anesthetic agent isoflurane on two different endpoints related to the stress response: plasma corticosterone levels and gene expression of the glucocorticoid receptor (GR) as well as several of its regulators including FK506-binding protein 51 (Fkbp5) in the hippocampus of male and female rats. Our results indicate that brief exposure to anesthesia by isoflurane prior to decapitation can alter plasma corticosterone levels differentially in male and female rats within minutes without impacting gene expression in the hippocampus. We conclude that collection methods can influence stress-related physiological endpoints in female rats and the potential influence of even brief anesthesia as well as sex differences in response to anesthesia should be evaluated during the experimental design process and data interpretation. This finding is particularly important in light of new NIH standards regarding sex and reproducibility, and care should be taken to be certain that sex differences in endpoints of interest are not an artifact of sex differences in response to collection paradigms.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Department of Physiology, Emory University, Atlanta, GA 30322, United States
| | - Liana Merrill
- Department of Physiology, Emory University, Atlanta, GA 30322, United States; Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, United States
| | - Sean D Kelly
- Department of Physiology, Emory University, Atlanta, GA 30322, United States
| | - Vanessa K Lee
- Division of Animal Resources, Emory University, Atlanta, GA 30322, United States
| | - Gretchen N Neigh
- Department of Physiology, Emory University, Atlanta, GA 30322, United States; Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|
6
|
Ribeiro-Silva N, Nejm MB, da Silva SMA, Suchecki D, Luz J. Restriction of rapid eye movement sleep during adolescence increases energy gain and metabolic efficiency in young adult rats. Exp Physiol 2016; 101:308-18. [PMID: 26663203 DOI: 10.1113/ep085323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 12/03/2015] [Indexed: 12/15/2022]
Abstract
NEW FINDINGS What is the central question of this study? Sleep curtailment in infancy and adolescence may lead to long-term risk for obesity, but the mechanisms involved have not yet been determined. This study examined the immediate and long-term metabolic effects produced by sleep restriction in young rats. What is the main finding and its importance? Prolonged sleep restriction reduced weight gain (body fat stores) in young animals. After prolonged recovery, sleep-restricted rats tended to save more energy and to store more fat, possibly owing to increased gross food efficiency. This could be the first step to understand this association. Sleep curtailment is associated with obesity and metabolic changes in adults and children. The aim of the present study was to evaluate the immediate and long-term metabolic alterations produced by sleep restriction in pubertal male rats. Male Wistar rats (28 days old) were allocated to a control (CTL) group or a sleep-restricted (SR) group. This was accomplished by the single platform technique for 18 h per day for 21 days. These groups were subdivided into the following four time points for assessment: sleep restriction and 1, 2 and 4 months of recovery. Body weight and food intake were monitored throughout the experiment. At the end of each time period, blood was collected for metabolic profiling, and the carcasses were processed for measurement of body composition and energy balance. During the period of sleep restriction, SR animals consumed less food in the home cages. This group also displayed lower body weight, body fat, triglycerides and glucose levels than CTL rats. At the end of the first month of recovery, despite eating as much as CTL rats, SR animals showed greater energy and body weight gain, increased gross food efficiency and decreased energy expenditure. At the end of the second and fourth months of recovery, the groups were no longer different, except for energy gain and gross food efficiency, which remained higher in SR animals. In conclusion, sleep restriction affected weight gain of young animals, owing to reduction of fat stores. Two months were sufficient to recover this deficit and to reveal that SR rats tended to save more energy and to store more fat.
Collapse
Affiliation(s)
- Neila Ribeiro-Silva
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mariana Bocca Nejm
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Deborah Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jacqueline Luz
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Duivenvoorde LPM, van Schothorst EM, Swarts HM, Kuda O, Steenbergh E, Termeulen S, Kopecky J, Keijer J. A Difference in Fatty Acid Composition of Isocaloric High-Fat Diets Alters Metabolic Flexibility in Male C57BL/6JOlaHsd Mice. PLoS One 2015; 10:e0128515. [PMID: 26098756 PMCID: PMC4476692 DOI: 10.1371/journal.pone.0128515] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/29/2015] [Indexed: 01/14/2023] Open
Abstract
Poly-unsaturated fatty acids (PUFAs) are considered to be healthier than saturated fatty acids (SFAs), but others postulate that especially the ratio of omega-6 to omega-3 PUFAs (n6/n3 ratio) determines health. Health can be determined with biomarkers, but functional health status is likely better reflected by challenge tests that assess metabolic flexibility. The aim of this study was to determine the effect of high-fat diets with different fatty acid compositions, but similar n6/n3 ratio, on metabolic flexibility. Therefore, adult male mice received isocaloric high-fat diets with either predominantly PUFAs (HFpu diet) or predominantly SFAs (HFs diet) but similar n6/n3 ratio for six months, during and after which several biomarkers for health were measured. Metabolic flexibility was assessed by the response to an oral glucose tolerance test, a fasting and re-feeding test and an oxygen restriction test (OxR; normobaric hypoxia). The latter two are non-invasive, indirect calorimetry-based tests that measure the adaptive capacity of the body as a whole. We found that the HFs diet, compared to the HFpu diet, increased mean adipocyte size, liver damage, and ectopic lipid storage in liver and muscle; although, we did not find differences in body weight, total adiposity, adipose tissue health, serum adipokines, whole body energy balance, or circadian rhythm between HFs and HFpu mice. HFs mice were, furthermore, less flexible in their response to both fasting- re-feeding and OxR, while glucose tolerance was indistinguishable. To conclude, the HFs versus the HFpu diet increased ectopic fat storage, liver damage, and mean adipocyte size and reduced metabolic flexibility in male mice. This study underscores the physiological relevance of indirect calorimetry-based challenge tests.
Collapse
Affiliation(s)
| | | | - Hans M. Swarts
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology of the Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Esther Steenbergh
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Sander Termeulen
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Jan Kopecky
- Department of Adipose Tissue Biology, Institute of Physiology of the Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
8
|
Differential regulation of pancreatic digestive enzymes during chronic high-fat diet-induced obesity in C57BL/6J mice. Br J Nutr 2014; 112:154-61. [PMID: 24816161 DOI: 10.1017/s0007114514000816] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Exocrine pancreatic digestive enzymes are essential for the digestion of dietary components and are regulated by them. Chronic excess dietary high fat (HF) consumption is a contributing factor of diet-induced obesity (DIO) and associated chronic diseases and requires adaptation by the pancreas. The aim of the present study was to investigate the effects of chronic HF diet feeding on exocrine pancreatic digestive enzyme transcript levels in DIO C57BL/6J mice. C57BL/6J mice were fed diets containing either 10 or 45% energy (E%) derived from fat for 12 weeks (n 10 mice per diet group). Pancreatic tissue and blood samples were collected at 0, 4 and 12 weeks. The expression of a panel of exocrine pancreatic digestive enzymes was analysed using quantitative RT-PCR and Western blot analysis. The HF (45 E%) diet-fed C57BL/6J mice developed obesity, hyperleptinaemia, hyperglycaemia and hyperinsulinaemia. The transcript levels of pancreatic lipase (PL), pancreatic lipase-related protein 2 (PLRP2) and pancreatic phospholipase A2 (PLA2) were initially elevated; however, they were down-regulated to basal control levels at week 12. The transcript levels of colipase were significantly affected by diet and time. The protein levels of PL and PLRP2 responded to HF diet feeding. The transcript levels of amylase and proteases were not significantly affected by diet and time. The transcript levels of specific lipases in hyperinsulinaemic, hyperleptinaemic and hyperglycaemic DIO C57BL/6J mice are down-regulated. However, these mice compensate for this by the post-transcriptional regulation of the levels of proteins that respond to dietary fat. This suggests a complex regulatory mechanism involved in the modulation of fat digestion.
Collapse
|
9
|
Duivenvoorde LPM, van Schothorst EM, Swarts HJM, Keijer J. Assessment of Metabolic Flexibility of Old and Adult Mice Using Three Noninvasive, Indirect Calorimetry-Based Treatments. J Gerontol A Biol Sci Med Sci 2014; 70:282-93. [DOI: 10.1093/gerona/glu027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Desaulniers D, Xiao GH, Cummings-Lorbetskie C. Effects of lactational and/or in utero exposure to environmental contaminants on the glucocorticoid stress-response and DNA methylation of the glucocorticoid receptor promoter in male rats. Toxicology 2013; 308:20-33. [PMID: 23537661 DOI: 10.1016/j.tox.2013.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/06/2013] [Accepted: 03/15/2013] [Indexed: 10/27/2022]
Abstract
Perinatal events can reprogram the hypothalamo-pituitary-adrenal axis for the entire lifespan leading to abnormal glucocorticoid stress-response (GSR) in adulthood: a phenomenon reported to be mediated by changes in DNA methylation of the glucocorticoid receptor (GR) gene promoter. We examined whether in utero and/or lactational exposure to mixtures of environmental contaminants can also induce abnormal GSR during adulthood. The experiment included nine treatment groups. From gestation day (GD) 0 until postnatal day (PND) 20, dams were fed daily with a cookie laced with corn oil (control) or a chemical mixture (M) [polychlorinated biphenyls (PCBs), organochlorine pesticides, and methylmercury] at 0.5 or 1.0mg/kg/day (0.5M, and M). At birth, some control (C) and M litters were cross-fostered to create four groups with the following in utero/postnatal exposure: C/C, M/C, C/M, M/M. Other dams received 1.8ng/kg/day of a mixture of aryl hydrocarbon receptor (AhR) agonists (non-ortho PCBs, PC-dibenzodioxins and PC-dibenzofurans) without or with 0.5M (0.5MAhR). In adult male offspring the abundance of GR in treated groups was not different from the control, but the AhR and M groups were significantly different from each other with opposite effects in the hippocampus and liver. There was no change in DNA methylation of the GR promoter (exon-17 and -110). Abnormal GSRs were detected in the AhR, 0.5MAhR, CM, and MM groups. The literature associates abnormal GSR with metabolic and mental health impairments, thus these results support further investigation of the influence of developmental exposure to environmental contaminants and predisposition to stress-induced diseases.
Collapse
Affiliation(s)
- D Desaulniers
- Health Canada, Healthy Environments and Consumer Safety Branch, Hazard Identification Division, AL: 0803D Tunney's Pasture, Ottawa, Ontario K1A 0K9, Canada.
| | | | | |
Collapse
|
11
|
Carbone DL, Zuloaga DG, Lacagnina AF, McGivern RF, Handa RJ. Exposure to dexamethasone during late gestation causes female-specific decreases in core body temperature and prepro-thyrotropin-releasing hormone expression in the paraventricular nucleus of the hypothalamus in rats. Physiol Behav 2012; 108:6-12. [PMID: 22884559 DOI: 10.1016/j.physbeh.2012.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 07/13/2012] [Accepted: 07/26/2012] [Indexed: 12/20/2022]
Abstract
Synthetic glucocorticoids (GC) have been used to promote lung development in preterm infants, thereby decreasing respiratory distress syndrome and mortality, yet, concern has arisen from reports that such treatment predisposes individuals to disease in adulthood. Given the variety of preclinical studies that show metabolic and behavioral abnormalities in adulthood following fetal exposure to synthetic GC, we examined the effect of in utero exposure to the synthetic GC, dexamethasone (DEX), on hypothalamic expression of thyrotropin-releasing hormone (TRH) a central neuropeptide involved in mediating behavior and metabolic balance. Pregnant Sprague-Dawley rats were administered 0.4mg/kg DEX on gestational days 18-21. As adults (postnatal day (PD) 60), the offspring were fitted with temperature sensing transmitters allowing real-time monitoring of core body temperature (CBT) across the 24h light dark period. This revealed a significant decrease in CBT throughout the day in prenatal DEX-treated females on estrus and diestrus, but not in male offspring. The reduction in CBT by prenatal DEX exposure was accompanied by a significant decrease in the expression of Trh transcript in the paraventricular nucleus of the hypothalamus (PVN) of female rats at PD 60 and this effect was also present on PD7. There was also a female-specific reduction in the number of preproTRH-immunoreactive (ir) neurons in the PVN, with ppTRH-ir nerve fibers decreases that were present in both male and female offspring. No changes in thyroid hormone (triiodothyronine, T3; thyroxine, T4) were observed in adult offspring, but during development, both males and females (PD14) had lower T3 and T4 levels. These data indicate abnormal expression of TRH results from fetal DEX exposure during late gestation, possibly explaining the decreased CBT observed in the female offspring.
Collapse
Affiliation(s)
- David L Carbone
- University of Arizona College of Medicine-Phoenix, Department of Basic Medical Sciences, Phoenix, AZ 85004-2157, United States.
| | | | | | | | | |
Collapse
|