1
|
Miller-Holt J, Behrsing H, Crooks I, Curren R, Demir K, Gafner J, Gillman G, Hollings M, Leverette R, Oldham M, Simms L, Stankowski LF, Thorne D, Wieczorek R, Moore MM. Key challenges for in vitro testing of tobacco products for regulatory applications: Recommendations for dosimetry. Drug Test Anal 2023; 15:1175-1188. [PMID: 35830202 PMCID: PMC9897201 DOI: 10.1002/dta.3344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023]
Abstract
The Institute for In Vitro Sciences (IIVS) is sponsoring a series of workshops to develop recommendations for optimal scientific and technical approaches for conducting in vitro assays to assess potential toxicity within and across tobacco and various next-generation products (NGPs) including heated tobacco products (HTPs) and electronic nicotine delivery systems (ENDSs). This publication was developed by a working group of the workshop members in conjunction with the sixth workshop in that series entitled "Dosimetry for conducting in vitro evaluations" and focuses on aerosol dosimetry for aerosol exposure to combustible cigarettes, HTP, and ENDS aerosolized tobacco products and summarizes the key challenges as well as documenting areas for future research.
Collapse
Affiliation(s)
| | - Holger Behrsing
- Institute for In Vitro Sciences, Gaithersburg, Maryland, USA
| | - Ian Crooks
- Consumer Product Safety, British American Tobacco, Southampton, UK
| | - Rodger Curren
- Institute for In Vitro Sciences, Gaithersburg, Maryland, USA
| | - Kubilay Demir
- Regulatory Science, JUUL Labs Inc., 1000 F Street NW, Washington D.C. 20004, USA
| | - Jeremie Gafner
- Scientific & Regulatory Affairs, JT International SA, Geneva, Switzerland
| | - Gene Gillman
- Regulatory Science, JUUL Labs Inc., 1000 F Street NW, Washington D.C. 20004, USA
| | - Michael Hollings
- Genetic Toxicology, Labcorp Early Development Laboratories Ltd., Harrogate, UK
| | - Robert Leverette
- Scientific & Regulatory Affairs, RAI Services Company, Winston-Salem, North Carolina, USA
| | - Michael Oldham
- Regulatory Science, JUUL Labs Inc., 1000 F Street NW, Washington D.C. 20004, USA
| | - Liam Simms
- Group Science and Regulatory Affairs, Imperial Brands, Bristol, UK
| | - Leon F. Stankowski
- Genetic and In Vitro Toxicology, Charles River Laboratories–Skokie, Skokie, Illinois, USA
| | - David Thorne
- Consumer Product Safety, British American Tobacco, Southampton, UK
| | - Roman Wieczorek
- Group Science and Regulatory Affairs, Reemtsma Cigarettenfabriken GmbH, an Imperial Brands PLC Company, Hamburg, Germany
| | | |
Collapse
|
2
|
Deniz Derman I, Yeo M, Castaneda DC, Callender M, Horvath M, Mo Z, Xiong R, Fleming E, Chen P, Peeples ME, Palucka K, Oh J, Ozbolat IT. High-throughput bioprinting of the nasal epithelium using patient-derived nasal epithelial cells. Biofabrication 2023; 15:044103. [PMID: 37536321 PMCID: PMC10424246 DOI: 10.1088/1758-5090/aced23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023]
Abstract
Progenitor human nasal epithelial cells (hNECs) are an essential cell source for the reconstruction of the respiratory pseudostratified columnar epithelium composed of multiple cell types in the context of infection studies and disease modeling. Hitherto, manual seeding has been the dominant method for creating nasal epithelial tissue models through biofabrication. However, this approach has limitations in terms of achieving the intricate three-dimensional (3D) structure of the natural nasal epithelium. 3D bioprinting has been utilized to reconstruct various epithelial tissue models, such as cutaneous, intestinal, alveolar, and bronchial epithelium, but there has been no attempt to use of 3D bioprinting technologies for reconstruction of the nasal epithelium. In this study, for the first time, we demonstrate the reconstruction of the nasal epithelium with the use of primary hNECs deposited on Transwell inserts via droplet-based bioprinting (DBB), which enabled high-throughput fabrication of the nasal epithelium in Transwell inserts of 24-well plates. DBB of progenitor hNECs ranging from one-tenth to one-half of the cell seeding density employed during the conventional cell seeding approach enabled a high degree of differentiation with the presence of cilia and tight-junctions over a 4 weeks air-liquid interface culture. Single cell RNA sequencing of these cultures identified five major epithelial cells populations, including basal, suprabasal, goblet, club, and ciliated cells. These cultures recapitulated the pseudostratified columnar epithelial architecture present in the native nasal epithelium and were permissive to respiratory virus infection. These results denote the potential of 3D bioprinting for high-throughput fabrication of nasal epithelial tissue models not only for infection studies but also for other purposes, such as disease modeling, immunological studies, and drug screening.
Collapse
Affiliation(s)
- I Deniz Derman
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
| | - Miji Yeo
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
| | | | - Megan Callender
- The Jackson Laboratory, Farmington, CT 06032, United States of America
| | - Mian Horvath
- The Jackson Laboratory, Farmington, CT 06032, United States of America
| | - Zengshuo Mo
- The Jackson Laboratory, Farmington, CT 06032, United States of America
| | - Ruoyun Xiong
- The Jackson Laboratory, Farmington, CT 06032, United States of America
| | - Elizabeth Fleming
- The Jackson Laboratory, Farmington, CT 06032, United States of America
| | - Phylip Chen
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, United States of America
| | - Mark E Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, United States of America
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210, United States of America
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, United States of America
| | - Karolina Palucka
- The Jackson Laboratory, Farmington, CT 06032, United States of America
| | - Julia Oh
- The Jackson Laboratory, Farmington, CT 06032, United States of America
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Biomedical Engineering Department, Penn State University, University Park, PA 16802, United States of America
- Materials Research Institute, Penn State University, University Park, PA 16802, United States of America
- Cancer Institute, Penn State University, University Park, PA 16802, United States of America
- Neurosurgery Department, Penn State University, University Park, PA 16802, United States of America
- Department of Medical Oncology, Cukurova University, Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, Adana, Turkey
| |
Collapse
|
3
|
Rouabhia M, Piché M, Hazzi C, Corriveau MN, Chakir J. Effect of cannabis smoke condensate on human nasal epithelial cell adhesion, growth, and migration. Am J Otolaryngol 2023; 44:103890. [PMID: 37058911 DOI: 10.1016/j.amjoto.2023.103890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/16/2023]
Abstract
OBJECTIVE When inhaled, cannabis smoke interacts with airway tissues, including the nasal mucosa, which may lead to nasal pathologies. We examined the effect of cannabis smoke condensate (CSC) on nasal epithelial cell and tissue behaviors. METHODS Human nasal epithelial cells were exposed or not to CSC at different concentrations (1, 5, 10, and 20 %) and for different durations. Cell adhesion and viability were assessed, as well as post-wound cell migration and lactate dehydrogenase (LDH) release. RESULTS The nasal epithelial cells showed a larger cell size and a faint nucleus following exposure to CSC, compared to that observed in that control. This was supported by fewer adherent cells present after exposure for either 1 or 24 h to 5, 15, and 20 % CSC. CSC also had a significant toxic effect by reducing cell viability after both 1 and 24 h of exposure. This toxic effect was significant even at a low concentration (1 %) of CSC. The effects on nasal epithelial cell viability were confirmed by the decrease in cell migration. After the scratch and subsequent exposure to CSC for either 6 or 24 h, a complete inhibition of nasal epithelial cell migration was observed, compared to that found in the controls. CSC was toxic to the nasal epithelial cells, as the level of LDH significantly increased following cell exposure all CSC concentrations. CONCLUSION Cannabis smoke condensate had a negative effect on several nasal epithelial cell behaviors. These findings indicate that cannabis smoke could be a threat to nasal tissues and ultimately lead to nasal and sinus disorders.
Collapse
Affiliation(s)
- Mahmoud Rouabhia
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Canada.
| | - Marilou Piché
- Oto-rhino-laryngologie, Chirurgie Cervico-faciale, CHU de Québec, Université Laval, Canada
| | - Christina Hazzi
- Oto-rhino-laryngologie, Chirurgie Cervico-faciale, CHU de Québec, Université Laval, Canada
| | - Marie-Noëlle Corriveau
- Oto-rhino-laryngologie, Chirurgie Cervico-faciale, CHU de Québec, Université Laval, Canada
| | - Jamila Chakir
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| |
Collapse
|
4
|
Derman ID, Yeo M, Castaneda DC, Callender M, Horvath M, Mo Z, Xiong R, Fleming E, Chen P, Peeples ME, Palucka K, Oh J, Ozbolat IT. High-Throughput Bioprinting of the Nasal Epithelium using Patient-derived Nasal Epithelial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534723. [PMID: 37034627 PMCID: PMC10081172 DOI: 10.1101/2023.03.29.534723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Human nasal epithelial cells (hNECs) are an essential cell source for the reconstruction of the respiratory pseudostratified columnar epithelium composed of multiple cell types in the context of infection studies and disease modeling. Hitherto, manual seeding has been the dominant method for creating nasal epithelial tissue models. However, the manual approach is slow, low-throughput and has limitations in terms of achieving the intricate 3D structure of the natural nasal epithelium in a uniform manner. 3D Bioprinting has been utilized to reconstruct various epithelial tissue models, such as cutaneous, intestinal, alveolar, and bronchial epithelium, but there has been no attempt to use of 3D bioprinting technologies for reconstruction of the nasal epithelium. In this study, for the first time, we demonstrate the reconstruction of the nasal epithelium with the use of primary hNECs deposited on Transwell inserts via droplet-based bioprinting (DBB), which enabled high-throughput fabrication of the nasal epithelium in Transwell inserts of 24-well plates. DBB of nasal progenitor cells ranging from one-tenth to one-half of the cell seeding density employed during the conventional cell seeding approach enabled a high degree of differentiation with the presence of cilia and tight-junctions over a 4-week air-liquid interface culture. Single cell RNA sequencing of these cultures identified five major epithelial cells populations, including basal, suprabasal, goblet, club, and ciliated cells. These cultures recapitulated the pseudostratified columnar epithelial architecture present in the native nasal epithelium and were permissive to respiratory virus infection. These results denote the potential of 3D bioprinting for high-throughput fabrication of nasal epithelial tissue models not only for infection studies but also for other purposes such as disease modeling, immunological studies, and drug screening.
Collapse
|
5
|
Cerimi K, Jäckel U, Meyer V, Daher U, Reinert J, Klar S. In Vitro Systems for Toxicity Evaluation of Microbial Volatile Organic Compounds on Humans: Current Status and Trends. J Fungi (Basel) 2022; 8:75. [PMID: 35050015 PMCID: PMC8780961 DOI: 10.3390/jof8010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Microbial volatile organic compounds (mVOC) are metabolic products and by-products of bacteria and fungi. They play an important role in the biosphere: They are responsible for inter- and intra-species communication and can positively or negatively affect growth in plants. But they can also cause discomfort and disease symptoms in humans. Although a link between mVOCs and respiratory health symptoms in humans has been demonstrated by numerous studies, standardized test systems for evaluating the toxicity of mVOCs are currently not available. Also, mVOCs are not considered systematically at regulatory level. We therefore performed a literature survey of existing in vitro exposure systems and lung models in order to summarize the state-of-the-art and discuss their suitability for understanding the potential toxic effects of mVOCs on human health. We present a review of submerged cultivation, air-liquid-interface (ALI), spheroids and organoids as well as multi-organ approaches and compare their advantages and disadvantages. Furthermore, we discuss the limitations of mVOC fingerprinting. However, given the most recent developments in the field, we expect that there will soon be adequate models of the human respiratory tract and its response to mVOCs.
Collapse
Affiliation(s)
- Kustrim Cerimi
- Unit 4.7 Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstraße 40–42, 10317 Berlin, Germany; (U.J.); (J.R.); (S.K.)
| | - Udo Jäckel
- Unit 4.7 Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstraße 40–42, 10317 Berlin, Germany; (U.J.); (J.R.); (S.K.)
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
| | - Ugarit Daher
- BIH Center for Regenerative Therapies (BCRT), BIH Stem Cell Core Facility, Berlin Institute of Health, Charité—Universitätsmedizin, 13353 Berlin, Germany;
| | - Jessica Reinert
- Unit 4.7 Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstraße 40–42, 10317 Berlin, Germany; (U.J.); (J.R.); (S.K.)
| | - Stefanie Klar
- Unit 4.7 Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstraße 40–42, 10317 Berlin, Germany; (U.J.); (J.R.); (S.K.)
| |
Collapse
|
6
|
Kim JW, Jeong MH, Kim GE, Han YB, Park YJ, Chung KH, Kim HR. Comparison of 3D airway models for the assessment of fibrogenic chemicals. Toxicol Lett 2021; 356:100-109. [PMID: 34902520 DOI: 10.1016/j.toxlet.2021.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022]
Abstract
Lung epithelial cells and fibroblasts play key roles in pulmonary fibrosis and are involved in fibrotic signaling and production of the extracellular matrix (ECM), respectively. Recently, 3D airway models consisting of both cell types have been developed to evaluate the fibrotic responses while facilitating cell-cell crosstalk. This study aimed to evaluate the fibrotic responses in these models using different fibrogenic agents, which are known as key events in adverse outcome pathways of pulmonary fibrosis. We quantified cell injury and several sequential steps in fibrogenesis, including inflammation, the epithelial-mesenchymal transition (EMT), fibroblast activation, and ECM accumulation, using two different 3D airway models, the EpiAirway™-full thickness (Epi/FT) and MucilAir™-human fibroblast (Mucil/HF) models. In the Epi/FT model, fibrogenic agents induced the expression of inflammation and EMT-associated markers, while in the Mucil/HF model, they induced fibroblast activation and ECM accumulation. Using this information, we conducted gene ontology term network analysis. In the Epi/FT model, the terms associated with cell migration and response to stimulus made up a large part of the network. In the Mucil/HF model, the terms associated with ECM organization and cell differentiation and proliferation constituted a great part of the network. Collectively, our data suggest that polyhexamethyleneguanidine phosphate and bleomycin induce different responses in the two 3D airway models. While Epi/FT was associated with inflammatory/EMT-associated responses, Mucil/HF was associated with fibroblast-associated responses. This study will provide an important basis for selecting proper 3D airway models and fibrogenic agents to further research or screen chemicals causing inhalation toxicity.
Collapse
Affiliation(s)
- Jun Woo Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Mi Ho Jeong
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ga Eun Kim
- College of Pharmacy, Daegu Catholic University, 13-13, Hayang-ro, Hayang-eup, Gyeongsan, Gyeongsangbuk-do, 38430, Republic of Korea
| | - Yu Bin Han
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yong Joo Park
- College of Pharmacy, Kyungsung University, Busan, 48434, Republic of Korea
| | - Kyu Hyuck Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Ha Ryong Kim
- College of Pharmacy, Daegu Catholic University, 13-13, Hayang-ro, Hayang-eup, Gyeongsan, Gyeongsangbuk-do, 38430, Republic of Korea.
| |
Collapse
|
7
|
Helena Macedo M, Baião A, Pinto S, Barros AS, Almeida H, Almeida A, das Neves J, Sarmento B. Mucus-producing 3D cell culture models. Adv Drug Deliv Rev 2021; 178:113993. [PMID: 34619286 DOI: 10.1016/j.addr.2021.113993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/23/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
In vitro cell-based models have been used for a long time since they are normally easily obtained and have an advantageous cost-benefit. Besides, they can serve a variety of ends, from studying drug absorption and metabolism to disease modeling. However, some in vitro models are too simplistic, not accurately representing the living tissues. It has been shown, mainly in the last years, that fully mimicking a tissue composition and architecture can be paramount for cellular behavior and, consequently, for the outcomes of the studies using such models. Because of this, 3D in vitro cell models have been gaining much attention, since they are able to better replicate the in vivo environment. In this review we focus on 3D models that contain mucus-producing cells, as mucus can play a pivotal role in drug absorption. Being frequently overlooked, this viscous fluid can have an impact on drug delivery. Thus, the aim of this review is to understand to which extent can mucus affect mucosal drug delivery and to provide a state-of-the-art report on the existing 3D cell-based mucus models.
Collapse
|
8
|
In Vitro Ciliotoxicity and Cytotoxicity Testing of Repeated Chronic Exposure to Topical Nasal Formulations for Safety Studies. Pharmaceutics 2021; 13:pharmaceutics13111750. [PMID: 34834166 PMCID: PMC8618987 DOI: 10.3390/pharmaceutics13111750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Certain active drugs and excipients of nasal formulations may impair ciliary function and mucociliary clearance. The ciliary beat frequency (CBF) is a key parameter for determining mucociliary clearance rate, and in vitro assessments of CBF have proven to be accurate and reproducible. Since topical nasal formulations are applied with repeated doses, it is essential to elucidate their chronic, as opposed to acute, effect on mucociliary clearance and nasal mucosa. The aim of this study was to assess for the first time the ciliotoxicity and cytotoxicity of nasal sprays intended for chronic treatment (with repeated doses) using a previously designed set-up for CBF measurements. For 2 weeks, the 3D nasal MucilAir™ in vitro models were treated daily with undiluted or clinically relevant doses of mometasone nasal spray, placebo nasal spray, culture medium, or they were untreated. We demonstrated a dose-dependent and time-dependent (cumulative) effect of the nasal sprays on ciliary activity and cytotoxicity using CBF measurements and ultrastructural analysis, respectively. Our results indicate that repeated administration of clinically relevant doses of mometasone nasal spray is safe for in vivo use, which is in good agreement with a previous clinical study. Overall, our study suggests that such in vitro assays have great potential for topical nasal drug screening.
Collapse
|
9
|
Nossa R, Costa J, Cacopardo L, Ahluwalia A. Breathing in vitro: Designs and applications of engineered lung models. J Tissue Eng 2021; 12:20417314211008696. [PMID: 33996022 PMCID: PMC8107677 DOI: 10.1177/20417314211008696] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this review is to provide a systematic design guideline to users, particularly engineers interested in developing and deploying lung models, and biologists seeking to identify a suitable platform for conducting in vitro experiments involving pulmonary cells or tissues. We first discuss the state of the art on lung in vitro models, describing the most simplistic and traditional ones. Then, we analyze in further detail the more complex dynamic engineered systems that either provide mechanical cues, or allow for more predictive exposure studies, or in some cases even both. This is followed by a dedicated section on microchips of the lung. Lastly, we present a critical discussion of the different characteristics of each type of system and the criteria which may help researchers select the most appropriate technology according to their specific requirements. Readers are encouraged to refer to the tables accompanying the different sections where comprehensive and quantitative information on the operating parameters and performance of the different systems reported in the literature is provided.
Collapse
|
10
|
Haswell LE, Smart D, Jaunky T, Baxter A, Santopietro S, Meredith S, Camacho OM, Breheny D, Thorne D, Gaca MD. The development of an in vitro 3D model of goblet cell hyperplasia using MUC5AC expression and repeated whole aerosol exposures. Toxicol Lett 2021; 347:45-57. [PMID: 33892128 DOI: 10.1016/j.toxlet.2021.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/17/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022]
Abstract
Goblet cell hyperplasia and overproduction of airway mucin are characteristic features of the lung epithelium of smokers and COPD patients. Tobacco heating products (THPs) are a potentially less risky alternative to combustible cigarettes, and through continued use solus THPs may reduce smoking-related disease risk. Using the MucilAir™ in vitro lung model, a 6-week feasibility study was conducted investigating the effect of repeated cigarette smoke (1R6F), THP aerosol and air exposure. Tissues were exposed to nicotine-matched whole aerosol doses 3 times/week. Endpoints assessed were dosimetry, tight-junction integrity, cilia beat frequency (CBF) and active area (AA), cytokine secretion and airway mucin MUC5AC expression. Comparison of incubator and air exposed controls indicated exposures did not have a significant effect on the transepithelial electrical resistance (TEER), CBF and AA of the tissues. Cytokine secretion indicated clear differences in secretion patterns in response to 1R6F and THP exposure. 1R6F exposure resulted in a significant decrease in the TEER and AA (p=0.000 and p=0.000, respectively), and an increase in MUC5AC positive cells (p=0.002). Repeated THP exposure did not result in a significant change in MUC5AC positive cells. This study demonstrates repeated cigarette smoke whole aerosol exposure can induce these morphological changes in vitro.
Collapse
Affiliation(s)
- Linsey E Haswell
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK.
| | - David Smart
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Tomasz Jaunky
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Andrew Baxter
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | | | - Stuart Meredith
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Oscar M Camacho
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Damien Breheny
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - David Thorne
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Marianna D Gaca
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| |
Collapse
|
11
|
Lee N, Jang DY, Lee DH, Jeong H, Nam KT, Choi DW, Lim KM. Local Toxicity of Biocides after Direct and Aerosol Exposure on the Human Skin Epidermis and Airway Tissue Models. TOXICS 2021; 9:toxics9020029. [PMID: 33546295 PMCID: PMC7913294 DOI: 10.3390/toxics9020029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 11/16/2022]
Abstract
Biocides are commonly used as spray- or trigger-type formulations, thus dermal and respiratory exposure to biocide aerosol is unavoidable. However, little is known about the impact of aerosolization on the local toxicity of biocides on the skin or the airway. We compared the local toxicity of biocides after direct or aerosol exposure on reconstructed human skin epidermis and upper airway models. Three biocides, 1,2-benzisothiazol-3(2H)-one (BIT), 2-phenoxyethanol (PE), and 2-phenylphenol (OPP), most widely used in the market were selected. When the biocide was treated in aerosols, toxicity to the skin epidermis and upper airway tissue became significantly attenuated compared with the direct application as determined by the higher tissue viabilities. This was further confirmed in histological examination, wherein the tissue damages were less pronounced. LC-MS/MS and GC/MS analysis revealed that concentrations of biocides decreased during aerosolization. Importantly, the toxicity of biocides treated in 3 μm (median mass aerodynamic diameter (MMAD)) aerosols was stronger than that of 5 μm aerosol, suggesting that the aerosol particle size may affect biocide toxicity. Collectively, we demonstrated that aerosolization could affect the local toxicity of biocides on the skin epidermis and the upper airway.
Collapse
Affiliation(s)
- Nahyun Lee
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea;
| | - Dae Yong Jang
- Department of Public Health Sciences, Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02481, Korea; (D.Y.J.); (D.H.L.)
| | - Do Hyeon Lee
- Department of Public Health Sciences, Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02481, Korea; (D.Y.J.); (D.H.L.)
| | - Haengdueng Jeong
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seodaemungu, Seoul 03722, Korea; (H.J.); (K.T.N.)
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seodaemungu, Seoul 03722, Korea; (H.J.); (K.T.N.)
| | - Dal-Woong Choi
- Department of Public Health Sciences, Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02481, Korea; (D.Y.J.); (D.H.L.)
- Correspondence: authors: (D.-W.C.); (K.-M.L.); Tel.: +82-10-9775-7875 (D.-W.C.); +82-2-3277-3055 (K.-M.L.); Fax: +82-02-940-2778 (D.-W.C.); +82-2-3277-3760 (K.-M.L.)
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea;
- Correspondence: authors: (D.-W.C.); (K.-M.L.); Tel.: +82-10-9775-7875 (D.-W.C.); +82-2-3277-3055 (K.-M.L.); Fax: +82-02-940-2778 (D.-W.C.); +82-2-3277-3760 (K.-M.L.)
| |
Collapse
|
12
|
Dalle-Donne I, Garavaglia ML, Colombo G, Astori E, Lionetti MC, La Porta CAM, Santucci A, Rossi R, Giustarini D, Milzani A. Cigarette smoke and glutathione: Focus on in vitro cell models. Toxicol In Vitro 2020; 65:104818. [PMID: 32135238 DOI: 10.1016/j.tiv.2020.104818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/05/2020] [Accepted: 02/28/2020] [Indexed: 01/20/2023]
Abstract
Cigarette smoke (CS) is one of the most important preventable risk factors for the development of respiratory diseases, cardiovascular diseases, stroke, and various types of cancer. Due to its high intracellular concentration and central role in maintaining the cellular redox state, glutathione (GSH) is one of the key players in several enzymatic and non-enzymatic reactions necessary for protecting cells against CS-induced oxidative stress. A plethora of in vitro cell models have been used over the years to assess the effects of CS on intracellular GSH and its disulphide forms, i.e. glutathione disulphide (GSSG) and S-glutathionylated proteins. In this review, we described the effects of cell exposure to CS on cellular GSH and formation of its oxidized forms and adducts (GSH-conjugates). We also discussed the limitations and relevance of in vitro cell models of exposure to CS and critically assessed the congruence between smokers and in vitro cell models. What emerges clearly is that results obtained in vitro should be interpreted with extreme caution, bearing in mind the limitations of the specific cell model used. Despite this, in vitro cell models remain important tools in the assessment of CS-induced oxidative damage.
Collapse
Affiliation(s)
- Isabella Dalle-Donne
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy.
| | - Maria L Garavaglia
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy
| | - Graziano Colombo
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy
| | - Emanuela Astori
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy
| | - Maria C Lionetti
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Caterina A M La Porta
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018-2022), University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Ranieri Rossi
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018-2022), University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Daniela Giustarini
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018-2022), University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Aldo Milzani
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy
| |
Collapse
|
13
|
Boué S, Goedertier D, Hoeng J, Iskandar A, Kuczaj AK, Marescotti D, Mathis C, May A, Phillips B, Peitsch MC, Schlage WK, Sciuscio D, Tan WT, Vanscheeuwijck P. State-of-the-art methods and devices for generation, exposure, and collection of aerosols from e-vapor products. TOXICOLOGY RESEARCH AND APPLICATION 2020. [DOI: 10.1177/2397847320979751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
E-vapor products (EVP) have become popular alternatives for cigarette smokers who would otherwise continue to smoke. EVP research is challenging and complex, mostly because of the numerous and rapidly evolving technologies and designs as well as the multiplicity of e-liquid flavors and solvents available on the market. There is an urgent need to standardize all stages of EVP assessment, from the production of a reference product to e-vapor generation methods and from physicochemical characterization methods to nonclinical and clinical exposure studies. The objective of this review is to provide a detailed description of selected experimental setups and methods for EVP aerosol generation and collection and exposure systems for their in vitro and in vivo assessment. The focus is on the specificities of the product that constitute challenges and require development of ad hoc assessment frameworks, equipment, and methods. In so doing, this review aims to support further studies, objective evaluation, comparison, and verification of existing evidence, and, ultimately, formulation of standardized methods for testing EVPs.
Collapse
Affiliation(s)
- Stéphanie Boué
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Didier Goedertier
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Anita Iskandar
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Arkadiusz K Kuczaj
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Diego Marescotti
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Carole Mathis
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Anne May
- Consultants in Science, Epalinges, Switzerland
| | - Blaine Phillips
- Philip Morris International (PMI) Research & Development, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore
| | - Manuel C Peitsch
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | - Davide Sciuscio
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Wei Teck Tan
- Philip Morris International (PMI) Research & Development, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore
| | - Patrick Vanscheeuwijck
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| |
Collapse
|
14
|
Imkamp K, Bernal V, Grzegorzcyk M, Horvatovich P, Vermeulen CJ, Heijink IH, Guryev V, Kerstjens HAM, van den Berge M, Faiz A. Gene network approach reveals co-expression patterns in nasal and bronchial epithelium. Sci Rep 2019; 9:15835. [PMID: 31676779 PMCID: PMC6825243 DOI: 10.1038/s41598-019-50963-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022] Open
Abstract
Nasal gene expression profiling is a new approach to investigate the airway epithelium as a biomarker to study the activity and treatment responses of obstructive pulmonary diseases. We investigated to what extent gene expression profiling of nasal brushings is similar to that of bronchial brushings. We performed genome wide gene expression profiling on matched nasal and bronchial epithelial brushes from 77 respiratory healthy individuals. To investigate differences and similarities among regulatory modules, network analysis was performed on correlated, differentially expressed and smoking-related genes using Gaussian Graphical Models. Between nasal and bronchial brushes, 619 genes were correlated and 1692 genes were differentially expressed (false discovery rate <0.05, |Fold-change|>2). Network analysis of correlated genes showed pro-inflammatory pathways to be similar between the two locations. Focusing on smoking-related genes, cytochrome-P450 pathway related genes were found to be similar, supporting the concept of a detoxifying response to tobacco exposure throughout the airways. In contrast, cilia-related pathways were decreased in nasal compared to bronchial brushes when focusing on differentially expressed genes. Collectively, while there are substantial differences in gene expression between nasal and bronchial brushes, we also found similarities, especially in the response to the external factors such as smoking.
Collapse
Affiliation(s)
- Kai Imkamp
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands. .,University of Groningen, University Medical Center Groningen, GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, The Netherlands.
| | - Victor Bernal
- University of Groningen, Bernoulli Institute (JBI), Groningen, The Netherlands.,University of Groningen, Department of Pharmacy, Analytical Biochemistry, Groningen, The Netherlands
| | - Marco Grzegorzcyk
- University of Groningen, Bernoulli Institute (JBI), Groningen, The Netherlands
| | - Peter Horvatovich
- University of Groningen, Department of Pharmacy, Analytical Biochemistry, Groningen, The Netherlands
| | - Cornelis J Vermeulen
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, The Netherlands
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, section Medical Biology, Groningen, The Netherlands
| | - Victor Guryev
- University of Groningen, University Medical Center Groningen, GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, The Netherlands.,European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Huib A M Kerstjens
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, The Netherlands
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, The Netherlands
| | - Alen Faiz
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, section Medical Biology, Groningen, The Netherlands.,University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology (RBMB), School of life sciences, Sydney, Australia.,Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
van der Toorn M, Sewer A, Marescotti D, Johne S, Baumer K, Bornand D, Dulize R, Merg C, Corciulo M, Scotti E, Pak C, Leroy P, Guedj E, Ivanov N, Martin F, Peitsch M, Hoeng J, Luettich K. The biological effects of long-term exposure of human bronchial epithelial cells to total particulate matter from a candidate modified-risk tobacco product. Toxicol In Vitro 2018. [DOI: 10.1016/j.tiv.2018.02.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Iskandar AR, Martin F, Leroy P, Schlage WK, Mathis C, Titz B, Kondylis A, Schneider T, Vuillaume G, Sewer A, Guedj E, Trivedi K, Elamin A, Frentzel S, Ivanov NV, Peitsch MC, Hoeng J. Comparative biological impacts of an aerosol from carbon-heated tobacco and smoke from cigarettes on human respiratory epithelial cultures: A systems toxicology assessment. Food Chem Toxicol 2018; 115:109-126. [PMID: 29501877 DOI: 10.1016/j.fct.2018.02.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 02/27/2018] [Indexed: 02/02/2023]
Abstract
The biological impact of an aerosol of a potential modified-risk tobacco product, carbon heated tobacco product 1.2 (CHTP1.2), was comprehensively assessed for the first time in vitro using human small airway and nasal epithelial models following a systems toxicology approach. The potentially reduced effects of CHTP1.2 aerosol exposure were benchmarked against those of 3R4F cigarette smoke at similar nicotine concentrations. Experimental repetitions were conducted for which new batches of small airway and nasal cultures were exposed to CHTP1.2 aerosol or 3R4F smoke for 28 minutes. The biological impacts were determined based on a collection of endpoints including morphology, cytotoxicity, proinflammatory mediator profiles, cytochrome P450 1A1/1B1 activity, global mRNA and microRNA changes and proteome profiles. Alterations in mRNA expression were detected in cultures exposed to CHTP1.2 aerosol, without noticeable morphological changes and cytotoxicity, and minimal impact on proinflammatory mediator and proteome profiles. The changes linked to CHTP1.2 aerosol exposure, when observed, were transient. However, the impact of 3R4F smoke exposure persisted long post-exposure and greater than CHTP1.2 aerosol. Morphological changes were observed only in cultures exposed to 3R4F smoke. The lower biological effects of CHTP1.2 aerosol than 3R4F smoke exposure were observed similarly in both small airway and nasal epithelial cultures.
Collapse
Affiliation(s)
- Anita R Iskandar
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland.
| | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Patrice Leroy
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Walter K Schlage
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Carole Mathis
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Bjorn Titz
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Athanasios Kondylis
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Thomas Schneider
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Grégory Vuillaume
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Alain Sewer
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Keyur Trivedi
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Ashraf Elamin
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Stefan Frentzel
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International group of companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
17
|
Haswell LE, Corke S, Verrastro I, Baxter A, Banerjee A, Adamson J, Jaunky T, Proctor C, Gaça M, Minet E. In vitro RNA-seq-based toxicogenomics assessment shows reduced biological effect of tobacco heating products when compared to cigarette smoke. Sci Rep 2018; 8:1145. [PMID: 29402904 PMCID: PMC5799303 DOI: 10.1038/s41598-018-19627-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/05/2018] [Indexed: 12/11/2022] Open
Abstract
The battery of regulatory tests used to evaluate the risk of novel tobacco products such as heated tobacco products (THPs) presents some limitations including a bias towards the apical endpoint tested, and limited information on the mode of action. This is driving a paradigm shift to more holistic systems biology approaches. In this study, we used RNA-sequencing to compare the transcriptomic perturbations following acute exposure of a 3D airway tissue to the aerosols from two commercial THPs and a reference 3R4F cigarette. 2809 RNAs were differentially expressed for the 3R4F treatment and 115 and 2 RNAs for the two THPs (pFDR < 0.05, FC > 1.5), respectively. The relationship between the identified RNA features and gene ontologies were mapped showing a strong association with stress response, xenobiotics metabolism, and COPD-related terms for 3R4F. In contrast, fewer ontologies were found enriched for the THPs aerosols. "Response to wounding" was a common COPD-related term over-represented for the two THPs but at a reduced significance. Quantification of a cytokine panel post-exposure confirmed a pro-inflammatory effect of cigarette smoke but not for THPs. In conclusion, THPs have a reduced impact on gene expression compared to 3R4F.
Collapse
Affiliation(s)
- Linsey E Haswell
- British American Tobacco R&D Centre, Regents Park Road, Southampton, SO15 8TL, UK
| | - Sarah Corke
- British American Tobacco R&D Centre, Regents Park Road, Southampton, SO15 8TL, UK
| | - Ivan Verrastro
- British American Tobacco R&D Centre, Regents Park Road, Southampton, SO15 8TL, UK
| | - Andrew Baxter
- British American Tobacco R&D Centre, Regents Park Road, Southampton, SO15 8TL, UK
| | - Anisha Banerjee
- British American Tobacco R&D Centre, Regents Park Road, Southampton, SO15 8TL, UK
| | - Jason Adamson
- British American Tobacco R&D Centre, Regents Park Road, Southampton, SO15 8TL, UK
| | - Tomasz Jaunky
- British American Tobacco R&D Centre, Regents Park Road, Southampton, SO15 8TL, UK
| | - Christopher Proctor
- British American Tobacco R&D Centre, Regents Park Road, Southampton, SO15 8TL, UK
| | - Marianna Gaça
- British American Tobacco R&D Centre, Regents Park Road, Southampton, SO15 8TL, UK
| | - Emmanuel Minet
- British American Tobacco R&D Centre, Regents Park Road, Southampton, SO15 8TL, UK.
| |
Collapse
|
18
|
Iskandar AR, Martinez Y, Martin F, Schlage WK, Leroy P, Sewer A, Torres LO, Majeed S, Merg C, Trivedi K, Guedj E, Frentzel S, Mathis C, Ivanov NV, Peitsch MC, Hoeng J. Comparative effects of a candidate modified-risk tobacco product Aerosol and cigarette smoke on human organotypic small airway cultures: a systems toxicology approach. Toxicol Res (Camb) 2017; 6:930-946. [PMID: 30090554 PMCID: PMC6062162 DOI: 10.1039/c7tx00152e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/27/2017] [Indexed: 12/22/2022] Open
Abstract
Using an in vitro human small airway epithelium model, we assessed the biological impact of an aerosol from a candidate modified-risk tobacco product, the tobacco heating system (THS) 2.2, to investigate the potential reduced risk of THS2.2 aerosol exposure compared with cigarette smoke. Following the recommendations of the Institute of Medicine and the Tobacco Product Assessment Consortium, in which modified-risk tobacco products assessment should be performed in comparison with standard conventional products, the effects of the THS2.2 aerosol exposure on the small airway cultures were compared with those of 3R4F cigarette smoke. We used a systems toxicology approach whereby elucidation of toxic effects is derived not only from functional assay readouts but also from omics technologies. Cytotoxicity, ciliary beating function, secretion of pro-inflammatory mediators and histological assessment represented functional assays. The omics data included transcriptomic and miRNA profiles. Exposure-induced perturbations of causal biological networks were computed from the transcriptomic data. The results showed that THS2.2 aerosol exposure at the tested doses elicited lower cytotoxicity levels and lower changes in the secreted pro-inflammatory mediators than 3R4F smoke. Although THS2.2 exposure elicited alterations in the gene expression, a higher transcriptome-induced biological impact was observed following 3R4F smoke: The effects of THS2.2 aerosol exposure, if observed, were mostly transient and diminished more rapidly after exposure than those of 3R4F smoke. The study demonstrated that the systems toxicology approach can reveal changes at the cellular level that would be otherwise not detected from functional assays, thus increasing the sensitivity to detect potential toxicity of a treatment/exposure.
Collapse
Affiliation(s)
- Anita R Iskandar
- PMI R&D , Philip Morris Products S.A. (Part of Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - Yannick Martinez
- PMI R&D , Philip Morris Products S.A. (Part of Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - Florian Martin
- PMI R&D , Philip Morris Products S.A. (Part of Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - Walter K Schlage
- Biology consultant , Max-Baermann-Str. 21 , 51429 Bergisch Gladbach , Germany
| | - Patrice Leroy
- PMI R&D , Philip Morris Products S.A. (Part of Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - Alain Sewer
- PMI R&D , Philip Morris Products S.A. (Part of Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - Laura Ortega Torres
- PMI R&D , Philip Morris Products S.A. (Part of Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - Shoaib Majeed
- PMI R&D , Philip Morris Products S.A. (Part of Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - Celine Merg
- PMI R&D , Philip Morris Products S.A. (Part of Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - Keyur Trivedi
- PMI R&D , Philip Morris Products S.A. (Part of Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - Emmanuel Guedj
- PMI R&D , Philip Morris Products S.A. (Part of Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - Stefan Frentzel
- PMI R&D , Philip Morris Products S.A. (Part of Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - Carole Mathis
- PMI R&D , Philip Morris Products S.A. (Part of Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - Nikolai V Ivanov
- PMI R&D , Philip Morris Products S.A. (Part of Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - Manuel C Peitsch
- PMI R&D , Philip Morris Products S.A. (Part of Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - Julia Hoeng
- PMI R&D , Philip Morris Products S.A. (Part of Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| |
Collapse
|
19
|
Iskandar AR, Titz B, Sewer A, Leroy P, Schneider T, Zanetti F, Mathis C, Elamin A, Frentzel S, Schlage WK, Martin F, Ivanov NV, Peitsch MC, Hoeng J. Systems toxicology meta-analysis of in vitro assessment studies: biological impact of a candidate modified-risk tobacco product aerosol compared with cigarette smoke on human organotypic cultures of the aerodigestive tract. Toxicol Res (Camb) 2017; 6:631-653. [PMID: 30090531 PMCID: PMC6062142 DOI: 10.1039/c7tx00047b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/26/2017] [Indexed: 12/22/2022] Open
Abstract
Systems biology combines comprehensive molecular analyses with quantitative modeling to understand the characteristics of a biological system as a whole. Leveraging a similar approach, systems toxicology aims to decipher complex biological responses following exposures. This work reports a systems toxicology meta-analysis in the context of in vitro assessment of a candidate modified-risk tobacco product (MRTP) using three human organotypic cultures of the aerodigestive tract (buccal, bronchial, and nasal epithelia). Complementing a series of functional measures, a causal network enrichment analysis of transcriptomic data was used to compare quantitatively the biological impact of aerosol from the Tobacco Heating System (THS) 2.2, a candidate MRTP, with 3R4F cigarette smoke (CS) at similar nicotine concentrations. Lower toxicity was observed in all cultures following exposure to THS2.2 aerosol compared with 3R4F CS. Because of their morphological differences, a smaller exposure impact was observed in the buccal (stratified epithelium) compared with the bronchial and nasal (pseudostratified epithelium). However, the causal network enrichment approach supported a similar mechanistic impact of CS across the three cultures, including the impact on xenobiotic, oxidative stress, and inflammatory responses. At comparable nicotine concentrations, THS2.2 aerosol elicited reduced and more transient effects on these processes. To demonstrate the benefits of additional data modalities, we employed a newly established targeted mass-spectrometry marker panel to further confirm the reduced cellular stress responses elicited by THS2.2 aerosol compared with 3R4F CS in the nasal culture. Overall, this work demonstrates the applicability and robustness of the systems toxicology approach for in vitro inhalation toxicity assessment.
Collapse
Affiliation(s)
- A R Iskandar
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - B Titz
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - A Sewer
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - P Leroy
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - T Schneider
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - F Zanetti
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - C Mathis
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - A Elamin
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - S Frentzel
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - W K Schlage
- Biology consultant , Max-Baermann-Str. 21 , 51429 Bergisch Gladbach , Germany
| | - F Martin
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - N V Ivanov
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - M C Peitsch
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - J Hoeng
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| |
Collapse
|
20
|
Steiner S, Majeed S, Kratzer G, Vuillaume G, Hoeng J, Frentzel S. Characterization of the Vitrocell® 24/48 aerosol exposure system for its use in exposures to liquid aerosols. Toxicol In Vitro 2017; 42:263-272. [DOI: 10.1016/j.tiv.2017.04.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/19/2017] [Accepted: 04/22/2017] [Indexed: 12/21/2022]
|
21
|
Boei JJWA, Vermeulen S, Klein B, Hiemstra PS, Verhoosel RM, Jennen DGJ, Lahoz A, Gmuender H, Vrieling H. Xenobiotic metabolism in differentiated human bronchial epithelial cells. Arch Toxicol 2017; 91:2093-2105. [PMID: 27738743 PMCID: PMC5399058 DOI: 10.1007/s00204-016-1868-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/06/2016] [Indexed: 11/30/2022]
Abstract
Differentiated human bronchial epithelial cells in air liquid interface cultures (ALI-PBEC) represent a promising alternative for inhalation studies with rodents as these 3D airway epithelial tissue cultures recapitulate the human airway in multiple aspects, including morphology, cell type composition, gene expression and xenobiotic metabolism. We performed a detailed longitudinal gene expression analysis during the differentiation of submerged primary human bronchial epithelial cells into ALI-PBEC to assess the reproducibility and inter-individual variability of changes in transcriptional activity during this process. We generated ALI-PBEC cultures from four donors and focussed our analysis on the expression levels of 362 genes involved in biotransformation, which are of primary importance for toxicological studies. Expression of various of these genes (e.g., GSTA1, ADH1C, ALDH1A1, CYP2B6, CYP2F1, CYP4B1, CYP4X1 and CYP4Z1) was elevated following the mucociliary differentiation of airway epithelial cells into a pseudo-stratified epithelial layer. Although a substantial number of genes were differentially expressed between donors, the differences in fold changes were generally small. Metabolic activity measurements applying a variety of different cytochrome p450 substrates indicated that epithelial cultures at the early stages of differentiation are incapable of biotransformation. In contrast, mature ALI-PBEC cultures were proficient in the metabolic conversion of a variety of substrates albeit with considerable variation between donors. In summary, our data indicate a distinct increase in biotransformation capacity during differentiation of PBECs at the air-liquid interface and that the generation of biotransformation competent ALI-PBEC cultures is a reproducible process with little variability between cultures derived from four different donors.
Collapse
Affiliation(s)
- Jan J. W. A. Boei
- Department of Human Genetics, Leiden University Medical Center, Postal Zone S4-P, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Sylvia Vermeulen
- Department of Human Genetics, Leiden University Medical Center, Postal Zone S4-P, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Binie Klein
- Department of Human Genetics, Leiden University Medical Center, Postal Zone S4-P, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Renate M. Verhoosel
- Department of Pulmonology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Danyel G. J. Jennen
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Agustin Lahoz
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria-Fundación Hospital La Fe, 46009 Valencia, Spain
| | | | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, Postal Zone S4-P, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
22
|
Iskandar AR, Mathis C, Schlage WK, Frentzel S, Leroy P, Xiang Y, Sewer A, Majeed S, Ortega-Torres L, Johne S, Guedj E, Trivedi K, Kratzer G, Merg C, Elamin A, Martin F, Ivanov NV, Peitsch MC, Hoeng J. A systems toxicology approach for comparative assessment: Biological impact of an aerosol from a candidate modified-risk tobacco product and cigarette smoke on human organotypic bronchial epithelial cultures. Toxicol In Vitro 2017; 39:29-51. [PMID: 27865774 DOI: 10.1016/j.tiv.2016.11.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/11/2016] [Indexed: 11/24/2022]
Abstract
This study reports a comparative assessment of the biological impact of a heated tobacco aerosol from the tobacco heating system (THS) 2.2 and smoke from a combustible 3R4F cigarette. Human organotypic bronchial epithelial cultures were exposed to an aerosol from THS2.2 (a candidate modified-risk tobacco product) or 3R4F smoke at similar nicotine concentrations. A systems toxicology approach was applied to enable a comprehensive exposure impact assessment. Culture histology, cytotoxicity, secreted pro-inflammatory mediators, ciliary beating, and genome-wide mRNA/miRNA profiles were assessed at various time points post-exposure. Series of experimental repetitions were conducted to increase the robustness of the assessment. At similar nicotine concentrations, THS2.2 aerosol elicited lower cytotoxicity compared with 3R4F smoke. No morphological change was observed following exposure to THS2.2 aerosol, even at nicotine concentration three times that of 3R4F smoke. Lower levels of secreted mediators and fewer miRNA alterations were observed following exposure to THS2.2 aerosol than following 3R4F smoke. Based on the computational analysis of the gene expression changes, 3R4F (0.13 mg nicotine/L) elicited the highest biological impact (100%) in the context of Cell Fate, Cell Proliferation, Cell Stress, and Inflammatory Network Models at 4 h post-exposure. Whereas, the corresponding impact of THS2.2 (0.14 mg nicotine/L) was 7.6%.
Collapse
Affiliation(s)
- Anita R Iskandar
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Carole Mathis
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Walter K Schlage
- Biology Consultant, Max-Baermann-Str. 21, 51429, Bergisch Gladbach, Germany.
| | - Stefan Frentzel
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Patrice Leroy
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Yang Xiang
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Alain Sewer
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Shoaib Majeed
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Laura Ortega-Torres
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Stephanie Johne
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Emmanuel Guedj
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Keyur Trivedi
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Gilles Kratzer
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Celine Merg
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Ashraf Elamin
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Florian Martin
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
23
|
Banerjee A, Haswell LE, Baxter A, Parmar A, Azzopardi D, Corke S, Thorne D, Adamson J, Mushonganono J, Gaca MD, Minet E. Differential Gene Expression Using RNA Sequencing Profiling in a Reconstituted Airway Epithelium Exposed to Conventional Cigarette Smoke or Electronic Cigarette Aerosols. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2016.0024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Anisha Banerjee
- British American Tobacco R&D Centre, Southampton, United Kingdom
| | | | - Andrew Baxter
- British American Tobacco R&D Centre, Southampton, United Kingdom
| | - Aleesha Parmar
- British American Tobacco R&D Centre, Southampton, United Kingdom
| | - David Azzopardi
- British American Tobacco R&D Centre, Southampton, United Kingdom
| | - Sarah Corke
- British American Tobacco R&D Centre, Southampton, United Kingdom
| | - David Thorne
- British American Tobacco R&D Centre, Southampton, United Kingdom
| | - Jason Adamson
- British American Tobacco R&D Centre, Southampton, United Kingdom
| | | | - Marianna D. Gaca
- British American Tobacco R&D Centre, Southampton, United Kingdom
| | - Emmanuel Minet
- British American Tobacco R&D Centre, Southampton, United Kingdom
| |
Collapse
|
24
|
Fields W, Maione A, Keyser B, Bombick B. Characterization and Application of the VITROCELL VC1 Smoke Exposure System and 3D EpiAirway Models for Toxicological and e-Cigarette Evaluations. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2016.0035] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Wanda Fields
- RAI Services Company, Scientific and Regulatory Affairs, Winston-Salem, North Carolina
| | | | - Brian Keyser
- RAI Services Company, Scientific and Regulatory Affairs, Winston-Salem, North Carolina
| | - Betsy Bombick
- RAI Services Company, Scientific and Regulatory Affairs, Winston-Salem, North Carolina
| |
Collapse
|
25
|
Evaluation of the Tobacco Heating System 2.2. Part 1: Description of the system and the scientific assessment program. Regul Toxicol Pharmacol 2016; 81 Suppl 2:S17-S26. [DOI: 10.1016/j.yrtph.2016.07.006] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/08/2016] [Indexed: 11/19/2022]
|
26
|
Zanetti F, Sewer A, Mathis C, Iskandar AR, Kostadinova R, Schlage WK, Leroy P, Majeed S, Guedj E, Trivedi K, Martin F, Elamin A, Merg C, Ivanov NV, Frentzel S, Peitsch MC, Hoeng J. Systems Toxicology Assessment of the Biological Impact of a Candidate Modified Risk Tobacco Product on Human Organotypic Oral Epithelial Cultures. Chem Res Toxicol 2016; 29:1252-69. [PMID: 27404394 DOI: 10.1021/acs.chemrestox.6b00174] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cigarette smoke (CS) has been reported to increase predisposition to oral cancer and is also recognized as a risk factor for many conditions including periodontal diseases, gingivitis, and other benign mucosal disorders. Smoking cessation remains the most effective approach for minimizing the risk of smoking-related diseases. However, reduction of harmful constituents by heating rather than combusting tobacco, without modifying the amount of nicotine, is a promising new paradigm in harm reduction. In this study, we compared effects of exposure to aerosol derived from a candidate modified risk tobacco product, the tobacco heating system (THS) 2.2, with those of CS generated from the 3R4F reference cigarette. Human organotypic oral epithelial tissue cultures (EpiOral, MatTek Corporation) were exposed for 28 min to 3R4F CS or THS2.2 aerosol, both diluted with air to comparable nicotine concentrations (0.32 or 0.51 mg nicotine/L aerosol/CS for 3R4F and 0.31 or 0.46 mg/L for THS2.2). We also tested one higher concentration (1.09 mg/L) of THS2.2. A systems toxicology approach was employed combining cellular assays (i.e., cytotoxicity and cytochrome P450 activity assays), comprehensive molecular investigations of the buccal epithelial transcriptome (mRNA and miRNA) by means of computational network biology, measurements of secreted proinflammatory markers, and histopathological analysis. We observed that the impact of 3R4F CS was greater than THS2.2 aerosol in terms of cytotoxicity, morphological tissue alterations, and secretion of inflammatory mediators. Analysis of the transcriptomic changes in the exposed oral cultures revealed significant perturbations in various network models such as apoptosis, necroptosis, senescence, xenobiotic metabolism, oxidative stress, and nuclear factor (erythroid-derived 2)-like 2 (NFE2L2) signaling. The stress responses following THS2.2 aerosol exposure were markedly decreased, and the exposed cultures recovered more completely compared with those exposed to 3R4F CS.
Collapse
Affiliation(s)
- Filippo Zanetti
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Alain Sewer
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Carole Mathis
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Anita R Iskandar
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Radina Kostadinova
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Walter K Schlage
- Biology Consultant , Max-Baermann-Str. 21, 51429 Bergisch Gladbach, Germany
| | - Patrice Leroy
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Shoaib Majeed
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Keyur Trivedi
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Florian Martin
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Ashraf Elamin
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Céline Merg
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Stefan Frentzel
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
27
|
Li X. In vitro toxicity testing of cigarette smoke based on the air-liquid interface exposure: A review. Toxicol In Vitro 2016; 36:105-113. [PMID: 27470133 DOI: 10.1016/j.tiv.2016.07.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/22/2016] [Accepted: 07/25/2016] [Indexed: 02/08/2023]
Abstract
Cigarette smoke is a complex aerosol comprising particulate phase and gaseous vapour phase. The air-liquid interface exposure provides a possible technical means to implement whole smoke exposure for the assessment of tobacco products. In this review, the research progress in the in vitro toxicity testing of cigarette smoke based on the air-liquid interface exposure is summarized. The contents presented involve mainly cytotoxicity, genotoxicity, oxidative stress, inflammation, systems toxicology, 3D culture and cigarette smoke dosimetry related to cigarette smoke, as well as the assessment of electronic cigarette aerosol. Prospect of the application of the air-liquid interface exposure method in assessing the biological effects of tobacco smoke is discussed.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, China.
| |
Collapse
|
28
|
Iskandar AR, Gonzalez-Suarez I, Majeed S, Marescotti D, Sewer A, Xiang Y, Leroy P, Guedj E, Mathis C, Schaller JP, Vanscheeuwijck P, Frentzel S, Martin F, Ivanov NV, Peitsch MC, Hoeng J. A framework for in vitro systems toxicology assessment of e-liquids. Toxicol Mech Methods 2016; 26:389-413. [PMID: 27117495 PMCID: PMC5309872 DOI: 10.3109/15376516.2016.1170251] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 11/29/2022]
Abstract
Various electronic nicotine delivery systems (ENDS), of which electronic cigarettes (e-cigs) are the most recognized prototype, have been quickly gaining ground on conventional cigarettes because they are perceived as less harmful. Research assessing the potential effects of ENDS exposure in humans is currently limited and inconclusive. New products are emerging with numerous variations in designs and performance parameters within and across brands. Acknowledging these challenges, we present here a proposed framework for an in vitro systems toxicology assessment of e-liquids and their aerosols, intended to complement the battery of assays for standard toxicity assessments. The proposed framework utilizes high-throughput toxicity assessments of e-liquids and their aerosols, in which the device-to-device variability is minimized, and a systems-level investigation of the cellular mechanisms of toxicity is an integral part. An analytical chemistry investigation is also included as a part of the framework to provide accurate and reliable chemistry data solidifying the toxicological assessment. In its simplest form, the framework comprises of three main layers: (1) high-throughput toxicity screening of e-liquids using primary human cell culture systems; (2) toxicity-related mechanistic assessment of selected e-liquids, and (3) toxicity-related mechanistic assessment of their aerosols using organotypic air-liquid interface airway culture systems. A systems toxicology assessment approach is leveraged to enable in-depth analyses of the toxicity-related cellular mechanisms of e-liquids and their aerosols. We present example use cases to demonstrate the suitability of the framework for a robust in vitro assessment of e-liquids and their aerosols.
Collapse
Affiliation(s)
| | | | - Shoaib Majeed
- Philip Morris International R&D,
Neuchâtel,
Switzerland
| | | | - Alain Sewer
- Philip Morris International R&D,
Neuchâtel,
Switzerland
| | - Yang Xiang
- Philip Morris International R&D,
Neuchâtel,
Switzerland
| | - Patrice Leroy
- Philip Morris International R&D,
Neuchâtel,
Switzerland
| | | | - Carole Mathis
- Philip Morris International R&D,
Neuchâtel,
Switzerland
| | | | | | | | | | | | | | - Julia Hoeng
- Philip Morris International R&D,
Neuchâtel,
Switzerland
| |
Collapse
|
29
|
Dalrymple A, Ordoñez P, Thorne D, Walker D, Camacho OM, Büttner A, Dillon D, Meredith C. Cigarette smoke induced genotoxicity and respiratory tract pathology: evidence to support reduced exposure time and animal numbers in tobacco product testing. Inhal Toxicol 2016; 28:324-38. [PMID: 27160659 PMCID: PMC4898166 DOI: 10.3109/08958378.2016.1170911] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/03/2016] [Accepted: 03/21/2016] [Indexed: 11/13/2022]
Abstract
Many laboratories are working to develop in vitro models that will replace in vivo tests, but occasionally there remains a regulatory expectation of some in vivo testing. Historically, cigarettes have been tested in vivo for 90 days. Recently, methods to reduce and refine animal use have been explored. This study investigated the potential of reducing animal cigarette smoke (CS) exposure to 3 or 6 weeks, and the feasibility of separate lung lobes for histopathology or the Comet assay. Rats were exposed to sham air or CS (1 or 2 h) for 3 or 6 weeks. Respiratory tissues were processed for histopathological evaluation, and Alveolar type II cells (AEC II) isolated for the Comet assay. Blood was collected for Pig-a and micronucleus quantification. Histopathological analyses demonstrated exposure effects, which were generally dependent on CS dose (1 or 2 h, 5 days/week). Comet analysis identified that DNA damage increased in AEC II following 3 or 6 weeks CS exposure, and the level at 6 weeks was higher than 3 weeks. Pig-a mutation or micronucleus levels were not increased. In conclusion, this study showed that 3 weeks of CS exposure was sufficient to observe respiratory tract pathology and DNA damage in isolated AEC II. Differences between the 3 and 6 week data imply that DNA damage in the lung is cumulative. Reducing exposure time, plus analyzing separate lung lobes for DNA damage or histopathology, supports a strategy to reduce and refine animal use in tobacco product testing and is aligned to the 3Rs (replacement, reduction and refinement).
Collapse
Affiliation(s)
| | - Patricia Ordoñez
- Vivotecnia Research S.L., Parque Científico de Madrid,
Tres Cantos,
Madrid,
Spain
| | - David Thorne
- British American Tobacco, R&D,
Southampton,
Hampshire,
UK
| | - David Walker
- British American Tobacco, R&D,
Southampton,
Hampshire,
UK
| | | | | | - Debbie Dillon
- British American Tobacco, R&D,
Southampton,
Hampshire,
UK
| | - Clive Meredith
- British American Tobacco, R&D,
Southampton,
Hampshire,
UK
| |
Collapse
|
30
|
Combes RD, Balls M. A critical assessment of the scientific basis, and implementation, of regulations for the safety assessment and marketing of innovative tobacco-related products. Altern Lab Anim 2015; 43:251-90. [PMID: 26375889 DOI: 10.1177/026119291504300406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Our scientific, logistical, ethical and animal welfare-related concerns about the latest US Food and Drug Administration (FDA) regulations for existing and so-called 'new' tobacco products, aimed at reducing harmful exposures, are explained. Such claims for sales in the USA now have to be based on a wide range of information, a key part of which will increasingly be data on safety and risk. One of the pathways to achieve marketing authorisation is to demonstrate substantial equivalence (SE) with benchmark products, called predicates. However, the regulations are insufficiently transparent with regard to: a) a rationale for the cut-off date for 'old' and 'new' products, and for exempting the former from regulation; b) the scientific validity and operation of SE; c) options for product labelling to circumvent SE; d) the experimental data required to support, and criteria to judge, a claim; and e) a strategy for risk assessment/management. Scientific problems related to the traditional animal methods used in respiratory disease and inhalation toxicology, and the use of quantitative comparators of toxicity, such as the No Observed Adverse Effect Level, are discussed. We review the advantages of relevant in vitro, mechanism-based, target tissue-oriented technologies, which an advisory report of the Institute of Medicine of the US National Academy of Sciences largely overlooked. These benefits include: a) the availability, for every major site in the respiratory tract, of organotypic human cell-based tissue culture systems, many of which are already being used by the industry; b) the accurate determination of concentrations of test materials received by target cells; c) methods for exposure to particulate and vapour phases of smoke, separately or combined; d) the ability to study tissue-specific biotransformation; and e) the use of modern, human-focused methodologies, unaffected by species differences. How data extrapolation, for risk assessment, from tissue culture to the whole animal, could be addressed, is also discussed. A cost (to animal welfare)-benefit (to society, including industry and consumers) analysis was conducted, taking into account the above information; the potential for animal suffering; the extensive data already available; the existence of other, less hazardous forms of nicotine delivery; the fact that much data will be generated solely for benchmarking; and that many smokers (especially nicotine-dependents) ignore health warnings. It is concluded that, in common with policies of several tobacco companies and countries, the use of laboratory animals for tobacco testing is very difficult, if not impossible, to justify. Instead, we propose and argue for an integrated testing scheme, starting with extensive chemical analysis of the ingredients and by-products associated with the use of tobacco products and their toxicity, followed by use of in vitro systems and early clinical studies (involving specific biomarkers) with weight-of-evidence assessments at each stage. Appropriate adjustment factors could be developed to enable concentration-response data obtained in vitro, with the other information generated by the strategy, to enable the FDA to meet its objectives. It is hoped that our intentionally provocative ideas will stimulate further debate on this contentious area of regulatory testing and public safety.
Collapse
|
31
|
Iskandar AR, Xiang Y, Frentzel S, Talikka M, Leroy P, Kuehn D, Guedj E, Martin F, Mathis C, Ivanov NV, Peitsch MC, Hoeng J. Impact Assessment of Cigarette Smoke Exposure on Organotypic Bronchial Epithelial Tissue Cultures: A Comparison of Mono-Culture and Coculture Model Containing Fibroblasts. Toxicol Sci 2015; 147:207-21. [PMID: 26085348 PMCID: PMC4549394 DOI: 10.1093/toxsci/kfv122] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Organotypic 3D cultures of epithelial cells are grown at the air-liquid interface (ALI) and resemble the in vivo counterparts. Although the complexity of in vivo cellular responses could be better manifested in coculture models in which additional cell types such as fibroblasts were incorporated, the presence of another cell type could mask the response of the other. This study reports the impact of whole cigarette smoke (CS) exposure on organotypic mono- and coculture models to evaluate the relevancy of organotypic models for toxicological assessment of aerosols. Two organotypic bronchial models were directly exposed to low and high concentrations of CS of the reference research cigarette 3R4F: monoculture of bronchial epithelial cells without fibroblasts (BR) and coculture with fibroblasts (BRF) models. Adenylate kinase (AK)-based cytotoxicity, cytochrome P450 (CYP) 1A1/1B1 activity, tissue histology, and concentrations of secreted mediators into the basolateral media, as well as transcriptomes were evaluated following the CS exposure. The results demonstrated similar impact of CS on the AK-based cytotoxicity, CYP1A1/1B1 activity, and tissue histology in both models. However, a greater number of secreted mediators was identified in the basolateral media of the monoculture than in the coculture models. Furthermore, annotation analysis and network-based systems biology analysis of the transcriptomic profiles indicated a more prominent cellular stress and tissue damage following CS in the monoculture epithelium model without fibroblasts. Finally, our results indicated that an in vivo smoking-induced xenobiotic metabolism response of bronchial epithelial cells was better reflected from the in vitro CS-exposed coculture model.
Collapse
Affiliation(s)
| | - Yang Xiang
- Philip Morris International R&D, 2000 Neuchâtel, Switzerland
| | - Stefan Frentzel
- Philip Morris International R&D, 2000 Neuchâtel, Switzerland
| | - Marja Talikka
- Philip Morris International R&D, 2000 Neuchâtel, Switzerland
| | - Patrice Leroy
- Philip Morris International R&D, 2000 Neuchâtel, Switzerland
| | - Diana Kuehn
- Philip Morris International R&D, 2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- Philip Morris International R&D, 2000 Neuchâtel, Switzerland
| | - Florian Martin
- Philip Morris International R&D, 2000 Neuchâtel, Switzerland
| | - Carole Mathis
- Philip Morris International R&D, 2000 Neuchâtel, Switzerland
| | | | | | - Julia Hoeng
- Philip Morris International R&D, 2000 Neuchâtel, Switzerland
| |
Collapse
|
32
|
Poussin C, Laurent A, Peitsch MC, Hoeng J, De Leon H. Systems Biology Reveals Cigarette Smoke-Induced Concentration-Dependent Direct and Indirect Mechanisms That Promote Monocyte–Endothelial Cell Adhesion. Toxicol Sci 2015; 147:370-85. [DOI: 10.1093/toxsci/kfv137] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
33
|
Boue S, Fields B, Hoeng J, Park J, Peitsch MC, Schlage WK, Talikka M, Binenbaum I, Bondarenko V, Bulgakov OV, Cherkasova V, Diaz-Diaz N, Fedorova L, Guryanova S, Guzova J, Igorevna Koroleva G, Kozhemyakina E, Kumar R, Lavid N, Lu Q, Menon S, Ouliel Y, Peterson SC, Prokhorov A, Sanders E, Schrier S, Schwaitzer Neta G, Shvydchenko I, Tallam A, Villa-Fombuena G, Wu J, Yudkevich I, Zelikman M. Enhancement of COPD biological networks using a web-based collaboration interface. F1000Res 2015; 4:32. [PMID: 25767696 PMCID: PMC4350443 DOI: 10.12688/f1000research.5984.2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/14/2015] [Indexed: 01/06/2023] Open
Abstract
The construction and application of biological network models is an approach that offers a holistic way to understand biological processes involved in disease. Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory disease of the airways for which therapeutic options currently are limited after diagnosis, even in its earliest stage. COPD network models are important tools to better understand the biological components and processes underlying initial disease development. With the increasing amounts of literature that are now available, crowdsourcing approaches offer new forms of collaboration for researchers to review biological findings, which can be applied to the construction and verification of complex biological networks. We report the construction of 50 biological network models relevant to lung biology and early COPD using an integrative systems biology and collaborative crowd-verification approach. By combining traditional literature curation with a data-driven approach that predicts molecular activities from transcriptomics data, we constructed an initial COPD network model set based on a previously published non-diseased lung-relevant model set. The crowd was given the opportunity to enhance and refine the networks on a website ( https://bionet.sbvimprover.com/) and to add mechanistic detail, as well as critically review existing evidence and evidence added by other users, so as to enhance the accuracy of the biological representation of the processes captured in the networks. Finally, scientists and experts in the field discussed and refined the networks during an in-person jamboree meeting. Here, we describe examples of the changes made to three of these networks: Neutrophil Signaling, Macrophage Signaling, and Th1-Th2 Signaling. We describe an innovative approach to biological network construction that combines literature and data mining and a crowdsourcing approach to generate a comprehensive set of COPD-relevant models that can be used to help understand the mechanisms related to lung pathobiology. Registered users of the website can freely browse and download the networks.
Collapse
Affiliation(s)
- The sbv IMPROVER project team (in alphabetical order)
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
- Selventa, One Alewife Center, Cambridge, MA, 02140, USA
- Systems Bioengineering Group - National Technical University of Athens, Ethniko Metsovio Politechnio, , 28is Oktovriou 42, Athina, 106 82, Greece
- Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89052, USA
- University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
- Intelligent Data Analysis Group (DATAi), School of Engineering, Pablo de Olavide University, Ctra. de Utrera, km. 1 41013, Sevilla, Spain
- University of Toledo, 2801 W Bancroft St, Toledo, OH, 43606, USA
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, 16/10, Miklukho-Maklay str., Moscow, 117997, Russian Federation
- Private, Washington DC, USA
- USAMRIID, Attn: MCMR-UIZ-R, 1425 Porter Street, Frederick, MD, 21702-5011, USA
- Private, Boston, MA, USA
- Institute of Microbial Technology, Chandigarh, 160036, India
- Technion - Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
- Louisville University, 301 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA
- AnalyzeDat Consulting Services, Ernakulam, India
- Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
- Edward Sanders Scientific Consulting, Rue du Clos 33, 2034 Peseux, Switzerland
- Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
- Kuban State University of Physical Education, Sport and Tourism, 161, Budennogo Str., Krasnodar City, 350015, Russian Federation
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, 4362 Esch sur Alzette, Luxembourg
- Pablo de Olavide University, Ctra. de Utrera, km. 1 41013, Sevilla, Spain
- Cal Biopharma, 710 Somerset Ln, Foster Cit, CA, 94404-3728, USA
- University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
- University of Washington, 1959 NE Pacific Street, HSB T-466, Seattle, WA, USA
| | - Stephanie Boue
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Brett Fields
- Selventa, One Alewife Center, Cambridge, MA, 02140, USA
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Jennifer Park
- Selventa, One Alewife Center, Cambridge, MA, 02140, USA
| | - Manuel C. Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Walter K. Schlage
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Marja Talikka
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - The Challenge Best Performers (in alphabetical order)
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
- Selventa, One Alewife Center, Cambridge, MA, 02140, USA
- Systems Bioengineering Group - National Technical University of Athens, Ethniko Metsovio Politechnio, , 28is Oktovriou 42, Athina, 106 82, Greece
- Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89052, USA
- University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
- Intelligent Data Analysis Group (DATAi), School of Engineering, Pablo de Olavide University, Ctra. de Utrera, km. 1 41013, Sevilla, Spain
- University of Toledo, 2801 W Bancroft St, Toledo, OH, 43606, USA
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, 16/10, Miklukho-Maklay str., Moscow, 117997, Russian Federation
- Private, Washington DC, USA
- USAMRIID, Attn: MCMR-UIZ-R, 1425 Porter Street, Frederick, MD, 21702-5011, USA
- Private, Boston, MA, USA
- Institute of Microbial Technology, Chandigarh, 160036, India
- Technion - Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
- Louisville University, 301 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA
- AnalyzeDat Consulting Services, Ernakulam, India
- Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
- Edward Sanders Scientific Consulting, Rue du Clos 33, 2034 Peseux, Switzerland
- Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
- Kuban State University of Physical Education, Sport and Tourism, 161, Budennogo Str., Krasnodar City, 350015, Russian Federation
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, 4362 Esch sur Alzette, Luxembourg
- Pablo de Olavide University, Ctra. de Utrera, km. 1 41013, Sevilla, Spain
- Cal Biopharma, 710 Somerset Ln, Foster Cit, CA, 94404-3728, USA
- University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
- University of Washington, 1959 NE Pacific Street, HSB T-466, Seattle, WA, USA
| | - Ilona Binenbaum
- Systems Bioengineering Group - National Technical University of Athens, Ethniko Metsovio Politechnio, , 28is Oktovriou 42, Athina, 106 82, Greece
| | - Vladimir Bondarenko
- Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89052, USA
| | - Oleg V. Bulgakov
- University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
| | | | - Norberto Diaz-Diaz
- Intelligent Data Analysis Group (DATAi), School of Engineering, Pablo de Olavide University, Ctra. de Utrera, km. 1 41013, Sevilla, Spain
| | - Larisa Fedorova
- University of Toledo, 2801 W Bancroft St, Toledo, OH, 43606, USA
| | - Svetlana Guryanova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, 16/10, Miklukho-Maklay str., Moscow, 117997, Russian Federation
| | | | | | | | - Rahul Kumar
- Institute of Microbial Technology, Chandigarh, 160036, India
| | - Noa Lavid
- Technion - Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
| | - Qingxian Lu
- Louisville University, 301 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Swapna Menon
- AnalyzeDat Consulting Services, Ernakulam, India
| | - Yael Ouliel
- Technion - Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
| | | | - Alexander Prokhorov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, 16/10, Miklukho-Maklay str., Moscow, 117997, Russian Federation
| | - Edward Sanders
- Edward Sanders Scientific Consulting, Rue du Clos 33, 2034 Peseux, Switzerland
| | - Sarah Schrier
- Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | | | - Irina Shvydchenko
- Kuban State University of Physical Education, Sport and Tourism, 161, Budennogo Str., Krasnodar City, 350015, Russian Federation
| | - Aravind Tallam
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, 4362 Esch sur Alzette, Luxembourg
| | | | - John Wu
- Cal Biopharma, 710 Somerset Ln, Foster Cit, CA, 94404-3728, USA
| | - Ilya Yudkevich
- University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| | - Mariya Zelikman
- University of Washington, 1959 NE Pacific Street, HSB T-466, Seattle, WA, USA
| |
Collapse
|
34
|
Boue S, Fields B, Hoeng J, Park J, Peitsch MC, Schlage WK, Talikka M, Binenbaum I, Bondarenko V, Bulgakov OV, Cherkasova V, Diaz-Diaz N, Fedorova L, Guryanova S, Guzova J, Igorevna Koroleva G, Kozhemyakina E, Kumar R, Lavid N, Lu Q, Menon S, Ouliel Y, Peterson SC, Prokhorov A, Sanders E, Schrier S, Schwaitzer Neta G, Shvydchenko I, Tallam A, Villa-Fombuena G, Wu J, Yudkevich I, Zelikman M. Enhancement of COPD biological networks using a web-based collaboration interface. F1000Res 2015; 4:32. [PMID: 25767696 PMCID: PMC4350443 DOI: 10.12688/f1000research.5984.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2015] [Indexed: 11/20/2022] Open
Abstract
The construction and application of biological network models is an approach that offers a holistic way to understand biological processes involved in disease. Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory disease of the airways for which therapeutic options currently are limited after diagnosis, even in its earliest stage. COPD network models are important tools to better understand the biological components and processes underlying initial disease development. With the increasing amounts of literature that are now available, crowdsourcing approaches offer new forms of collaboration for researchers to review biological findings, which can be applied to the construction and verification of complex biological networks. We report the construction of 50 biological network models relevant to lung biology and early COPD using an integrative systems biology and collaborative crowd-verification approach. By combining traditional literature curation with a data-driven approach that predicts molecular activities from transcriptomics data, we constructed an initial COPD network model set based on a previously published non-diseased lung-relevant model set. The crowd was given the opportunity to enhance and refine the networks on a website ( https://bionet.sbvimprover.com/) and to add mechanistic detail, as well as critically review existing evidence and evidence added by other users, so as to enhance the accuracy of the biological representation of the processes captured in the networks. Finally, scientists and experts in the field discussed and refined the networks during an in-person jamboree meeting. Here, we describe examples of the changes made to three of these networks: Neutrophil Signaling, Macrophage Signaling, and Th1-Th2 Signaling. We describe an innovative approach to biological network construction that combines literature and data mining and a crowdsourcing approach to generate a comprehensive set of COPD-relevant models that can be used to help understand the mechanisms related to lung pathobiology. Registered users of the website can freely browse and download the networks.
Collapse
Affiliation(s)
- The sbv IMPROVER project team (in alphabetical order)
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
- Selventa, One Alewife Center, Cambridge, MA, 02140, USA
- Systems Bioengineering Group - National Technical University of Athens, Ethniko Metsovio Politechnio, , 28is Oktovriou 42, Athina, 106 82, Greece
- Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89052, USA
- University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
- Intelligent Data Analysis Group (DATAi), School of Engineering, Pablo de Olavide University, Ctra. de Utrera, km. 1 41013, Sevilla, Spain
- University of Toledo, 2801 W Bancroft St, Toledo, OH, 43606, USA
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, 16/10, Miklukho-Maklay str., Moscow, 117997, Russian Federation
- Private, Washington DC, USA
- USAMRIID, Attn: MCMR-UIZ-R, 1425 Porter Street, Frederick, MD, 21702-5011, USA
- Private, Boston, MA, USA
- Institute of Microbial Technology, Chandigarh, 160036, India
- Technion - Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
- Louisville University, 301 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA
- AnalyzeDat Consulting Services, Ernakulam, India
- Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
- Edward Sanders Scientific Consulting, Rue du Clos 33, 2034 Peseux, Switzerland
- Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
- Kuban State University of Physical Education, Sport and Tourism, 161, Budennogo Str., Krasnodar City, 350015, Russian Federation
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, 4362 Esch sur Alzette, Luxembourg
- Pablo de Olavide University, Ctra. de Utrera, km. 1 41013, Sevilla, Spain
- Cal Biopharma, 710 Somerset Ln, Foster Cit, CA, 94404-3728, USA
- University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
- University of Washington, 1959 NE Pacific Street, HSB T-466, Seattle, WA, USA
| | - Stephanie Boue
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Brett Fields
- Selventa, One Alewife Center, Cambridge, MA, 02140, USA
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Jennifer Park
- Selventa, One Alewife Center, Cambridge, MA, 02140, USA
| | - Manuel C. Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Walter K. Schlage
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Marja Talikka
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - The Challenge Best Performers (in alphabetical order)
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
- Selventa, One Alewife Center, Cambridge, MA, 02140, USA
- Systems Bioengineering Group - National Technical University of Athens, Ethniko Metsovio Politechnio, , 28is Oktovriou 42, Athina, 106 82, Greece
- Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89052, USA
- University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
- Intelligent Data Analysis Group (DATAi), School of Engineering, Pablo de Olavide University, Ctra. de Utrera, km. 1 41013, Sevilla, Spain
- University of Toledo, 2801 W Bancroft St, Toledo, OH, 43606, USA
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, 16/10, Miklukho-Maklay str., Moscow, 117997, Russian Federation
- Private, Washington DC, USA
- USAMRIID, Attn: MCMR-UIZ-R, 1425 Porter Street, Frederick, MD, 21702-5011, USA
- Private, Boston, MA, USA
- Institute of Microbial Technology, Chandigarh, 160036, India
- Technion - Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
- Louisville University, 301 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA
- AnalyzeDat Consulting Services, Ernakulam, India
- Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
- Edward Sanders Scientific Consulting, Rue du Clos 33, 2034 Peseux, Switzerland
- Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
- Kuban State University of Physical Education, Sport and Tourism, 161, Budennogo Str., Krasnodar City, 350015, Russian Federation
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, 4362 Esch sur Alzette, Luxembourg
- Pablo de Olavide University, Ctra. de Utrera, km. 1 41013, Sevilla, Spain
- Cal Biopharma, 710 Somerset Ln, Foster Cit, CA, 94404-3728, USA
- University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
- University of Washington, 1959 NE Pacific Street, HSB T-466, Seattle, WA, USA
| | - Ilona Binenbaum
- Systems Bioengineering Group - National Technical University of Athens, Ethniko Metsovio Politechnio, , 28is Oktovriou 42, Athina, 106 82, Greece
| | - Vladimir Bondarenko
- Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89052, USA
| | - Oleg V. Bulgakov
- University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
| | | | - Norberto Diaz-Diaz
- Intelligent Data Analysis Group (DATAi), School of Engineering, Pablo de Olavide University, Ctra. de Utrera, km. 1 41013, Sevilla, Spain
| | - Larisa Fedorova
- University of Toledo, 2801 W Bancroft St, Toledo, OH, 43606, USA
| | - Svetlana Guryanova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, 16/10, Miklukho-Maklay str., Moscow, 117997, Russian Federation
| | | | | | | | - Rahul Kumar
- Institute of Microbial Technology, Chandigarh, 160036, India
| | - Noa Lavid
- Technion - Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
| | - Qingxian Lu
- Louisville University, 301 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Swapna Menon
- AnalyzeDat Consulting Services, Ernakulam, India
| | - Yael Ouliel
- Technion - Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
| | | | - Alexander Prokhorov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, 16/10, Miklukho-Maklay str., Moscow, 117997, Russian Federation
| | - Edward Sanders
- Edward Sanders Scientific Consulting, Rue du Clos 33, 2034 Peseux, Switzerland
| | - Sarah Schrier
- Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | | | - Irina Shvydchenko
- Kuban State University of Physical Education, Sport and Tourism, 161, Budennogo Str., Krasnodar City, 350015, Russian Federation
| | - Aravind Tallam
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, 4362 Esch sur Alzette, Luxembourg
| | | | - John Wu
- Cal Biopharma, 710 Somerset Ln, Foster Cit, CA, 94404-3728, USA
| | - Ilya Yudkevich
- University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| | - Mariya Zelikman
- University of Washington, 1959 NE Pacific Street, HSB T-466, Seattle, WA, USA
| |
Collapse
|
35
|
Schlage WK, Iskandar AR, Kostadinova R, Xiang Y, Sewer A, Majeed S, Kuehn D, Frentzel S, Talikka M, Geertz M, Mathis C, Ivanov N, Hoeng J, Peitsch MC. In vitro systems toxicology approach to investigate the effects of repeated cigarette smoke exposure on human buccal and gingival organotypic epithelial tissue cultures. Toxicol Mech Methods 2014; 24:470-87. [PMID: 25046638 PMCID: PMC4219813 DOI: 10.3109/15376516.2014.943441] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/20/2014] [Accepted: 06/29/2014] [Indexed: 11/13/2022]
Abstract
Smoking has been associated with diseases of the lung, pulmonary airways and oral cavity. Cytologic, genomic and transcriptomic changes in oral mucosa correlate with oral pre-neoplasia, cancer and inflammation (e.g. periodontitis). Alteration of smoking-related gene expression changes in oral epithelial cells is similar to that in bronchial and nasal epithelial cells. Using a systems toxicology approach, we have previously assessed the impact of cigarette smoke (CS) seen as perturbations of biological processes in human nasal and bronchial organotypic epithelial culture models. Here, we report our further assessment using in vitro human oral organotypic epithelium models. We exposed the buccal and gingival organotypic epithelial tissue cultures to CS at the air-liquid interface. CS exposure was associated with increased secretion of inflammatory mediators, induction of cytochrome P450s activity and overall weak toxicity in both tissues. Using microarray technology, gene-set analysis and a novel computational modeling approach leveraging causal biological network models, we identified CS impact on xenobiotic metabolism-related pathways accompanied by a more subtle alteration in inflammatory processes. Gene-set analysis further indicated that the CS-induced pathways in the in vitro buccal tissue models resembled those in the in vivo buccal biopsies of smokers from a published dataset. These findings support the translatability of systems responses from in vitro to in vivo and demonstrate the applicability of oral organotypical tissue models for an impact assessment of CS on various tissues exposed during smoking, as well as for impact assessment of reduced-risk products.
Collapse
Affiliation(s)
- Walter K. Schlage
- Philip Morris International R&D, Philip Morris Products S.A.NeuchâtelSwitzerland
| | - Anita R. Iskandar
- Philip Morris International R&D, Philip Morris Products S.A.NeuchâtelSwitzerland
| | - Radina Kostadinova
- Philip Morris International R&D, Philip Morris Products S.A.NeuchâtelSwitzerland
| | - Yang Xiang
- Philip Morris International R&D, Philip Morris Products S.A.NeuchâtelSwitzerland
| | - Alain Sewer
- Philip Morris International R&D, Philip Morris Products S.A.NeuchâtelSwitzerland
| | - Shoaib Majeed
- Philip Morris International R&D, Philip Morris Products S.A.NeuchâtelSwitzerland
| | - Diana Kuehn
- Philip Morris International R&D, Philip Morris Products S.A.NeuchâtelSwitzerland
| | - Stefan Frentzel
- Philip Morris International R&D, Philip Morris Products S.A.NeuchâtelSwitzerland
| | - Marja Talikka
- Philip Morris International R&D, Philip Morris Products S.A.NeuchâtelSwitzerland
| | - Marcel Geertz
- Philip Morris International R&D, Philip Morris Products S.A.NeuchâtelSwitzerland
| | - Carole Mathis
- Philip Morris International R&D, Philip Morris Products S.A.NeuchâtelSwitzerland
| | - Nikolai Ivanov
- Philip Morris International R&D, Philip Morris Products S.A.NeuchâtelSwitzerland
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A.NeuchâtelSwitzerland
| | - Manuel C. Peitsch
- Philip Morris International R&D, Philip Morris Products S.A.NeuchâtelSwitzerland
| |
Collapse
|