1
|
Abdelgied M, El-Gazzar AM, Alexander WT, Numano T, Iigou M, Naiki-Ito A, Takase H, Hirose A, Taquahashi Y, Kanno J, Abdelhamid M, Abdou KA, Takahashi S, Alexander DB, Tsuda H. Carcinogenic effect of potassium octatitanate (POT) fibers in the lung and pleura of male Fischer 344 rats after intrapulmonary administration. Part Fibre Toxicol 2019; 16:34. [PMID: 31477126 PMCID: PMC6720102 DOI: 10.1186/s12989-019-0316-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
Background Potassium octatitanate fibers (K2O•8TiO2, POT fibers) are used as an asbestos substitute. Their physical characteristics suggest that respirable POT fibers are likely to be carcinogenic in the lung and pleura. However, previous 2-year inhalation studies reported that respired POT fibers had little or no carcinogenic potential. In the present study ten-week old male F344 rats were left untreated or were administered vehicle, 0.25 or 0.5 mg rutile-type nano TiO2 (r-nTiO2), 0.25 or 0.5 mg POT fibers, or 0.5 mg MWCNT-7 by intra-tracheal intra-pulmonary spraying (TIPS), and then observed for 2 years. Results There were no differences between the r-nTiO2 and control groups. The incidence of bronchiolo-alveolar cell hyperplasia was significantly increased in the groups treated with 0.50 mg POT and 0.50 mg MWCNT-7. The overall incidence of lung tumors, however, was not increased in either the POT or MWCNT-7 treated groups. Notably, the carcinomas that developed in the POT and MWCNT-7 treated rats were accompanied by proliferative fibrous connective tissue while the carcinomas that developed in the untreated rats and the r-nTiO2 treated rats were not (carcinomas did not develop in the vehicle control rats). In addition, the carcinoma that developed in the rat treated with 0.25 mg POT was a squamous cell carcinoma, a tumor that develops spontaneously in about 1 per 1700 rats. The incidence of mesothelial cell hyperplasia was 4/17, 7/16, and 10/14 and the incidence of malignant mesothelioma was 3/17, 1/16, and 2/14 in the 0.25 mg POT, 0.5 mg POT, and MWCNT-7 treated groups, respectively. Neither mesothelial cell hyperplasia nor mesothelioma developed in control rats or the rats treated with r-nTiO2. Since the incidence of spontaneously occurring malignant mesothelioma in rats is extremely low, approximately 1 per 1000 animals (Japan Bioassay Research Center [JBRC] historical control data), the development of multiple malignant mesotheliomas in the POT and MWCNT-7 treated groups was biologically significant. Conclusion The incidence of pleural mesotheliomas in male F344 rats administered POT fibers and MWCNT-7 was significantly higher than the JBRC historical control data, indicating that the incidence of pleural mesothelioma in the groups administered POT fibers and MWCNT-7 fibers via the airway using TIPS was biologically significant. The incidence of type II epithelial cell hyperplasia and the histology of the carcinomas that developed in the POT treated rats also indicates that respirable POT fibers are highly likely to be carcinogenic in the lungs of male F344 rats. Electronic supplementary material The online version of this article (10.1186/s12989-019-0316-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohamed Abdelgied
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 466- 8603, Japan.,Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed M El-Gazzar
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 466- 8603, Japan.,Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - William T Alexander
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 466- 8603, Japan
| | - Takamasa Numano
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 466- 8603, Japan
| | - Masaaki Iigou
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 466- 8603, Japan
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroshi Takase
- Core Laboratory, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akihiko Hirose
- Division of Risk Assessment, National Institute of Health Sciences, Kawasaki, Japan
| | - Yuhji Taquahashi
- Division of Cellular and Molecular Toxicology, National Institute of Health Sciences, Kawasaki, Japan
| | - Jun Kanno
- Japan Industrial Safety and Health Association, Japan Bioassay Research Center, Kanagawa, Japan
| | - Mona Abdelhamid
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Khaled Abbas Abdou
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - David B Alexander
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 466- 8603, Japan.
| | - Hiroyuki Tsuda
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 466- 8603, Japan.
| |
Collapse
|
2
|
Abdelgied M, El-Gazzar AM, Alexander DB, Alexander WT, Numano T, Iigou M, Naiki-Ito A, Takase H, Abdou KA, Hirose A, Taquahashi Y, Kanno J, Tsuda H, Takahashi S. Potassium octatitanate fibers induce persistent lung and pleural injury and are possibly carcinogenic in male Fischer 344 rats. Cancer Sci 2018; 109:2164-2177. [PMID: 29774637 PMCID: PMC6029824 DOI: 10.1111/cas.13643] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 12/30/2022] Open
Abstract
Potassium octatitanate fibers (K2O·8TiO2, POT fibers) are widely used as an alternative to asbestos. We investigated the pulmonary and pleural toxicity of POT fibers with reference to 2 non‐fibrous titanium dioxide nanoparticles (nTiO2), photoreactive anatase (a‐nTiO2) and inert rutile (r‐nTiO2). Ten‐week‐old male F344 rats were given 0.5 mL of 250 μg/mL suspensions of POT fibers, a‐nTiO2, or r‐nTiO2, 8 times (1 mg/rat) over a 15‐day period by trans‐tracheal intrapulmonary spraying (TIPS). Rats were killed at 6 hours and at 4 weeks after the last TIPS dose. Alveolar macrophages were significantly increased in all treatment groups at 6 hours and at 4 weeks. At week 4, a‐nTiO2 and r‐nTiO2 were largely cleared from the lung whereas a major fraction of POT fibers were not cleared. In the bronchoalveolar lavage, alkaline phosphatase activity was elevated in all treatment groups, and lactate dehydrogenase (LDH) activity was elevated in the a‐nTiO2 and POT groups. In lung tissue, oxidative stress index and proliferating cell nuclear antigen (PCNA) index were elevated in the a‐nTiO2 and POT groups, and there was a significant elevation in C‐C motif chemokine ligand 2 (CCL2) mRNA and protein in the POT group. In pleural cavity lavage, total protein was elevated in all 3 treatment groups, and LDH activity was elevated in the a‐nTiO2 and POT groups. Importantly, the PCNA index of the visceral mesothelium was increased in the POT group. Overall, POT fibers had greater biopersistence, induced higher expression of CCL2, and provoked a stronger tissue response than a‐nTiO2 or r‐nTiO2.
Collapse
Affiliation(s)
- Mohamed Abdelgied
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan.,Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Beni Suef University, Beni-Suef, Egypt
| | - Ahmed M El-Gazzar
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan.,Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | | | | | - Takamasa Numano
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan
| | - Masaaki Iigou
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hirotsugu Takase
- Core Laboratory, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Khaled Abbas Abdou
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Beni Suef University, Beni-Suef, Egypt
| | - Akihiko Hirose
- Division of Risk Assessment, National Institute of Health Sciences, Tokyo, Japan
| | - Yuhji Taquahashi
- Division of Cellular and Molecular Toxicology, National Institute of Health Sciences, Tokyo, Japan
| | - Jun Kanno
- Japan Industrial Safety and Health Association, Japan Bioassay Research Center, Kanagawa, Japan
| | - Hiroyuki Tsuda
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
3
|
Yoshida S, Yokohira M, Yamakawa K, Nakano-Narusawa Y, Kanie S, Hashimoto N, Imaida K. Effects of the expectorant drug ambroxol hydrochloride on chemically induced lung inflammatory and neoplastic lesions in rodents. J Toxicol Pathol 2018; 31:255-265. [PMID: 30393429 PMCID: PMC6206285 DOI: 10.1293/tox.2018-0012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/14/2018] [Indexed: 11/21/2022] Open
Abstract
Ambroxol hydrochloride (AH) is an expectorant drug used to stimulate pulmonary
surfactant and serous airway secretion. Surfactant proteins (SPs) are essential for
maintaining respiratory structure and function, although SP expression has also been
reported in lung inflammatory and proliferative lesions. To determine whether AH exerts
modulatory effects on these lung lesions, we examined its effects on pleural thickening
induced by intrathoracic administration of dipotassium titanate (TISMO) in A/JJmsSlc (A/J)
mice. We also analyzed the modulatory effects of AH on neoplastic lung lesions induced by
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in A/J mice and by N-nitrosobis
(2-hydroxypropyl) amine (DHPN) in F344/DuCrlCrj (F344) rats. A/J mice treated with TISMO
showed decreased body weight, increased white blood cell (WBC) counts, and pleural
thickening caused by pleuritis and poor general condition. However, A/J mice treated with
TISMO + 120 ppm showed significant recovery of body weight and WBC counts to the same
levels as those of A/J mice not treated with TISMO, although no significant differences
were observed in histopathological changes including the immunohistopathological
expression of IL-1β in the lung and maximum pleural thickness regardless of AH treatment.
In the NNK and DHPN experiments, no significant differences in body weight, hematology,
plasma biochemistry, and histopathological changes were associated with AH concentration.
These results suggest that AH potentially exerts anti-inflammatory effects but does not
have a direct suppressive effect on lung tumorigenesis in rodents.
Collapse
Affiliation(s)
- Shota Yoshida
- Onco-Pathology, Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.,Toxicology Laboratory, Discovery and Preclinical Research Division, TAIHO Pharmaceutical Co., Ltd., 224-2 Ebisuno, Hiraishi, Kawauchi-cho, Tokushima 771-0194, Japan
| | - Masanao Yokohira
- Onco-Pathology, Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Keiko Yamakawa
- Onco-Pathology, Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Yuko Nakano-Narusawa
- Onco-Pathology, Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Shohei Kanie
- Toxicology Laboratory, Discovery and Preclinical Research Division, TAIHO Pharmaceutical Co., Ltd., 224-2 Ebisuno, Hiraishi, Kawauchi-cho, Tokushima 771-0194, Japan
| | - Nozomi Hashimoto
- Onco-Pathology, Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Katsumi Imaida
- Onco-Pathology, Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| |
Collapse
|
4
|
Functional human induced hepatocytes (hiHeps) with bile acid synthesis and transport capacities: A novel in vitro cholestatic model. Sci Rep 2016; 6:38694. [PMID: 27934920 PMCID: PMC5146671 DOI: 10.1038/srep38694] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/11/2016] [Indexed: 12/25/2022] Open
Abstract
Drug-induced cholestasis is a leading cause of drug withdrawal. However, the use of primary human hepatocytes (PHHs), the gold standard for predicting cholestasis in vitro, is limited by their high cost and batch-to-batch variability. Mature hepatocyte characteristics have been observed in human induced hepatocytes (hiHeps) derived from human fibroblast transdifferentiation. Here, we evaluated whether hiHeps could biosynthesize and excrete bile acids (BAs) and their potential as PHH alternatives for cholestasis investigations. Quantitative real-time PCR (qRT-PCR) and western blotting indicated that hiHeps highly expressed BA synthases and functional transporters. Liquid chromatography tandem mass spectrometry (LC-MS/MS) showed that hiHeps produced normal intercellular unconjugated BAs but fewer conjugated BAs than human hepatocytes. When incubated with representative cholestatic agents, hiHeps exhibited sensitive drug-induced bile salt export pump (BSEP) dysfunction, and their response to cholestatic agent-mediated cytotoxicity correlated well with that of PHHs (r2 = 0.8032). Deoxycholic acid (DCA)-induced hepatotoxicity in hiHeps was verified by elevated aspartate aminotransferase (AST) and γ-glutamyl-transferase (γ-GT) levels. Mitochondrial damage and cell death suggested DCA-induced toxicity in hiHeps, which were attenuated by hepatoprotective drugs, as in PHHs. For the first time, hiHeps were reported to biosynthesize and excrete BAs, which could facilitate predicting cholestatic hepatotoxicity and screening potential therapeutic drugs against cholestasis.
Collapse
|
5
|
Yokohira M, Nakano-Narusawa Y, Yamakawa K, Hashimoto N, Yoshida S, Kanie S, Imaida K. Chronic mesothelial reaction and toxicity of potassium octatitanate fibers in the pleural cavity in mice and F344 rats. Cancer Sci 2016; 107:1047-54. [PMID: 27088262 PMCID: PMC4946727 DOI: 10.1111/cas.12944] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 04/04/2016] [Accepted: 04/09/2016] [Indexed: 11/29/2022] Open
Abstract
Fiber‐shaped particles of potassium octatitanate (tradename TISMO; chemical formula K2O·6TiO2), which are morphologically similar to asbestos particles, were shown to induce severe proliferative reactions in the pleural mesothelium in a previous experiment carried out over 21 weeks. The present study aims to determine whether these fibers induce malignant mesotheliomas in rodents, and to examine chronic toxicity induced. Additionally, we investigated the specific differences observable between the biological responses to the direct infusion of the fibers alone into the pleural cavity and those induced by the co‐administration of the fibers with a known carcinogen. To detect the induction of malignant pleural mesotheliomas, two experiments were undertaken. In Experiment 1, four strains of mice, A/J, C3H, ICR, and C57BL, were examined for 52 weeks after experimental treatment with TISMO. In Experiment 2, the F344 rats were treated with TISMO alone, the lung carcinogen N‐bis (2‐hydroxypropyl) nitrosamine (DHPN) alone, both TISMO and DHPN, or left untreated and were then examined for 52 weeks. In this experiment, malignant lesion induction was expected in the co‐administration group. TISMO fibers were observed in the alveoli, indicating penetration through the visceral pleura in mice and rats. The histopathological detection of TISMO fibers in the liver and kidneys of mice and rats indicated migration of the fibers out of the pleural cavity. Atypical mesothelial cells with severe pleural proliferation were observed, but malignant mesotheliomas were not detected. Among the rats, there were no observed malignant alterations in the mesothelium induced by DHPN–TISMO co‐administration.
Collapse
Affiliation(s)
- Masanao Yokohira
- Onco-Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| | - Yuko Nakano-Narusawa
- Onco-Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| | - Keiko Yamakawa
- Onco-Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| | - Nozomi Hashimoto
- Onco-Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| | - Shota Yoshida
- Onco-Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| | - Shohei Kanie
- Onco-Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| | - Katsumi Imaida
- Onco-Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| |
Collapse
|