1
|
Wang D, Zheng Y, Xie J, Yu W, Lu Z, Zhang W, Hu Y, Fu J, Sheng Q, Lv Z. Andrographolide inhibits the activation of spinal microglia and ameliorates mechanical allodynia. Metab Brain Dis 2024; 39:115-127. [PMID: 37979090 DOI: 10.1007/s11011-023-01325-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Andrographolide (Andro), a labdane diterpene, possesses anti-inflammatory properties and has been used to treat numerous inflammatory diseases. Novel findings revealed that Andro might be vital in regulating pain. However, the contribution of Andro to chronic inflammatory pain has yet to be determined, and its underlying mechanism of action remains unknown. In this study, we observed that Andro attenuated mechanical allodynia in inflammatory pain mice induced by injecting complete Freund's adjuvant (CFA) into the right hind paws. This analgesic effect of Andro is mainly dependent on its inhibition of microglial overactivation and the release of proinflammatory cytokines (TNF and IL-1β) in lumbar spinal cords of inflammatory pain model mice. More importantly, our data in vivo and in vitro revealed a negative role for Andro in regulating the TLR4/NF-κB signaling pathway, which might contribute to the inhibition of spinal microglial activation and proinflammatory cytokines production, and the improvement of paw withdrawal thresholds in a mouse model of chronic inflammatory pain evoked by CFA. We further found the potential interaction of Andro with TLR4/myeloid differentiation factor 2 heterodimer using molecular modeling, implying that TLR4 might be a potential target for Andro to exert an analgesic effect. Taken together, our findings demonstrated that the modulation of spinal microglial activation by Andro might be substantially conducive to managing chronic pain triggered by neuroinflammation.
Collapse
Affiliation(s)
- Dan Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Yongjian Zheng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Junjing Xie
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenwen Yu
- Traditional Chinese Medicine hospital of Yuyao, Ningbo, 315402, China
| | - Zhongteng Lu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenping Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yanling Hu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jianyuan Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qing Sheng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Zhengbing Lv
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Escinosomes: Safe and Successful Nanovesicles to Deliver Andrographolide by a Subcutaneous Route in a Mice Model of Oxaliplatin-Induced Neuropathy. Pharmaceutics 2022; 14:pharmaceutics14030493. [PMID: 35335872 PMCID: PMC8949339 DOI: 10.3390/pharmaceutics14030493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Andrographolide (AG) is a natural diterpene lactone endowed with considerable therapeutic potential for treating numerous diseases, including neurological disorders, but its low aqueous solubility and scarce bioavailability limit its clinical use. To overcome this problem, AG was encapsulated in escinosomes, special nanovesicles made of escin (ESN), a natural saponin, and phosphatidylcholine. Escinosomes loaded with AG had an average size of 164.7 ± 13.30 nm, optimal polydispersity index (0.190 ± 0.0890) and high ζ-potential (−35.4 ± 0.451 mV), and significantly loaded the active substance—the encapsulation efficiency of AG was about 88%. Escinosomes allowed the prolonged release of AG over time, without burst effects—about 85% AG was released after 24 h. Morphological analysis by cryo-transmission electron microscopy showed nanovesicles with a spherical shape, unilamellar and oligolamellar structures, and dimensions in agreement with those measured by dynamic light scattering. In addition, stability studies were performed on AG-loaded escinosomes stored for one month at 4 °C. The pain-relieving efficacy of these nanovesicles was tested in a rat model of oxaliplatin-induced neuropathy. AG-loaded escinosomes, subcutaneously administered, effectively reduced the thermal allodynia characteristic of chemotherapy-induced neuropathy, enhancing and prolonging the effect of the natural compound. Overall, AG-loaded escinosomes were found to be excellent for loading AG, physically and chemically stable for one-month storage, and with controlled-release properties, making the formulation an ideal pharmacological approach for persistent pain treatment.
Collapse
|
3
|
Andrographolide ameliorates oxidative stress, inflammation and histological outcome in complete Freund's adjuvant-induced arthritis. Chem Biol Interact 2020; 319:108984. [DOI: 10.1016/j.cbi.2020.108984] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
|
4
|
Long Q, Zheng H, Liu X, Guo SW. Perioperative Intervention by β-Blockade and NF-κB Suppression Reduces the Recurrence Risk of Endometriosis in Mice Due to Incomplete Excision. Reprod Sci 2019; 26:697-708. [DOI: 10.1177/1933719119828066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qiqi Long
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, Peoples Republic of China
| | - Hanxi Zheng
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, Peoples Republic of China
| | - Xishi Liu
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, Peoples Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, Peoples Republic of China
| | - Sun-Wei Guo
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, Peoples Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, Peoples Republic of China
| |
Collapse
|
5
|
Wang HC, Tsay HS, Shih HN, Chen YA, Chang KM, Agrawal DC, Huang S, Lin YL, Lee MJ. Andrographolide relieved pathological pain generated by spared nerve injury model in mice. PHARMACEUTICAL BIOLOGY 2018; 56:124-131. [PMID: 29385888 PMCID: PMC6130553 DOI: 10.1080/13880209.2018.1426614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 09/27/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
CONTEXT Andrographolide (Andro), found in large quantities in Andrographis paniculata Nees (Acanthaceae), is anti-inflammatory, especially in the central nervous system (CNS) glia. OBJECTIVE The objective of this study is to test Andro's ability to reduce allodynia in a spared nerve injury model. MATERIAL AND METHODS Male 30 g BalbC mice were divided into four groups: (1) Sham-operated control (Sham-group); (2) nerve injured and treated with saline (Saline-group); (3) nerve injured and treated with Andro (Andro-group); (4) nerve injured and treated with non-steroidal anti-inflammatory drugs (NSAIDS) (NSAIDS-group). Andro or NSAIDS (diclofenac salt) were injected intraperitoneally at 5 mg/kg body weight daily. Mechanical allodynia was assessed by von Frey tests at 3, 7, and 14 d. For immunohistochemical analysis, samples were collected at 7 d. RESULTS The threshold for inducing allodynia increased and the response percentage reduced in the Andro-group when compared with the Saline-group, as well as when compared with NSAIDS groups throughout 3-14 d. The ratio of threshold for OP-Andro/OP-saline and for OP-Andro/OP-NSAIDS groups was 20.42 and 11.67 at 14 d, respectively. The ratio of response percentage for OP-Andro/OP-saline and for OP-Andro/OP-NSAIDS was 0.32 and 0.39 at 14 d, respectively. Interleukin-1 (IL-1) immunostaining in the spinal cord was reduced in the Andro-group. Astrocytic activities were not significantly reduced in the Andro-group compared with the Saline-group at 7 d post-operation (PO) Conclusions: Andro reduced mechanical allodynia more than NSAIDS at the same concentration, and the observed behaviour was associated with a reduction in inflammatory cytokine produced in the spinal cord.
Collapse
Affiliation(s)
- Huang-Chi Wang
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan, ROC
| | - Hsin-Sheng Tsay
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan, ROC
| | - Hui-Nung Shih
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan, ROC
| | - Yi-An Chen
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan, ROC
| | - Kai-Ming Chang
- Department of Research, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan, ROC
| | - Dinesh Chandra Agrawal
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan, ROC
| | - Siendong Huang
- Department of Applied Mathematics, National Dong Hwa University, Hualien, Taiwan, ROC
| | - Yi-Lo Lin
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Meng-Jen Lee
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan, ROC
| |
Collapse
|
6
|
Greco R, Siani F, Demartini C, Zanaboni A, Nappi G, Davinelli S, Scapagnini G, Tassorelli C. Andrographis Paniculata shows anti-nociceptive effects in an animal model of sensory hypersensitivity associated with migraine. FUNCTIONAL NEUROLOGY 2016; 31:53-60. [PMID: 27027895 DOI: 10.11138/fneur/2016.31.1.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Administration of nitroglycerin (NTG) to rats induces a hyperalgesic condition and neuronal activation of central structures involved in migraine pain. In order to identify therapeutic strategies for migraine pain, we evaluated the anti-nociceptive activity of Andrographis Paniculata (AP), a herbaceous plant, in the hyperalgesia induced by NTG administration in the formalin test. We also analyzed mRNA expression of cytokines in specific brain areas after AP treatment. Male Sprague-Dawley rats were pre-treated with AP extract 30 minutes before NTG or vehicle injection. The data show that AP extract significantly reduced NTG-induced hyperalgesia in phase II of the test, 4 hours after NTG injection. In addition, AP extract reduced IL-6 mRNA expression in the medulla and mesencephalon and also mRNA levels of TNFalpha in the mesencephalic region. These findings suggest that AP extract may be a potential therapeutic approach in the treatment of general pain, and possibly of migraine.
Collapse
|
7
|
Gu LL, Zhang XY, Xing WM, Xu JD, Lu H. Andrographolide-induced apoptosis in human renal tubular epithelial cells: Roles of endoplasmic reticulum stress and inflammatory response. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 45:257-264. [PMID: 27344125 DOI: 10.1016/j.etap.2016.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 06/06/2023]
Abstract
Andrographolide sodium bisulfate as a kind of soluble derivative of andrographolide (AD), is obviously known to be nephrotoxicity, but AD has not been reported clearly. Our study aimed to investigate the induction of apoptosis in human renal tubular epithelial (HK-2) cells by AD and its possible mechanism. Our results demonstrated that AD (0-250μmol/L) inhibited Hk-2 cells proliferation in a dose- and time-dependent manner and induced apoptosis, accompanied by decreased of superoxide dismutase (SOD) activity and increased of malondialdehvde (MDA) content. Simultaneously, AD regulated the expression of endoplasmic reticulum (ER) molecular chaperone glucose-regulated protein 78 (GRP78/Bip) protein, elevated the expressions of C/EBP homologous protein (CHOP) and Caspase-4, indicating activation of ER stress signaling, and induced the alterative expression of kidney injury molecule-1 (KIM-1), tumor necrosis factor-α (TNF-α) and Interleukin-6 (IL-6) proteins. It provided evidence that ER stress and inflammation would be significant mechanisms responsible for AD-induced apoptosis in addition to oxidative stress.
Collapse
Affiliation(s)
- Li-Li Gu
- School of Pharmacology, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Xin-Yue Zhang
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 31003, Zhejiang Province, China
| | - Wen-Min Xing
- School of Pharmacology, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Jia-Dong Xu
- School of Pharmacology, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Hong Lu
- School of Pharmacology, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China.
| |
Collapse
|
8
|
Liu X, Yu S, Guo SW. A pilot study on the use of andrographolide to treat symptomatic adenomyosis. Gynecol Minim Invasive Ther 2014. [DOI: 10.1016/j.gmit.2014.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
9
|
Jayakumar T, Elizebeth AR, Yen TL, Sheu JR. Chinese medicines and bioactive compounds for treatment of stroke. Chin J Integr Med 2014; 21:90-101. [DOI: 10.1007/s11655-014-1782-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Indexed: 12/29/2022]
|
10
|
Zhang J, Li Y, Gao W, Repka MA, Wang Y, Chen M. Andrographolide-loaded PLGA-PEG-PLGA micelles to improve its bioavailability and anticancer efficacy. Expert Opin Drug Deliv 2014; 11:1367-80. [DOI: 10.1517/17425247.2014.924503] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Hang LH, Li SN, Shao DH, Chen Z, Chen YF, Shu WW. Evidence for involvement of spinal RANTES in the antinociceptive effects of triptolide, a diterpene triepoxide, in a rat model of bone cancer pain. Basic Clin Pharmacol Toxicol 2014; 115:477-80. [PMID: 24810483 DOI: 10.1111/bcpt.12265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/28/2014] [Indexed: 01/18/2023]
Abstract
It has been shown that triptolide has beneficial effects in the treatment of neuropathic pain, but its effects on bone cancer pain (BCP) remain unclear. In this study, we aimed to explore the potential role of spinal regulated activation of normal T cell expressed and secreted (RANTES) in the antinociceptive effects of triptolide on BCP. A BCP model was induced by injecting Walker 256 mammary gland carcinoma cells into the intramedullary space of rat tibia. Intrathecal administration of triptolide (0.5, 1, 2 μg) could dose-dependently alleviate mechanical hyperalgesia and spontaneous pain. In addition, there were also concomitant decreases in RANTES mRNA and protein expression levels in spinal dorsal horn. These results suggest that the antinociceptive effects of triptolide are related with inhibition of spinal RANTES expression in BCP rats. The findings of this study may provide a promising drug for the treatment of BCP.
Collapse
Affiliation(s)
- Li-Hua Hang
- Department of Anesthesiology, the Affiliated People's Hospital of Jiangsu University, Zhenjiang Jiangsu, China
| | | | | | | | | | | |
Collapse
|
12
|
Lu H, Zhang XY, Wang YQ, Zheng XL, Xing WM, Zhang Q. Andrographolide sodium bisulfate-induced apoptosis and autophagy in human proximal tubular endothelial cells is a ROS-mediated pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:718-728. [PMID: 24607686 DOI: 10.1016/j.etap.2014.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/14/2014] [Accepted: 01/24/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND AND AIMS The nephrotoxic mechanisms of andrographolide sodium bisulfate (ASB) remain largely unknown. This study attempted to explore the mechanism of ASB-induced nephrotoxicity using human proximal tubular endothelial cells (HK-2). METHODS For this study HK-2 cells were treated with rising concentrations of ASB. Their survival rate was detected using MTT assay and ultrastructure was observed with electron microscopy. L-Lactate dehydrogenase (LDH) assay was followed by examination of mitochondrial membrane potential (MMP). Reactive oxygen species (ROS) was detected using different methods and apoptosis/autophage related proteins were detected using immunoblotting. RESULTS We found that ASB inhibited HK-2 cell proliferation and decreased cell survival rate in a time and dose-dependent manner (P<0.05, P<0.01, respectively). With increasing ASB concentration, cell structure was variably damaged and evidence of apoptosis and autophagy were observed. MMP gradually decreased and ROS was induced. The expression of JNK and Beclin-1 increased and activation of the JNK signaling pathway were seen. Apoptosis was induced via the mitochondrial-dependent caspase-3 and caspase-9 pathway, and autophagy related protein Beclin-1 was enhanced by ASB. CONCLUSION The data show that ASB induces high levels of ROS generation in HK-2 cells and activates JNK signaling. Furthermore, ASB induces cell apoptosis via the caspase-dependent mitochondrial pathway, and induces cellular autophagy, in part by enhancing Beclin-1 protein expression.
Collapse
Affiliation(s)
- Hong Lu
- School of Pharmacology, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China.
| | - Xin-Yue Zhang
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, Zhejiang Province, China
| | - Yi-Qi Wang
- School of Pharmacology, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Xiao-Liang Zheng
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, Zhejiang Province, China
| | - Wen-Min Xing
- School of Pharmacology, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Qin Zhang
- School of Pharmacology, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| |
Collapse
|
13
|
Rahmatullah M, Khatun Z, Saha S, Tuly MA, Hossain A, Roy A, Jahan R. Medicinal Plants and Formulations of Tribal Healers of the Chekla Clan of the Patro Tribe of Bangladesh. J Altern Complement Med 2014; 20:3-11. [DOI: 10.1089/acm.2012.0520] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Mohammed Rahmatullah
- Faculty of Life Sciences, University of Development Alternative, Dhaka, Bangladesh
| | - Zubaida Khatun
- Faculty of Life Sciences, University of Development Alternative, Dhaka, Bangladesh
| | - Sagor Saha
- Faculty of Life Sciences, University of Development Alternative, Dhaka, Bangladesh
| | - Mahmuda Alam Tuly
- Faculty of Life Sciences, University of Development Alternative, Dhaka, Bangladesh
| | - Amran Hossain
- Faculty of Life Sciences, University of Development Alternative, Dhaka, Bangladesh
| | - Amrita Roy
- Faculty of Life Sciences, University of Development Alternative, Dhaka, Bangladesh
| | - Rownak Jahan
- Faculty of Life Sciences, University of Development Alternative, Dhaka, Bangladesh
| |
Collapse
|
14
|
Improved inhibitory activities against tumor-cell migration and invasion by 15-benzylidene substitution derivatives of andrographolide. Bioorg Med Chem Lett 2013; 23:6421-6. [DOI: 10.1016/j.bmcl.2013.09.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/28/2013] [Accepted: 09/17/2013] [Indexed: 01/03/2023]
|
15
|
Guo SW, Mao X, Ma Q, Liu X. Dysmenorrhea and its severity are associated with increased uterine contractility and overexpression of oxytocin receptor (OTR) in women with symptomatic adenomyosis. Fertil Steril 2013; 99:231-240. [DOI: 10.1016/j.fertnstert.2012.08.038] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 08/07/2012] [Accepted: 08/19/2012] [Indexed: 01/15/2023]
|
16
|
Zheng Y, Liu X, Guo SW. Therapeutic potential of andrographolide for treating endometriosis. Hum Reprod 2012; 27:1300-13. [PMID: 22402211 DOI: 10.1093/humrep/des063] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Mounting evidence shows that nuclear factor-κB (NF-κB) plays an important role in endometriosis. We therefore evaluated the therapeutic potential of andrographolide, an NF-κB inhibitor. METHODS Primary cell cultures were performed using ectopic endometrial tissue specimens and their homologous eutopic endometrial specimens from 16 women with endometriosis, as well as control samples from 4 women without endometriosis. Andrographolide was evaluated for an effect on cell proliferation and cell cycle, DNA-binding activity of NF-κB and expression of cyclooxygenase-2 (COX-2) and tissue factor (TF). In a rat model of endometriosis, andrographolide treatment was evaluated for an effect on lesion size, hotplate response latency and expression of phosphorylated p50 and p65, COX-2 and nerve growth factor (NGF) in ectopic endometrium. RESULTS Andrographolide dose dependently suppressed proliferation and cell cycle progression, attenuated DNA-binding activity of NF-κB in endometriotic stromal cells and inhibited COX-2 and TF expression. In the rat experiment, induced endometriosis resulted in reduced response latency. Andrographolide treatment significantly reduced lesion size in a dose-dependent manner and significantly increased response latency. Andrographolide treatment also significantly reduced immunoreactivity of COX-2, phosphorylated p50 and p65, and NGF in ectopic endometrium. CONCLUSIONS Treatment with andrographolide significantly suppresses the growth of ectopic endometrium in vitro and in vivo, and results in a significant improvement in generalized hyperalgesia in rats with induced endometriosis. Therefore, andrographolide may be cytoreductive and may relieve pain symptoms in women with endometriosis. With excellent safety and cost profiles, andrographolide could be a promising therapeutic agent for endometriosis.
Collapse
Affiliation(s)
- Yu Zheng
- Shanghai OB/GYN Hospital, Fudan University, Shanghai 200011, China
| | | | | |
Collapse
|
17
|
Nain-e Havandi Andrographis paniculata present yesterday, absent today: a plenary review on underutilized herb of Iran's pharmaceutical plants. Mol Biol Rep 2011; 39:5409-24. [PMID: 22198549 DOI: 10.1007/s11033-011-1341-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 12/03/2011] [Indexed: 10/14/2022]
Abstract
Nain-e Havandi (Andrographis paniculata Nees.) (AP) is an annual herbaceous plant belonging to the family Acanthacea. Only a few species of Andrographis genus out of 28 are medicinally concerned of which AP is the most important. Knowledge about the arrival of AP to Iran is extremely lacking but most probably it has been imported from India. However, evidence implies the familiarity of Iran's folkloric medicine with this plant, but it has been disappeared from contemporary medicine for unknown reasons. Presence of active ingredients from diterpenoids group such as andrographolide, neoandrographolide and 14-deoxy-11,12-didehydroandrographolide has given incredible unique medicinal properties to the plant. Traditionally, Nain-e Havandi has been used in the role of a non-farm plant as a remedy for skin problems, flu, respiratory disease, and snakebite in East and Southeast Asia for centuries. Recently, it has been utilized as a treatment for HIV, hepatitis, diabetes, cancer and kidney disorders. Intensive cultivation of the herb started only in the past decade in countries such as China, India, Thailand, Indonesia, West Indies, Mauritius and to some extent, in Malaysia. Availability of different ecological zones in Iran complies with reestablishment of AP in tropical and temperate regions of the country. This is killing two birds with one stone, supporting the conservational and economic aspects.
Collapse
|
18
|
Abstract
This paper is the thirty-third consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2010 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
19
|
Dai GF, Zhao J, Jiang ZW, Zhu LP, Xu HW, Ma WY, Chen XR, Dong RJ, Li WY, Liu HM. Anti-inflammatory effect of novel andrographolide derivatives through inhibition of NO and PGE2 production. Int Immunopharmacol 2011; 11:2144-9. [PMID: 21983643 DOI: 10.1016/j.intimp.2011.09.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 09/21/2011] [Accepted: 09/22/2011] [Indexed: 12/29/2022]
Abstract
Andrographolide (1) is a major diterpene lactone exhibiting anti-inflammatory effects and is found in the plant Andrographis paniculata (Burm. f) Nees, which is widely used in Traditional Chinese Medicine. Synthesis of more effective drugs from andrographolide is very interesting and can prove to be highly useful. In this study, we investigated the anti-inflammatory effects of andrographolide and its derivatives (compounds 2-6) through dimethylbenzene-induced ear edema in mice. Substances under study were administrated intragastrically and the structure-activity relationship was analyzed. Results showed that compounds 5 and 6 significantly inhibited ear edema compared with compound 1 (p<0.05), indicating that the introduction of p-Chlorobenzylidene to C-15 of compound 2 enhances the anti-inflammatory effect. Moreover, compound 6 exhibited the strongest anti-inflammatory effect against ear edema in mice (79.4%; 1.35 mmol/kg, ig) and paw edema in rats (50.4%; 0.90 mmol/kg, ig). In addition, compound 6 significantly (p<0.05) inhibited granuloma formation and reduced the increase in vascular permeability induced by peritoneal injection of 0.6% acetic acid solution in mice. Findings indicate that compound 6 exerts its enhanced anti-inflammatory effects by decreasing serum iNOS activity, NO production, and PGE(2) production.
Collapse
Affiliation(s)
- Gui-Fu Dai
- Department of Biotechnology, Zhengzhou University, Zhengzhou 450001, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Synthesis and biological evaluation of andrographolide derivatives as potent anti-HIV agents. CHINESE CHEM LETT 2011. [DOI: 10.1016/j.cclet.2011.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Jin L, Shi G, Ning G, Li X, Zhang Z. Andrographolide attenuates tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes. Mol Cell Endocrinol 2011; 332:134-9. [PMID: 20943205 DOI: 10.1016/j.mce.2010.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 09/16/2010] [Accepted: 10/05/2010] [Indexed: 01/15/2023]
Abstract
Andrographolide (AG), the primary bioactive component of Andrographils paniculate Nees, has showed an anti-diabetic effect. However, the molecular mechanism has not been clarified. In this study, we demonstrated that AG increased glucose uptake in 3T3-L1 cells in a time- and dosedependent manner. The activation of insulin signaling by AG was initiated from phosphotyrosine of IRS-1 and further passed on through phosphatidylinositol 3-kinase (PI3K) and the downstream signaling cascades. Moreover importantly, pretreatment cells with AG suppressed the TNF-α induced activation of NF-κB signaling pathway and its downstream inflammatory factors expression, therefore ameliorating insulin resistance. In conclusion, AG can improve insulin sensitivity through inhibition of NF-κB pathway. These findings are helpful in understanding the anti-diabetic properties of AG and can be of interest for the therapeutic application of AG in glucose controlling.
Collapse
Affiliation(s)
- Lina Jin
- Laboratory of Endocrinology and Metabolism, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
22
|
Chan SJ, Wong WSF, Wong PTH, Bian JS. Neuroprotective effects of andrographolide in a rat model of permanent cerebral ischaemia. Br J Pharmacol 2011; 161:668-79. [PMID: 20880404 DOI: 10.1111/j.1476-5381.2010.00906.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Andrographolide is a diterpenoid lactone isolated from a traditional medicinal herb, Andrographis paniculata. It possesses potent anti-inflammatory activity. The present study examined potential therapeutic effects of andrographolide on cerebral ischaemia using a rat model with permanent middle cerebral artery occlusion (pMCAO). EXPERIMENTAL APPROACH The MCA in rats was permanently occluded (by cautery), and 24 h later neurological effects were assessed with behavioural scores. Infarct volume and microglial activation were determined histologically. The p65 form of the transcription factor, nuclear factor-κB (NF-κB), was measured by Western blot, and cytokines by immunoassay of brain extracts. KEY RESULTS Andrographolide, given i.p. 1 h after pMCAO, reduced infarct volume with a maximum reduction of approximately 50% obtained at 0.1 mg·kg(-1). Neurological deficits were also reduced by andrographolide, reflecting a correlation between infarct volume and neurological deficits. pMCAO was found to induce activation of microglia and elevate tumour necrosis factor (TNF)-α, interleukin (IL)-1β and prostaglandin (PG)E(2) in the ischaemic brain areas. Andrographolide (0.1 mg·kg(-1)) significantly attenuated or abolished these effects. In addition, andrographolide suppressed the translocation of p65 from cytosol to nucleus, indicating reduced NF-κB activation. CONCLUSIONS AND IMPLICATIONS Andrographolide exhibited neuroprotective effects, with accompanying suppression of NF-κB and microglial activation, and reduction in the production of cytokines including TNF-α and IL-1β, and pro-inflammatory factors such as PGE(2). Our findings suggest that andrographolide may have therapeutic value in the treatment of stroke.
Collapse
Affiliation(s)
- Su Jing Chan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
23
|
Zakaria ZA, Mohamad AS, Ahmad MS, Mokhtar AF, Israf DA, Lajis NH, Sulaiman MR. Preliminary Analysis of the Anti-Inflammatory Activity of Essential Oils of Zingiber zerumbet. Biol Res Nurs 2010; 13:425-32. [DOI: 10.1177/1099800410386590] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) have been widely used for the treatment of inflammation. However, despite their effectiveness, most NSAIDs cause various side effects that negatively affect the management of inflammation and, in part, pain. Thus, there is a need to search for new anti-inflammatory agents with few, or no, side effects. Natural products of plant, animal, or microorganism origin have been good sources of new bioactive compounds. The present study was carried out to evaluate the acute and chronic anti-inflammatory activities of the essential oil of the rhizomes of Zingiber zerumbet (Zingiberaceae) using the carrageenan-induced paw edema and cotton pellet-induced granuloma tests, respectively. The effect of the essential oil on inflammatory- and noninflammatory-mediated pain was also assessed using the formalin test. Essential oil of Z. zerumbet, at doses of 30, 100, and 300 mg/kg, was administered intraperitoneally to rats. The substance exhibited significant anti-inflammatory activity both in acute and chronic animal models. The essential oil also inhibited inflammatory- and noninflammatory-mediated pain when assessed using the formalin test. In conclusion, the essential oil of Z. zerumbet possessed anti-inflammatory activity, in addition to its antinociceptive activity, which may explain its traditional uses to treat inflammatory-related ailments.
Collapse
Affiliation(s)
- Z. A. Zakaria
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - A. S. Mohamad
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - M. S. Ahmad
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - A. F. Mokhtar
- Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - D. A. Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - N. H. Lajis
- Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - M. R. Sulaiman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|