1
|
Gibert MK, Zhang Y, Saha S, Marcinkiewicz P, Dube C, Hudson K, Sun Y, Bednarek S, Chagari B, Sarkar A, Roig-Laboy C, Neace N, Saoud K, Setiady I, Hanif F, Schiff D, Kumar P, Kefas B, Hafner M, Abounader R. A comprehensive analysis of Transcribed Ultra Conserved Regions uncovers important regulatory functions of novel non-coding transcripts in gliomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.12.557444. [PMID: 38562826 PMCID: PMC10983853 DOI: 10.1101/2023.09.12.557444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Transcribed Ultra-Conserved Regions (TUCRs) represent a severely understudied class of putative non-coding RNAs (ncRNAs) that are 100% conserved across multiple species. We performed the first-ever analysis of TUCRs in glioblastoma (GBM) and low-grade gliomas (LGG). We leveraged large human datasets to identify the genomic locations, chromatin accessibility, transcription, differential expression, correlation with survival, and predicted functions of all 481 TUCRs, and identified TUCRs that are relevant to glioma biology. Of these, we investigated the expression, function, and mechanism of action of the most highly upregulated intergenic TUCR, uc.110, identifying it as a new tumor enhancer. Uc.110 was highly overexpressed in GBM and LGG, where it promoted malignancy and tumor growth. Uc.110 activated the WNT pathway by upregulating the expression of membrane frizzled-related protein (MFRP), by sponging the tumor suppressor microRNA miR-544. This pioneering study shows important roles for TUCRs in gliomas and provides an extensive database and novel methods for future TUCR research.
Collapse
|
2
|
Aziz M, Ejaz SA, Channar PA, Alkhathami AG, Qadri T, Hussain Z, Hussaain M, Ujan R. Identification of dimethyl 2,2'-((methylenebis(2-(2H-benzo[d][1,2,3]triazol-2-yl)-4-(2,4,4-trimethylpentan-2-yl)-6,1phenylene))bis(oxy))diacetate (TAJ4) as antagonist of NEK-Family: a future for potential drug discovery. BMC Cancer 2024; 24:1521. [PMID: 39696038 DOI: 10.1186/s12885-024-13269-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
The purpose of the current study was to analyze and validate the existing gap in knowledge, by conducting a differential expression analysis and validation of NEK6, NEK7, and NEK9 in breast, cervical, and glioblastoma cancer and targeting these proteins through development of novel site specific inhibitor with favorable pharmacokinetic and safety profile, using open-source databases. The analysis revealed that the targeted kinases were overexpressed in all three types of cancer. Their expression was significantly linked to overall survival rates, which suggests that they play a major role in the development and progression of these cancers. After, having the prognostic importance of These findings provided a rationale for synthesizing novel compound i.e., dimethyl 2,2'-((methylenebis(2-(2H-benzo[d][1,2,3]triazol-2-yl)-4-(2,4,4-trimethylpentan-2-yl)-6,1phenylene))bis(oxy))diacetate (TAJ4)), capable of effectively targeting these proteins using in-vitro cytotoxicity assays and comprehensive computational approaches. Then the inhibitory potential of TAJ4 was evaluated against cell lines of the respective cancers (HeLa cells, MCF-7 cells, and Vero cells). The growth inhibitory values (GI50) suggested that TAJ4 exhibited strong inhibitory potential towards MCF-7 cells (GI50 = 3.18 ± 0.11 µM) in comparison to the HeLa cell line (GI50 = 8.12 ± 0.43 µM), surpassing that of standard drugs. Furthermore, in-silico investigations, including density functional theory (DFT) calculations and molecular docking studies, revealed a substantial reactivity profile of TAJ4, with promising molecular interactions against NEK7, NEK9, TP53, NF-KAPPA-B, and caspase-3 proteins. Further investigation using in-vitro and in-vivo approaches is recommended to fully establish the therapeutic efficacy and safety profile of TAJ4.
Collapse
Affiliation(s)
- Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Pervaiz Ali Channar
- Department of Basic Science and Humanities, Faculty of Information Science Humanities, Dawood University of Engineering and Technology Karachi, Karachi, 74800, Pakistan
| | - Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O.Box 61413, Abha, 9088, Saudi Arabia
| | - Tahir Qadri
- Department of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Zahid Hussain
- Department of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Mumtaz Hussaain
- Department of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Rabail Ujan
- Dr. M. A. Kazi Institute of Chemistry, University of Sindh, Jamshoro, Pakistan
| |
Collapse
|
3
|
Ceskoutsé RFT, Bomgni AB, Gnimpieba Zanfack DR, Agany DDM, Thomas BB, Zohim EG. HeteroKGRep: Heterogeneous Knowledge Graph based Drug Repositioning. Knowl Based Syst 2024; 305:112638. [PMID: 39610660 PMCID: PMC11600970 DOI: 10.1016/j.knosys.2024.112638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The process of developing new drugs is both time-consuming and costly, often taking over a decade and billions of dollars to obtain regulatory approval. Additionally, the complexity of patent protection for novel compounds presents challenges for pharmaceutical innovation. Drug repositioning offers an alternative strategy to uncover new therapeutic uses for existing medicines. Previous repositioning models have been limited by their reliance on homogeneous data sources, failing to leverage the rich information available in heterogeneous biomedical knowledge graphs. We propose HeteroKGRep, a novel drug repositioning model that utilizes heterogeneous graphs to address these limitations. HeteroKGRep is a multi-step framework that first generates a similarity graph from hierarchical concept relations. It then applies SMOTE over-sampling to address class imbalance before generating node sequences using a heterogeneous graph neural network. Drug and disease embeddings are extracted from the network and used for prediction. We evaluated HeteroKGRep on a graph containing biomedical concepts and relations from ontologies, pathways and literature. It achieved state-of-the-art performance with 99% accuracy, 95% AUC ROC and 94% average precision on predicting repurposing opportunities. Compared to existing homogeneous approaches, HeteroKGRep leverages diverse knowledge sources to enrich representation learning. Based on heterogeneous graphs, HeteroKGRep can discover new drug-desease associations, leveraging de novo drug development. This work establishes a promising new paradigm for knowledge-guided drug repositioning using multimodal biomedical data.
Collapse
Affiliation(s)
- Ribot Fleury T Ceskoutsé
- Ecole Nationale Supérieure Polytechnique, University of Yaounde I, P.O. Box. 8390, Yaoundé, Cameroon
| | - Alain Bertrand Bomgni
- University of South Dakota, 4800 N Career Avenue, 57107, SD, USA
- Departement of Mathematics and computer science, University of Dschang, P.O. Box. 67, Dschang, Cameroon
| | - David R Gnimpieba Zanfack
- Laboratory of Innovative Technologies (LTI), University of Picardie Jule Verne (UPJV), 48 Rue Raspail, 02100 Saint Quentin, France
| | - Diing D M Agany
- University of South Dakota, 4800 N Career Avenue, 57107, SD, USA
| | - Bouetou Bouetou Thomas
- Ecole Nationale Supérieure Polytechnique, University of Yaounde I, P.O. Box. 8390, Yaoundé, Cameroon
| | | |
Collapse
|
4
|
Salo V, Määttä J, Sliz E, Reimann E, Mägi R, Reis K, Elhanas AG, Reigo A, Palta P, Esko T, Karppinen J, Kettunen J. Genome-wide meta-analysis conducted in three large biobanks expands the genetic landscape of lumbar disc herniations. Nat Commun 2024; 15:9424. [PMID: 39511132 PMCID: PMC11544010 DOI: 10.1038/s41467-024-53467-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
Given that lumbar disc herniation (LDH) is a prevalent spinal condition that causes significant individual suffering and societal costs, the genetic basis of LDH has received relatively little research. Our aim is to increase understanding of the genetic factors influencing LDH. We perform a genome-wide association analysis (GWAS) of LDH in the FinnGen project and in Estonian and UK biobanks, followed by a genome-wide meta-analysis to combine the results. In the meta-analysis, we identify 41 loci that have not been associated with LDH in prior studies on top of the 23 known risk loci. We detect LDH-associated loci in the vicinity of genes related to inflammation, disc-related structures, and synaptic transmission. Overall, our research contributes to a deeper understanding of the genetic factors behind LDH, potentially paving the way for the development of new therapeutics, prevention methods, and treatments for symptomatic LDH in the future.
Collapse
Affiliation(s)
- Ville Salo
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| | - Juhani Määttä
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Eeva Sliz
- Research unit of Population Health, Faculty of Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ene Reimann
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kadri Reis
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Anu Reigo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Priit Palta
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Tõnu Esko
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jaro Karppinen
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Rehabilitation Services of Wellbeing Services County of South Karelia, Lappeenranta, Finland
| | - Johannes Kettunen
- Research unit of Population Health, Faculty of Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
5
|
Qu T, Sun Y, Zhao J, Liu N, Yang J, Lyu D, Huang W, Zhan W, Li T, Yao Z, Yan R, Zhang H, Hong H, Shi L, Meng X, Yin B. Scoulerine: A natural isoquinoline alkaloid targeting SLC6A3 to treat RCC. Biomed Pharmacother 2024; 180:117524. [PMID: 39395255 DOI: 10.1016/j.biopha.2024.117524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
Scoulerine, an isoquinoline alkaloid derived from the corydalis plant, exhibits diverse therapeutic properties against tumors, Alzheimer's disease, and inflammation. This research delves into the pharmacological impact and underlying mechanism of scoulerine on renal cell carcinoma (RCC). Our findings suggest that Scoulerine displays promise as a potential therapeutic agent for RCC, demonstrating notable inhibitory effects in both in vivo and in vitro models. In addition, scoulerine inhibited the viability of 769-P and 786-O cell lines in a time-dependent and dose-dependent manner, and promoted the level of apoptosis associated with B-cell lymphoma-2 associated X protein (Bax). Moreover, the administration of scoulerine resulted in a significant suppression of the mitogen activated protein kinase (MAPK) signaling pathway. Subsequently, utilizing bioinformatics and spatial transcriptomic databases, we identified solute carrier family 6 Member 3 (SLC6A3) as the most promising target of scoulerine. Through experimental validation, we confirmed the functional and therapeutic relevance of SLC6A3 in scoulerine-mediated treatment of RCC. The results of our study indicate a significant affinity between scoulerine and SLC6A3, with competitive inhibition of this interaction leading to a reduction in the inhibitory impact of scoulerine on RCC cell viability. In conclusion, our findings suggest that scoulerine may induce apoptosis in RCC by targeting SLC6A3 and inhibiting the activation of the MAPK signaling pathway, thereby positioning it as a promising natural compound for potential future RCC treatment.
Collapse
Affiliation(s)
- Tianrui Qu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yu Sun
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jingying Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Nanqi Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Jianli Yang
- Department of Laboratory Animals, China Medical University, Shenyang, Liaoning 110122, China
| | - Dantong Lyu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Wenjie Huang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Weizhen Zhan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Tao Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Zichuan Yao
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Rongbo Yan
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China
| | - Haiyan Zhang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Hong Hong
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Liye Shi
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China.
| | - Bo Yin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
6
|
Abid F, Khan K, Ashraf NM, Badshah Y, Shabbir M, Trembley JH, Afsar T, Almajwal A, Razak S. Genetic Variants at PRKCG Splice and UTR Sites Promote Cancer Susceptibility by Disrupting Epigenetic and miRNA Regulatory Network. J Cancer 2024; 15:6644-6657. [PMID: 39668814 PMCID: PMC11632988 DOI: 10.7150/jca.100911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/14/2024] [Indexed: 12/14/2024] Open
Abstract
The changes in the protein kinase C gamma gene (PRKCG) expression are associated with both coding and non-coding variants. No studies have specifically established the association between PRKCG 3'UTR, 5'UTR, donor and acceptor splice variants with post-transcriptional changes through utilizing in-silico tools. The current study intends to uncover this linkage. In total, 419 3' and 5'UTR variants were retrieved. 325 of these variant IDs were annotated as functionally significant. 18 variants impacted the transcription factors binding and therefore influenced the post-transcriptional regulatory activity while 7 variants affected regulatory mechanisms through histone modifications. 2 rsIDs (rs373228, rs446795) potentially impacted the interactions with RNA binding proteins. In addition to that, PRKCG showed high expression in brain cells and had variable expression in TCGA tumors, respectively. Furthermore, 5 3' UTR variants were identified to be targeted by miRNAs. In total, 5 of these miRNAs (hsa-miR-663a, hsa-miR-324-5p, hsa-miR-646, hsa-miR-1205 and hsa-miR-4270) that targeted 3'UTRs (rs57483118, rs181418157 and rs60891969) showed differential expressions in distinct cancer types. The presence of 3'UTR variants likely altered the secondary structure of mRNA. The 7 rsIDs at 3' UTR site caused the loss of function of authentic splice site at 10 positions was noted; at 1 position, gain of function was observed while at 2 positions no effect was identified. Moreover, the loss of donor and acceptor splice site was evident. Our results highlight the importance of non-coding regions that might boost our research capacity to predict and construct targeted therapeutic approaches.
Collapse
Affiliation(s)
- Fizzah Abid
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Khushbukhat Khan
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Naeem Mahmood Ashraf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Yasmin Badshah
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Maria Shabbir
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Janeen H Trembley
- Minneapolis VA Health Care System Research Service, Minneapolis, MN, 55111 USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN,55405 USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN,55407 USA
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11421, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11421, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11421, Saudi Arabia
| |
Collapse
|
7
|
Mustafa A, Shabbir M, Badshah Y, Khan K, Abid F, Trembley JH, Afsar T, Almajwal A, Razak S. Genetic polymorphism in untranslated regions of PRKCZ influences mRNA structure, stability and binding sites. BMC Cancer 2024; 24:1147. [PMID: 39272077 PMCID: PMC11401371 DOI: 10.1186/s12885-024-12900-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Variations in untranslated regions (UTR) alter regulatory pathways impacting phenotype, disease onset, and course of disease. Protein kinase C Zeta (PRKCZ), a serine-threonine kinase, is implicated in cardiovascular, neurological and oncological disorders. Due to limited research on PRKCZ, this study aimed to investigate the impact of UTR genetic variants' on binding sites for transcription factors and miRNA. RNA secondary structure, eQTLs, and variation tolerance analysis were also part of the study. METHODS The data related to PRKCZ gene variants was downloaded from the Ensembl genome browser, COSMIC and gnomAD. The RegulomeDB database was used to assess the functional impact of 5' UTR and 3'UTR variants. The analysis of the transcription binding sites (TFBS) was done through the Alibaba tool, and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) was employed to identify pathways associated with PRKCZ. To predict the effect of variants on microRNA binding sites, PolymiRTS was utilized for 3' UTR variants, and the SNPinfo tool was used for 5' UTR variants. RESULTS The results obtained indicated that a total of 24 variants present in the 3' UTR and 25 variants present in the 5' UTR were most detrimental. TFBS analysis revealed that 5' UTR variants added YY1, repressor, and Oct1, whereas 3' UTR variants added AP-2alpha, AhR, Da, GR, and USF binding sites. The study predicted TFs that influenced PRKCZ expression. RNA secondary structure analysis showed that eight 5' UTR and six 3' UTR altered the RNA structure by either removal or addition of the stem-loop. The microRNA binding site analysis highlighted that seven 3' UTR and one 5' UTR variant altered the conserved site and also created new binding sites. eQTLs analysis showed that one variant was associated with PRKCZ expression in the lung and thyroid. The variation tolerance analysis revealed that PRKCZ was an intolerant gene. CONCLUSION This study laid the groundwork for future studies aimed at targeting PRKCZ as a therapeutic target.
Collapse
Affiliation(s)
- Aneela Mustafa
- Department of Healthcare BiotechnologyAtta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Maria Shabbir
- Department of Healthcare BiotechnologyAtta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan.
| | - Yasmin Badshah
- Department of Healthcare BiotechnologyAtta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | | | - Fizzah Abid
- Department of Healthcare BiotechnologyAtta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Janeen H Trembley
- Minneapolis VA Health Care System Research Service, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
8
|
Abbasi AF, Asim MN, Ahmed S, Vollmer S, Dengel A. Survival prediction landscape: an in-depth systematic literature review on activities, methods, tools, diseases, and databases. Front Artif Intell 2024; 7:1428501. [PMID: 39021434 PMCID: PMC11252047 DOI: 10.3389/frai.2024.1428501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Survival prediction integrates patient-specific molecular information and clinical signatures to forecast the anticipated time of an event, such as recurrence, death, or disease progression. Survival prediction proves valuable in guiding treatment decisions, optimizing resource allocation, and interventions of precision medicine. The wide range of diseases, the existence of various variants within the same disease, and the reliance on available data necessitate disease-specific computational survival predictors. The widespread adoption of artificial intelligence (AI) methods in crafting survival predictors has undoubtedly revolutionized this field. However, the ever-increasing demand for more sophisticated and effective prediction models necessitates the continued creation of innovative advancements. To catalyze these advancements, it is crucial to bring existing survival predictors knowledge and insights into a centralized platform. The paper in hand thoroughly examines 23 existing review studies and provides a concise overview of their scope and limitations. Focusing on a comprehensive set of 90 most recent survival predictors across 44 diverse diseases, it delves into insights of diverse types of methods that are used in the development of disease-specific predictors. This exhaustive analysis encompasses the utilized data modalities along with a detailed analysis of subsets of clinical features, feature engineering methods, and the specific statistical, machine or deep learning approaches that have been employed. It also provides insights about survival prediction data sources, open-source predictors, and survival prediction frameworks.
Collapse
Affiliation(s)
- Ahtisham Fazeel Abbasi
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, Germany
- Smart Data & Knowledge Services, Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Kaiserslautern, Germany
| | - Muhammad Nabeel Asim
- Smart Data & Knowledge Services, Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Kaiserslautern, Germany
| | - Sheraz Ahmed
- Smart Data & Knowledge Services, Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Kaiserslautern, Germany
| | - Sebastian Vollmer
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, Germany
- Smart Data & Knowledge Services, Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Kaiserslautern, Germany
| | - Andreas Dengel
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, Germany
- Smart Data & Knowledge Services, Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Kaiserslautern, Germany
| |
Collapse
|
9
|
Chang Y, Wang X, Tian X, Cao Z, Zhen X, Zhao W, Luo B, Gao Y. Novel indel variation of LTBP4 gene associates with risk of sudden cardiac death in Chinese populations with coronary artery disease. Leg Med (Tokyo) 2024; 69:102437. [PMID: 38547642 DOI: 10.1016/j.legalmed.2024.102437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 07/17/2024]
Abstract
The objective of this study is to investigate whether common genetic variants of the LTBP4 gene are linked to the susceptibility of sudden cardiac death in individuals who have atherosclerotic coronary artery disease (SCD-CAD) in Chinese populations. A total of 208 SCD-CAD cases and 638 controls were included in the analysis, and logistic regression was employed to assess the association between a 4-bp insertion/deletion polymorphism (rs34005443) within LTBP4 and the susceptibility to SCD-CAD among Chinese individuals. Logistic regression analysis demonstrated a notable association between the insertion allele of rs34005443 and an escalated susceptibility to SCD-CAD [odds ratio (OR) = 1.434; 95 % confidence interval:1.14-1.80; P = 1.79 × 10-3]. Genotype-phenotype correlation analysis was performed using Genotype-Tissue expression (GTEx) database and further validated by human myocardium using qPCR. Correlation analysis revealed that LTBP4 expression level was lower in samples with the insertion allele. Furthermore, the dual-luciferase activity assays indicated that rs34005443 may play a regulatory role. Additionally, we predicted 30 transcription factors that are likely to bind to rs34005443 and its highly linked genetic variants via 3DSNP database. Subsequent GO and KEGG analysis indicated that these transcription factors have a significant function in regulating gene expression. Finally, PPI network analysis suggested a tight connection between LTBP4 proteins and TGFβs, highlighting these genes as potential hub genes in the context of SCD-CAD. In summary, our study revealed that rs34005443 might contribute to SCD-CAD susceptibility by regulating LTBP4 expression. These findings revealed that this indel could be a potentially functional marker for molecular diagnosis and risk stratification of SCD-CAD.
Collapse
Affiliation(s)
- Yafei Chang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoshu Wang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Xiaoyi Tian
- School of Public Health, Dalian Medical University, Dalian, China
| | - Zhengjun Cao
- Public Security Bureau of Yancheng, Yancheng, China
| | - Xiaoyuan Zhen
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Wenfeng Zhao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Bin Luo
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Yuzhen Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
10
|
Gibert MK, Zhang Y, Saha S, Marcinkiewicz P, Dube C, Hudson K, Sun Y, Bednarek S, Chagari B, Sarkar A, Roig-Laboy C, Neace N, Saoud K, Setiady I, Hanif F, Schiff D, Kumar P, Kefas B, Hafner M, Abounader R. A first comprehensive analysis of Transcribed Ultra Conserved Regions uncovers important regulatory functions of novel non-coding transcripts in gliomas. RESEARCH SQUARE 2024:rs.3.rs-4164642. [PMID: 38699302 PMCID: PMC11065071 DOI: 10.21203/rs.3.rs-4164642/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Transcribed Ultra-Conserved Regions (TUCRs) represent a severely understudied class of putative non-coding RNAs (ncRNAs) that are 100% conserved across multiple species. We performed the first-ever analysis of TUCRs in glioblastoma (GBM) and low-grade gliomas (LGG). We leveraged large human datasets to identify the genomic locations, chromatin accessibility, transcription, differential expression, correlation with survival, and predicted functions of all 481 TUCRs, and identified TUCRs that are relevant to glioma biology. Of these, we investigated the expression, function, and mechanism of action of the most highly upregulated intergenic TUCR, uc.110, identifying it as a new oncogene. Uc.110 was highly overexpressed in GBM and LGG, where it promoted malignancy and tumor growth. Uc.110 activated the WNT pathway by upregulating the expression of membrane frizzled-related protein (MFRP), by sponging the tumor suppressor microRNA miR-544. This pioneering study shows important roles for TUCRs in gliomas and provides an extensive database and novel methods for future TUCR research.
Collapse
Affiliation(s)
- Myron K Gibert
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Ying Zhang
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Shekhar Saha
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Pawel Marcinkiewicz
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Collin Dube
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Kadie Hudson
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Yunan Sun
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Sylwia Bednarek
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Bilhan Chagari
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Aditya Sarkar
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Christian Roig-Laboy
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Natalie Neace
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Karim Saoud
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Initha Setiady
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Farina Hanif
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - David Schiff
- University of Virginia Department of Neurology, Charlottesville, VA, 22908, USA
| | - Pankaj Kumar
- University of Virginia Department of Public Health Sciences and Bioinformatics Core, Charlottesville, VA, 22908, USA
| | | | | | - Roger Abounader
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
- University of Virginia Department of Neurology, Charlottesville, VA, 22908, USA
- University of Virginia Department of Cancer Center, Charlottesville, VA, 22908, USA
| |
Collapse
|
11
|
Broberg M, Ampuja M, Jones S, Ojala T, Rahkonen O, Kivelä R, Priest J, Palotie A, Ollila HM, Helle E. Genome-wide association studies highlight novel risk loci for septal defects and left-sided congenital heart defects. BMC Genomics 2024; 25:256. [PMID: 38454350 PMCID: PMC10918883 DOI: 10.1186/s12864-024-10172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Congenital heart defects (CHD) are structural defects of the heart affecting approximately 1% of newborns. They exhibit low penetrance and non-Mendelian patterns of inheritance as varied and complex traits. While genetic factors are known to play an important role in the development of CHD, the specific genetics remain unknown for the majority of patients. To elucidate the underlying genetic risk, we performed a genome wide association study (GWAS) of CHDs in general and specific CHD subgroups using the FinnGen Release 10 (R10) (N > 393,000), followed by functional fine-mapping through eQTL and co-localization analyses using the GTEx database. RESULTS We discovered three genome-wide significant loci associated with general CHD. Two of them were located in chromosome 17: 17q21.32 (rs2316327, intronic: LRRC37A2, Odds ratio (OR) [95% Confidence Interval (CI)] = 1.17[1.12-1.23], p = 1.5 × 10-9) and 17q25.3 (rs1293973611, nearest: BAHCC1, OR[95%CI] = 4.48[2.80-7.17], p = 7.0 × 10-10), respectively, and in addition to general CHD, the rs1293973611 locus was associated with the septal defect subtype. The third locus was in band 1p21.2 (rs35046143, nearest: PALMD, OR[95%CI] = 1.15[1.09-1.21], p = 7.1 × 10-9), and it was associated with general CHD and left-sided lesions. In the subgroup analysis, two additional loci were associated with septal defects (rs75230966 and rs6824295), and one with left-sided lesions (rs1305393195). In the eQTL analysis the variants rs2316327 (general CHD), and rs75230966 (septal defects) both located in 17q21.32 (with a LD r2 of 0.41) were both predicted to significantly associate with the expression of WNT9B in the atrial appendage tissue category. This effect was further confirmed by co-localization analysis, which also implicated WNT3 expression in the atrial appendage. A meta-analysis of general CHD together with the UK Biobank (combined N = 881,678) provided a different genome-wide significant locus in LRRC37A2; rs16941382 (OR[95%CI] = 1.15[1.11-1.20], p = 1.5 × 10-9) which is in significant LD with rs2316327. CONCLUSIONS Our results of general CHD and different CHD subcategories identified a complex risk locus on chromosome 17 near BAHCC1 and LRRC37A2, interacting with the genes WNT9B, WNT3 and MYL4, may constitute potential novel CHD risk associated loci, warranting future experimental tests to determine their role.
Collapse
Affiliation(s)
- Martin Broberg
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Minna Ampuja
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Samuel Jones
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Tiina Ojala
- Department of Pediatric Cardiology, New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, 00029, Helsinki, Finland
| | - Otto Rahkonen
- Department of Pediatric Cardiology, New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, 00029, Helsinki, Finland
| | - Riikka Kivelä
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Wihuri Research Institute, 00290, Helsinki, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - James Priest
- School of Medicine, Stanford University, Stanford University, Stanford, CA, 94305, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Hanna M Ollila
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014, Helsinki, Finland
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, 02142, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Emmi Helle
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
- Department of Pediatric Cardiology, New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, 00029, Helsinki, Finland.
- , Haartmaninkatu 8, Helsinki, 00014, Finland.
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, 00271, Finland.
| |
Collapse
|
12
|
Broberg M, Helaakoski V, Kiiskinen T, Paunio T, Jones SE, Mars N, Lane JM, Saxena R, Ollila HM. Genetics of sleep medication purchases suggests causality from sleep problems to psychiatric traits. Sleep 2024; 47:zsad279. [PMID: 37982563 PMCID: PMC10851853 DOI: 10.1093/sleep/zsad279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/12/2023] [Indexed: 11/21/2023] Open
Abstract
STUDY OBJECTIVES Over 10% of the population in Europe and in the United States use sleep medication to manage sleep problems. Our objective was to elucidate genetic risk factors and clinical correlates that contribute to sleep medication purchase and estimate the comorbid impact of sleep problems. METHODS We performed epidemiological analysis for psychiatric diagnoses, and genetic association studies of sleep medication purchase in 797 714 individuals from FinnGen Release 7 (N = 311 892) and from the UK Biobank (N = 485 822). Post-association analyses included genetic correlation, co-localization, Mendelian randomization (MR), and polygenic risk estimation. RESULTS In a GWAS we identified 27 genetic loci significantly associated with sleep medication, located in genes associated with sleep; AUTS2, CACNA1C, MEIS1, KIRREL3, PAX8, GABRA2, psychiatric traits; CACNA1C, HIST1H2BD, NUDT12. TOPAZ1 and TSNARE1. Co-localization and expression analysis emphasized effects on the KPNA2, GABRA2, and CACNA1C expression in the brain. Sleep medications use was epidemiologically related to psychiatric traits in FinnGen (OR [95% (CI)] = 3.86 [3.78 to 3.94], p < 2 × 10-16), and the association was accentuated by genetic correlation and MR; depression (rg = 0.55 (0.027), p = 2.86 × 10-89, p MR = 4.5 × 10-5), schizophrenia (rg = 0.25 (0.026), p = 2.52 × 10-21, p MR = 2 × 10-4), and anxiety (rg = 0.44 (0.047), p = 2.88 × 10-27, p MR = 8.6 × 10-12). CONCLUSIONS These results demonstrate the genetics behind sleep problems and the association between sleep problems and psychiatric traits. Our results highlight the scientific basis for sleep management in treating the impact of psychiatric diseases.
Collapse
Affiliation(s)
- Martin Broberg
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Viola Helaakoski
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Tuomo Kiiskinen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Tiina Paunio
- Genomics and Biomarkers Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Psychiatry and SleepWell Research Program, Faculty of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Samuel E Jones
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Nina Mars
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Jacqueline M Lane
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Richa Saxena
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA and
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hanna M Ollila
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA and
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Yu F, Shi L, Wang Q, Xing X, Li Z, Hou L, Zhou Z, Wang Z, Xiao Y. The Association Between Thymidylate Synthase Gene Polymorphisms and the Risk of Ischemic Stroke in Chinese Han Population. Biochem Genet 2024; 62:468-484. [PMID: 37378701 PMCID: PMC10901929 DOI: 10.1007/s10528-023-10431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Family history of hypertension, smoking, diabetes and alcohol consumption and atherosclerotic plaque were identified as common risk factors in IS. We aimed at investigating the relationship between Thymidylate Synthase (TS) gene polymorphisms and ischemic stroke (IS).This case-control research selected and genotyped three single nucleotide polymorphisms (SNPs)of TS( rs699517, rs2790, and rs151264360) with Sanger sequencing in Chinese Han population. We also adopted logistic regression analysis in genetic models for calculating odds ratios and 95% confidence intervals. Genotype-Tissue Expression(GTEx) database analyzed the tissue-specific expression and TS polymorphisms. The ischemic stroke patients showed higher low-density lipoprotein cholesterol and total homocysteine (tHcy). It was found that patients with the TT genotype of rs699517 and GG genotype of rs2790 had larger degrees of tHcy than those with CC + CT genotypes and AA + AG genotypes, respectively. The genotype distribution of the three SNPs did not deviate from Hardy-Weinberg equilibrium (HWE). Haplotype analysis showed that T-G-del was the major haplotype in IS, and C-A-ins was the major haplotype in controls. GTEx database indicated that the rs699517 and rs2790 increased the expression of TS in healthy human and associated with TS expression level in a single tissue. In conclusion: This study has shown that TS rs699517 and rs2790 were significantly related to ischemic stroke patients.
Collapse
Affiliation(s)
- Fuhua Yu
- Department of Neurosurgery, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Medical University General Hospital, Neurological Institute, 154 Anshan Road, Tianjin, 300052, China
- Department of Neurosurgery, Dongchangfu District, Liaocheng People's Hospital, No.67 Dongchang West Road, Liaocheng, 252000, Shandong, People's Republic of China
| | - Lei Shi
- Department of Neurology, Dongchangfu District, Liaocheng People's Hospital, No.67 Dongchang West Road, Liaocheng, 252000, Shandong, People's Republic of China
| | - Qianru Wang
- Department of Pharmacy, Liaocheng Fourth People's Hospital. No, 47 Huayuan North Road, Dongchangfu District, Liaocheng, 252000, Shandong, People's Republic of China
| | - Xiaohui Xing
- Department of Neurosurgery, Dongchangfu District, Liaocheng People's Hospital, No.67 Dongchang West Road, Liaocheng, 252000, Shandong, People's Republic of China
| | - Zhongchen Li
- Department of Neurosurgery, Dongchangfu District, Liaocheng People's Hospital, No.67 Dongchang West Road, Liaocheng, 252000, Shandong, People's Republic of China
| | - Lei Hou
- Department of Neurosurgery, Dongchangfu District, Liaocheng People's Hospital, No.67 Dongchang West Road, Liaocheng, 252000, Shandong, People's Republic of China
| | - Zhengshan Zhou
- Department of Neurosurgery, People's Hospital of Chiping District, No.1057 Wenhua Road, Chiping District, Liaocheng, 252100, Shandong, People's Republic of China
| | - Zengguang Wang
- Department of Neurosurgery, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Medical University General Hospital, Neurological Institute, 154 Anshan Road, Tianjin, 300052, China.
| | - Yilei Xiao
- Department of Neurosurgery, Dongchangfu District, Liaocheng People's Hospital, No.67 Dongchang West Road, Liaocheng, 252000, Shandong, People's Republic of China.
| |
Collapse
|
14
|
Thi HV, Hoang TN, Le NQK, Chu DT. Application of data science and bioinformatics in RNA therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 203:83-97. [PMID: 38360007 DOI: 10.1016/bs.pmbts.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Nowadays, information technology (IT) has been holding a significant role in daily life worldwide. The trajectory of data science and bioinformatics promises pioneering personalized therapies, reshaping medical landscapes and patient care. For RNA therapy to reach more patients, a comprehensive understanding of the application of data science and bioinformatics to this therapy is essential. Thus, this chapter has summarized the application of data science and bioinformatics in RNA therapeutics. Data science applications in RNA therapy, such as data integration and analytics, machine learning, and drug development, have been discussed. In addition, aspects of bioinformatics such as RNA design and evaluation, drug delivery system simulation, and databases for personalized medicine have also been covered in this chapter. These insights have shed light on existing evidence and opened potential future directions. From there, scientists can elevate RNA-based therapeutics into an era of tailored treatments and revolutionary healthcare.
Collapse
Affiliation(s)
- Hue Vu Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Thanh-Nhat Hoang
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; AIBioMed Research Group, Taipei Medical University, Taipei, Taiwan
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
15
|
Dack K, Bustamante M, Taylor CM, Llop S, Lozano M, Yousefi P, Gražulevičienė R, Gutzkow KB, Brantsæter AL, Mason D, Escaramís G, Lewis SJ. Genome-Wide Association Study of Blood Mercury in European Pregnant Women and Children. Genes (Basel) 2023; 14:2123. [PMID: 38136945 PMCID: PMC10742428 DOI: 10.3390/genes14122123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Mercury has high industrial utility and is present in many products, and environmental contamination and occupational exposure are widespread. There are numerous biological systems involved in the absorption, metabolism, and excretion of Hg, and it is possible that some systems may be impacted by genetic variation. If so, genotype may affect tissue concentrations of Hg and subsequent toxic effects. Genome-wide association testing was performed on blood Hg samples from pregnant women of the Avon Longitudinal Study of Parents and Children (n = 2893) and children of the Human Early Life Exposome (n = 1042). Directly-genotyped single-nucleotide polymorphisms (SNPs) were imputed to the Haplotype Reference Consortium r1.1 panel of whole genotypes and modelled againstlog-transformed Hg. Heritability was estimated using linkage disequilibrium score regression. The heritability of Hg was estimated as 24.0% (95% CI: 16.9% to 46.4%) in pregnant women, but could not be determined in children. There were 16 SNPs associated with Hg in pregnant women above a suggestive p-value threshold (p < 1 × 10-5), and 21 for children. However, no SNP passed this threshold in both studies, and none were genome-wide significant (p < 5 × 10-8). SNP-Hg associations were highly discordant between women and children, and this may reflect differences in metabolism, a gene-age interaction, or dose-response effects. Several suggestive variants had plausible links to Hg metabolism, such as rs146099921 in metal transporter SLC39A14, and two variants (rs28618224, rs7154700) in potassium voltage-gated channel genes. The findings would benefit from external validation, as suggestive results may contain both true associations and false positives.
Collapse
Affiliation(s)
- Kyle Dack
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1TH, UK; (K.D.)
| | - Mariona Bustamante
- ISGlobal, Institute for Global Health, 08036 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08018 Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain (G.E.)
| | - Caroline M. Taylor
- Centre for Academic Child Health, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK;
| | - Sabrina Llop
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain (G.E.)
- Epidemiology and Environmental Health Joint Research Unit, FISABIO- Universitat Jaume I - Universitat de València, 46020 Valencia, Spain
| | - Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO- Universitat Jaume I - Universitat de València, 46020 Valencia, Spain
- Department of Preventative Medicine, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, 46100 Valencia, Spain
| | - Paul Yousefi
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1TH, UK; (K.D.)
| | - Regina Gražulevičienė
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, 53361 Kaunas, Lithuania
| | - Kristine Bjerve Gutzkow
- Department of Air Quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, P.O. Box 222 Skoyen, NO-0213 Oslo, Norway;
| | - Anne Lise Brantsæter
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, P.O. Box 222 Skoyen, NO-0213 Oslo, Norway
| | - Dan Mason
- Bradford Teaching Hospitals NHS Foundation Trust, Duckworth Lane, Bradford BD9 6RJ, UK
| | - Georgia Escaramís
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain (G.E.)
- Department of Biomedical Sciences, Institute of Neuroscience, University of Barcelona, 08035 Barcelona, Spain
| | - Sarah J. Lewis
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1TH, UK; (K.D.)
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1TH, UK
| |
Collapse
|
16
|
Guzzi PH, Cortese F, Mannino GC, Pedace E, Succurro E, Andreozzi F, Veltri P. Analysis of age-dependent gene-expression in human tissues for studying diabetes comorbidities. Sci Rep 2023; 13:10372. [PMID: 37365269 DOI: 10.1038/s41598-023-37550-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023] Open
Abstract
The study of the relationship between type 2 diabetes mellitus (T2DM) disease and other pathologies (comorbidities), together with patient age variation, poses a challenge for medical research. There is evidence that patients affected by T2DM are more likely to develop comorbidities as they grow older. Variation of gene expression can be correlated to changes in T2DM comorbidities insurgence and progression. Understanding gene expression changes requires the analysis of large heterogeneous data at different scales as well as the integration of different data sources into network medicine models. Hence, we designed a framework to shed light on uncertainties related to age effects and comorbidity by integrating existing data sources with novel algorithms. The framework is based on integrating and analysing existing data sources under the hypothesis that changes in the basal expression of genes may be responsible for the higher prevalence of comorbidities in older patients. Using the proposed framework, we selected genes related to comorbidities from existing databases, and then analysed their expression with age at the tissues level. We found a set of genes that changes significantly in certain specific tissues over time. We also reconstructed the associated protein interaction networks and the related pathways for each tissue. Using this mechanistic framework, we detected interesting pathways related to T2DM whose genes change their expression with age. We also found many pathways related to insulin regulation and brain activities, which can be used to develop specific therapies. To the best of our knowledge, this is the first study that analyses such genes at the tissue level together with age variations.
Collapse
Affiliation(s)
- Pietro Hiram Guzzi
- Department of Surgical and Medical Sciences, Magna Graecia University, 88100, Catanzaro, Italy.
| | - Francesca Cortese
- Department of Surgical and Medical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Gaia Chiara Mannino
- Department of Surgical and Medical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Elisabetta Pedace
- Internal Medicine Unit, ASP Catanzaro, Soverato Hospital, Soverato, Italy
| | - Elena Succurro
- Department of Surgical and Medical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
- Internal Medicine Unit, R. Dulbecco Hospital, 88100, Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Surgical and Medical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
- Internal Medicine Unit, R. Dulbecco Hospital, 88100, Catanzaro, Italy
| | | |
Collapse
|
17
|
Boukhalfa W, Jmel H, Kheriji N, Gouiza I, Dallali H, Hechmi M, Kefi R. Decoding the genetic relationship between Alzheimer's disease and type 2 diabetes: potential risk variants and future direction for North Africa. Front Aging Neurosci 2023; 15:1114810. [PMID: 37342358 PMCID: PMC10277480 DOI: 10.3389/fnagi.2023.1114810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/11/2023] [Indexed: 06/22/2023] Open
Abstract
Introduction Alzheimer's disease (AD) and Type 2 diabetes (T2D) are both age-associated diseases. Identification of shared genes could help develop early diagnosis and preventive strategies. Although genetic background plays a crucial role in these diseases, we noticed an underrepresentation tendency of North African populations in omics studies. Materials and methods First, we conducted a comprehensive review of genes and pathways shared between T2D and AD through PubMed. Then, the function of the identified genes and variants was investigated using annotation tools including PolyPhen2, RegulomeDB, and miRdSNP. Pathways enrichment analyses were performed with g:Profiler and EnrichmentMap. Next, we analyzed variant distributions in 16 worldwide populations using PLINK2, R, and STRUCTURE software. Finally, we performed an inter-ethnic comparison based on the minor allele frequency of T2D-AD common variants. Results A total of 59 eligible papers were included in our study. We found 231 variants and 363 genes shared between T2D and AD. Variant annotation revealed six single nucleotide polymorphisms (SNP) with a high pathogenic score, three SNPs with regulatory effects on the brain, and six SNPs with potential effects on miRNA-binding sites. The miRNAs affected were implicated in T2D, insulin signaling pathways, and AD. Moreover, replicated genes were significantly enriched in pathways related to plasma protein binding, positive regulation of amyloid fibril deposition, microglia activation, and cholesterol metabolism. Multidimensional screening performed based on the 363 shared genes showed that main North African populations are clustered together and are divergent from other worldwide populations. Interestingly, our results showed that 49 SNP associated with T2D and AD were present in North African populations. Among them, 11 variants located in DNM3, CFH, PPARG, ROHA, AGER, CLU, BDNF1, CST9, and PLCG1 genes display significant differences in risk allele frequencies between North African and other populations. Conclusion Our study highlighted the complexity and the unique molecular architecture of North African populations regarding T2D-AD shared genes. In conclusion, we emphasize the importance of T2D-AD shared genes and ethnicity-specific investigation studies for a better understanding of the link behind these diseases and to develop accurate diagnoses using personalized genetic biomarkers.
Collapse
Affiliation(s)
- Wided Boukhalfa
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Haifa Jmel
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Nadia Kheriji
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Ismail Gouiza
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
- University of Angers, MitoLab Team, Unité MitoVasc, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France
| | - Hamza Dallali
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Mariem Hechmi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Rym Kefi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| |
Collapse
|
18
|
Krause C, Suwada K, Blomme EAG, Kowalkowski K, Liguori MJ, Mahalingaiah PK, Mittelstadt S, Peterson R, Rendino L, Vo A, Van Vleet TR. Preclinical species gene expression database: Development and meta-analysis. Front Genet 2023; 13:1078050. [PMID: 36733943 PMCID: PMC9887474 DOI: 10.3389/fgene.2022.1078050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/07/2022] [Indexed: 01/19/2023] Open
Abstract
The evaluation of toxicity in preclinical species is important for identifying potential safety liabilities of experimental medicines. Toxicology studies provide translational insight into potential adverse clinical findings, but data interpretation may be limited due to our understanding of cross-species biological differences. With the recent technological advances in sequencing and analyzing omics data, gene expression data can be used to predict cross species biological differences and improve experimental design and toxicology data interpretation. However, interpreting the translational significance of toxicogenomics analyses can pose a challenge due to the lack of comprehensive preclinical gene expression datasets. In this work, we performed RNA-sequencing across four preclinical species/strains widely used for safety assessment (CD1 mouse, Sprague Dawley rat, Beagle dog, and Cynomolgus monkey) in ∼50 relevant tissues/organs to establish a comprehensive preclinical gene expression body atlas for both males and females. In addition, we performed a meta-analysis across the large dataset to highlight species and tissue differences that may be relevant for drug safety analyses. Further, we made these databases available to the scientific community. This multi-species, tissue-, and sex-specific transcriptomic database should serve as a valuable resource to enable informed safety decision-making not only during drug development, but also in a variety of disciplines that use these preclinical species.
Collapse
Affiliation(s)
- Caitlin Krause
- R & D Data Solutions, AbbVie, North Chicago, IL, United States
| | - Kinga Suwada
- Development Biological Sciences, AbbVie, North Chicago, IL, United States
| | - Eric A. G. Blomme
- Development Biological Sciences, AbbVie, North Chicago, IL, United States
| | | | - Michael J. Liguori
- Development Biological Sciences, AbbVie, North Chicago, IL, United States
| | | | - Scott Mittelstadt
- Development Biological Sciences, AbbVie, North Chicago, IL, United States
| | - Richard Peterson
- Development Biological Sciences, AbbVie, North Chicago, IL, United States
| | - Lauren Rendino
- Development Biological Sciences, AbbVie, North Chicago, IL, United States
| | - Andy Vo
- Development Biological Sciences, AbbVie, North Chicago, IL, United States
| | - Terry R. Van Vleet
- Development Biological Sciences, AbbVie, North Chicago, IL, United States,*Correspondence: Terry R. Van Vleet,
| |
Collapse
|
19
|
Abstract
Macroautophagy/autophagy, a fundamental cell process for nutrient recycling and defense against pathogens (termed xenophagy), is crucial to human health. ATG16L2 (autophagy related 16 like 2) is an autophagic protein and a paralog of ATG16L1. Both proteins are implicated in similar diseases such as cancer and other chronic diseases; however, most autophagy studies to date have primarily focused on the function of ATG16L1, with ATG16L2 remaining uncharacterized and understudied. Overexpression of ATG16L2 has been reported in various cancers including colorectal, gastric, and prostate carcinomas, whereas altered methylation of ATG16L2 has been associated with lung cancer formation and poorer response to therapy in leukemia. In addition, ATG16L2 polymorphisms have been implicated in a range of other diseases including inflammatory bowel diseases and neurodegenerative disorders. Despite this likely role in human health, the function of this enigmatic protein in autophagy remains unknown. Here, we review current studies on ATG16L2 and collate evidence that suggests that this protein is a potential modulator of autophagy as well as the implications this has on pathogenesis.Abbreviations: ATG5: autophagy related 5; ATG12: autophagy related 12; ATG16L1: autophagy related 16 like 1; ATG16L2: autophagy related 16 like 2; CD: Crohn disease; IBD: inflammatory bowel diseases; IRGM: immunity related GTPase M; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PE: phosphatidylethanolamine; RB1CC1: RB1 inducible coiled-coil 1; SLE: systemic lupus erythematosus; WIPI2B: WD repeat domain, phosphoinositide interacting 2B.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia,CONTACT Laurence Don Wai Luu School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Nadeem O. Kaakoush
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Natalia Castaño-Rodríguez
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia,Natalia Castaño-Rodríguez School of Biotechnology and Biomolecular Sciences, Faculty of Science, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|