1
|
Yusufoğlu E, Güngör Kobat S, Keser S. Evaluation of central corneal epithelial thickness with anterior segment OCT in patients with type 2 diabetes mellitus. Int Ophthalmol 2023; 43:27-33. [PMID: 35781596 DOI: 10.1007/s10792-022-02384-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND This study aimed to evaluate the central corneal thickness (CCT) and central corneal epithelial thickness (CCET) in patients with Type 2 diabetes mellitus (DM), and the effect of the duration of diabetes, the degree of diabetic retinopathy (DR), and HbA1c level. METHODS CCT and CCET values of 72 patients diagnosed with type 2 DM and 72 healthy individuals were measured by anterior segment optical coherence tomography. The eye tear function was evaluated with the Tear Break-up Time test (TBUT) and the Schirmer test. From the results of fundus examination, the diabetic patients were grouped as those without DR, non-proliferative DR, and proliferative DR. The disease duration and the HbA1c levels were recorded. RESULTS In the diabetic patients, the mean CCT was determined to be thicker (p = 0.025), the CCET was thinner (p = 0.003), and the TBUT and Schirmer values were lower (p <0.001, p <0.001, respectively). The duration of diabetes and the HbA1c level was not found to have any statistically significant effect on these parameters (p >0.05). The presence of retinopathy had no significant effect on CCT, TBUT, and Schirmer values. The CCET was determined to be thinner in patients with retinopathy (p <0.001). CONCLUSIONS As the corneal epithelial thickness is reduced in patients with advanced diabetic retinopathy, corneal epithelial pathologies can be seen more often. Therefore, early and effective treatment can be started by taking into consideration the complications which may develop associated with the corneal epithelium following surgical procedures, especially those applied to the cornea.
Collapse
Affiliation(s)
- Elif Yusufoğlu
- Department of Ophthalmology, Elazığ Fethi Sekin City Hospital, Elâzığ, Turkey.
| | | | - Sinem Keser
- Department of Ophthalmology, Elazığ Fethi Sekin City Hospital, Elâzığ, Turkey
| |
Collapse
|
2
|
Gad H, Elgassim E, Mohammed I, Alhaddad AY, Ahmed Hussein Zaky Aly H, Cabibihan JJ, Al-Ali A, Sadasivuni KK, Haji A, Lamine N, Khan A, Petropoulos IN, Ponirakis G, Kalteniece A, Ferdousi M, Azmi S, Alam U, Abuhelaiqa W, Jayyousi A, AlMohanadi D, Baagar K, Malik RA. Continuous glucose monitoring reveals a novel association between duration and severity of hypoglycemia, and small nerve fiber injury in patients with diabetes. Endocr Connect 2022; 11:e220352. [PMID: 36240043 PMCID: PMC9716363 DOI: 10.1530/ec-22-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2022]
Abstract
Objective Continuous glucose monitoring (CGM) has revealed that glycemic variability and low time in range are associated with albuminuria and retinopathy. We have investigated the relationship between glucose metrics derived from CGM and a highly sensitive measure of neuropathy using corneal confocal microscopy in participants with type 1 and type 2 diabetes. Methods A total of 40 participants with diabetes and 28 healthy controls underwent quantification of corneal nerve fiber density (CNFD), corneal nerve branch density (CNBD), corneal nerve fiber length (CNFL) and inferior whorl length (IWL) and those with diabetes underwent CGM for four consecutive days. Results CNBD was significantly lower in patients with high glycemic variability (GV) compared to low GV (median (range) (25.0 (19.0-37.5) vs 38.6 (29.2-46.9); P = 0.007); in patients who spent >4% compared to <4% time in level 1 hypoglycemia (54-69 mg/dL) (25.0 (22.9-37.5) vs 37.5 (29.2-46.9); P = 0.045) and in patients who spent >1% compared to <1% time in level 2 hypoglycemia (<54 mg/dL) (25.0 (19.8-41.7) vs 35.4 (28.1-44.8); P = 0.04). Duration in level 1 hypoglycemia correlated with CNBD (r = -0.342, P = 0.031). Duration in level 1 (181-250 mg/dL) and level 2 (>250 mg/dL) hyperglycemia did not correlate with CNFD (P > 0.05), CNBD (P > 0.05), CNFL (P > 0.05) or IWL (P > 0.05). Conclusions Greater GV and duration in hypoglycemia, rather than hyperglycemia, are associated with nerve fiber loss in diabetes.
Collapse
Affiliation(s)
- Hoda Gad
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Einas Elgassim
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Ibrahim Mohammed
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
- Department of Internal Medicine, Albany Medical Center Hospital, Albany, New York, USA
| | - Ahmad Yaser Alhaddad
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar
| | | | - John-John Cabibihan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar
| | - Abdulaziz Al-Ali
- KINDI Center for computing research, Qatar University, Doha, Qatar
| | | | - Aliyaa Haji
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Neila Lamine
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Adnan Khan
- Faculty of Healthy Sciences, Khyber Medical University, Peshawar, Pakistan
| | | | | | - Alise Kalteniece
- Institute of Cardiovascular Medicine, University of Manchester, Manchester, UK
| | - Maryam Ferdousi
- Institute of Cardiovascular Medicine, University of Manchester, Manchester, UK
| | - Shazli Azmi
- Institute of Cardiovascular Medicine, University of Manchester, Manchester, UK
| | - Uazman Alam
- Diabetes and Neuropathy Research, Department of Eye and Vision Sciences and Pain Research Institute, Institute of Ageing and Chronic Disease, University of Liverpool and Aintree University Hospital NHS Foundation Trust, Liverpool, UK
- Department of Diabetes and Endocrinology, Royal Liverpool and Broadgreen University NHS Hospital Trust, Liverpool, UK
- Division of Endocrinology, Diabetes and Gastroenterology, University of Manchester, Manchester, UK
| | | | - Amin Jayyousi
- Hamad Medical Corporation, National Diabetes Center, Doha, Qatar
| | - Dabia AlMohanadi
- Hamad Medical Corporation, National Diabetes Center, Doha, Qatar
| | - Khaled Baagar
- Hamad Medical Corporation, National Diabetes Center, Doha, Qatar
| | - Rayaz A Malik
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
- Institute of Cardiovascular Medicine, University of Manchester, Manchester, UK
| |
Collapse
|
3
|
Cosmo E, Midena G, Frizziero L, Bruno M, Cecere M, Midena E. Corneal Confocal Microscopy as a Quantitative Imaging Biomarker of Diabetic Peripheral Neuropathy: A Review. J Clin Med 2022; 11:5130. [PMID: 36079060 PMCID: PMC9457345 DOI: 10.3390/jcm11175130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Distal symmetric polyneuropathy (DPN), particularly chronic sensorimotor DPN, represents one of the most frequent complications of diabetes, affecting 50% of diabetic patients and causing an enormous financial burden. Whilst diagnostic methods exist to detect and monitor this condition, they have significant limitations, mainly due to their high subjectivity, invasiveness, and non-repeatability. Corneal confocal microscopy (CCM) is an in vivo, non-invasive, and reproducible diagnostic technique for the study of all corneal layers including the sub-basal nerve plexus, which represents part of the peripheral nervous system. We reviewed the current literature on the use of CCM as an instrument in the assessment of diabetic patients, particularly focusing on its role in the study of sub-basal nerve plexus alterations as a marker of DPN. CCM has been demonstrated to be a valid in vivo tool to detect early sub-basal nerve plexus damage in adult and pediatric diabetic patients, correlating with the severity of DPN. Despite its great potential, CCM has still limited application in daily clinical practice, and more efforts still need to be made to allow the dissemination of this technique among doctors taking care of diabetic patients.
Collapse
Affiliation(s)
| | | | - Luisa Frizziero
- Department of Neuroscience-Ophthalmology, University of Padova, 35128 Padova, Italy
| | | | | | - Edoardo Midena
- IRCCS—Fondazione Bietti, 00198 Rome, Italy
- Department of Neuroscience-Ophthalmology, University of Padova, 35128 Padova, Italy
| |
Collapse
|
4
|
Gad H, Petropoulos IN, Khan A, Ponirakis G, MacDonald R, Alam U, Malik RA. Corneal confocal microscopy for the diagnosis of diabetic peripheral neuropathy: A systematic review and meta-analysis. J Diabetes Investig 2022; 13:134-147. [PMID: 34351711 PMCID: PMC8756328 DOI: 10.1111/jdi.13643] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Corneal confocal microscopy (CCM) is a rapid non-invasive ophthalmic imaging technique that identifies corneal nerve fiber damage. Small studies suggest that CCM could be used to assess patients with diabetic peripheral neuropathy (DPN). AIM To undertake a systematic review and meta-analysis assessing the diagnostic utility of CCM for sub-clinical DPN (DPN- ) and established DPN (DPN+ ). DATA SOURCES Databases (PubMed, Embase, Central, ProQuest) were searched for studies using CCM in patients with diabetes up to April 2020. STUDY SELECTION Studies were included if they reported on at least one CCM parameter in patients with diabetes. DATA EXTRACTION Corneal nerve fiber density (CNFD), corneal nerve branch density (CNBD), corneal nerve fiber length (CNFL), and inferior whorl length (IWL) were compared between patients with diabetes with and without DPN and controls. Meta-analysis was undertaken using RevMan V.5.3. DATA SYNTHESIS Thirty-eight studies including ~4,000 participants were included in this meta-analysis. There were significant reductions in CNFD, CNBD, CNFL, and IWL in DPN- vs controls (P < 0.00001), DPN+ vs controls (P < 0.00001), and DPN+ vs DPN- (P < 0.00001). CONCLUSION This systematic review and meta-analysis shows that CCM detects small nerve fiber loss in subclinical and clinical DPN and concludes that CCM has good diagnostic utility in DPN.
Collapse
Affiliation(s)
- Hoda Gad
- Department of MedicineWeill Cornell Medicine‐QatarDohaQatar
| | | | - Adnan Khan
- Department of MedicineWeill Cornell Medicine‐QatarDohaQatar
| | | | | | - Uazman Alam
- Diabetes and Neuropathy ResearchDepartment of Eye and Vision Sciences and Pain Research InstituteInstitute of Ageing and Chronic DiseaseUniversity of Liverpool and Aintree University Hospital NHS Foundation TrustLiverpoolUK
- Department of Diabetes and EndocrinologyRoyal Liverpool and Broadgreen University NHS Hospital TrustLiverpoolUK
- Division of Endocrinology, Diabetes and GastroenterologyUniversity of ManchesterManchesterUK
| | - Rayaz A Malik
- Department of MedicineWeill Cornell Medicine‐QatarDohaQatar
- Institute of Cardiovascular MedicineUniversity of ManchesterManchesterUK
| |
Collapse
|
5
|
Shah R, Amador C, Tormanen K, Ghiam S, Saghizadeh M, Arumugaswami V, Kumar A, Kramerov AA, Ljubimov AV. Systemic diseases and the cornea. Exp Eye Res 2021; 204:108455. [PMID: 33485845 PMCID: PMC7946758 DOI: 10.1016/j.exer.2021.108455] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/08/2023]
Abstract
There is a number of systemic diseases affecting the cornea. These include endocrine disorders (diabetes, Graves' disease, Addison's disease, hyperparathyroidism), infections with viruses (SARS-CoV-2, herpes simplex, varicella zoster, HTLV-1, Epstein-Barr virus) and bacteria (tuberculosis, syphilis and Pseudomonas aeruginosa), autoimmune and inflammatory diseases (rheumatoid arthritis, Sjögren's syndrome, lupus erythematosus, gout, atopic and vernal keratoconjunctivitis, multiple sclerosis, granulomatosis with polyangiitis, sarcoidosis, Cogan's syndrome, immunobullous diseases), corneal deposit disorders (Wilson's disease, cystinosis, Fabry disease, Meretoja's syndrome, mucopolysaccharidosis, hyperlipoproteinemia), and genetic disorders (aniridia, Ehlers-Danlos syndromes, Marfan syndrome). Corneal manifestations often provide an insight to underlying systemic diseases and can act as the first indicator of an undiagnosed systemic condition. Routine eye exams can bring attention to potentially life-threatening illnesses. In this review, we provide a fairly detailed overview of the pathologic changes in the cornea described in various systemic diseases and also discuss underlying molecular mechanisms, as well as current and emerging treatments.
Collapse
Affiliation(s)
- Ruchi Shah
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Cynthia Amador
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kati Tormanen
- Center for Neurobiology and Vaccine Development, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sean Ghiam
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Mehrnoosh Saghizadeh
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Vaithi Arumugaswami
- Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, USA
| | - Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|